
 1

Predicting Software Defects in Varying Development
Lifecycles using Bayesian Nets

Norman Fenton‡, Martin Neil‡, William Marsh, Peter Hearty, Department of Computer Science Queen Mary,

University of London, Mile End Road, London and ‡Agena Ltd, London

norman, martin, william, hearty @dcs.qmul.ac.uk

Paul Krause, Department of Computing, University of Surrey, Guildford, Surrey, UK, and Philips,

p.krause@surrey.ac.uk

Rajat Mishra, Philips Software Centre, Bangalore, India, rajat.mishra@philips.com

ABSTRACT
An important decision in software projects is when to stop testing. Decision support tools for this have been built

using causal models represented by Bayesian Networks (BNs), incorporating empirical data and expert judgement.

Previously, this required a custom BN for each development lifecycle. We describe a more general approach that

allows causal models to be applied to any lifecycle. The approach evolved through collaborative projects and

captures significant commercial input. For projects within the range of the models, defect predictions are very

accurate. This approach enables decision-makers to reason in a way that is not possible with regression-based

models.

Keywords

Causal Models, Dynamic Bayesian Networks, Software Defects, Decision Support.

 2

1. INTRODUCTION
In [8] we reviewed the various approaches to software defect prediction. We concluded that traditional statistical

approaches, such as using regression modelling alone, were inadequate. We proposed that causal models were

needed for more accurate predictions. We described a simple Bayesian Net (BN) as an example of the kind of causal

model needed for this purpose. Since then a number of authors, for example [3][7][24], have used BNs in various

related aspects of software engineering management. Our own research has extended the use of BNs to more general

software project management [13]. However, the original motivation of more accurate software defect prediction

has continued to be an important focus of our research and this paper describes some of the most recent results in

this area.

Following on from the early ideas presented in [8], in [12] we have shown how BNs can be used to predict the

number of software defects remaining undetected after testing. This work led to the AID tool [23] developed in

partnership with Philips, and used to predict software defects in consumer electronic products. Project managers use

a BN-based tool such as AID to help decide when to stop testing and release software, trading-off the time for

additional testing against the likely benefit.

Rather than relying only on data from previous projects, this work uses causal models of the Project Manager’s

understanding, covering mechanisms such as:

• poor quality development increases the number of defects likely to be present

• high quality testing increases the proportion of defects found.

Causal models are important because they allow all the evidence to be taken into account, even when different

evidence conflicts. Suppose that few defects are found during testing – does this mean that testing is poor or that

development was outstanding and the software has few defects to find? Regression-based models of software defects

are little help to a Project Manager who must decide between these alternatives [8]. Data from previous projects is

used to build the BN, with expert judgements on the strength of each causal mechanism.

In this paper, we extend the earlier work by describing a much more flexible and general method of using BNs for

defect prediction. We also describe how the AgenaRisk [1] toolset is used to create an effective decision support

system from the BN. An important limitation of the earlier work was the need to build a different BN for each

software development lifecycle – to reflect both the differing number of testing stages in the lifecycle and the

differing metrics data available. Given the work required to build a BN, this severely limits the practically of the

approach. To overcome this limitation, we describe a BN that models the creation and detection of software defects

without commitment to a particular development lifecycle. We then show how a software development organisation

can adapt this BN to their development lifecycle and metrics data with much less effort than is needed to build a

tailored BN from scratch.

 3

The contents of the remainder of the paper are as follows: in Section 2 we introduce BNs and show how they are

used for causal modelling in software engineering. Section 3 introduces the idea of a ‘phase’ as a sub-part of a

software lifecycle and shows how several phase models can be combined to model different lifecycles. The phase

model is described in detail in Section 4; Section 5 shows how it is adapted to different development lifecycles. An

experimental validation of defect predictions is described in Section 6.

2. DEFECT PREDICTION WITH BNs

2.1 Bayesian Nets

A Bayesian net [15] (BN) is a graph (such as that shown in Figure 1) together with an associated set of probability

tables. The nodes represent uncertain variables and the arcs represent the causal/relevance relationships between the

variables.

Figure 1 BN for Defect Prediction

 4

The BN of Figure 1 forms a causal model of the process of inserting, finding and fixing software defects. The

variable ‘effective KLOC implemented’ represents the complexity-adjusted size of the functionality implemented:

as the amount of functionality increases the number of potential defects rises. In this version of the model, KLOC is

used as a surrogate for Function Points (FP). Function points are the preferred measure of program size since they

can be estimated on the basis of a functional specification. However, most of the companies involved in the

validation of this model did not use FPs and, since the validation was retrospective, KLOC measures were readily

available. The model can deal with either KLOC or FPs using appropriate conversions (based on empirical data by

Jones [16][17]).

The ‘probability of avoiding defect in development’ determines ‘defects in’ from ‘Potential defects given

specification and documentation adequacy’. This number represents the number of defects (before testing) that are

in the new code that has been implemented. However, inserted defects may be found and fixed: the residual defects

are those remaining after testing.

There is a probability table for each node, specifying how the probability of each state of the variable depends on the

states of its parents. Some of these are deterministic: for example the ‘Residual defects’ is simply the numerical

difference between the ‘Defects in’ and the ‘Defects fixed’. In other cases, we can use standard statistical functions:

for example the process of finding defects is modelled as a sequence of independent experiments, one for each

defect present, using the ‘Probability of finding a defect’ as a characteristic of the testing process:

Defects found = B(Defects inserted, Prob finding a defect)

where B(n,p) is the Binomial distribution for n trials with probability p.

Some nodes are defined as ranked nodes. These have a discrete set of states such as: “very low”, “low”, “medium”,

“high”, “very high”. Such nodes are useful when capturing expert judgement, where a simple, qualitative description

is required. However, because this judgment is also intended to indicate degree, it is represented by an underlying

real number in the range [0..1]. An example is the ‘Quality of spec and doc PRE’ node in Figure 4. Its children

incorporate the [0..1] value of their parent into expressions which determine their conditional probability tables.

However, the correspondence between qualitative degree and quantitative value is not always straightforward. For

example, the ‘Quality of spec and doc POST’ node in Figure 4 uses a partitioned expression on one of its parents to

create distinct conditional probability tables corresponding to each parent state.

For variables without parents the table just contains the prior probabilities of each state.

 5

The BN represents the complete joint probability distribution – assigning a probability to each combination of states

of all the variables – but in a factored form, greatly reducing the space needed. When the states of some variables are

known, the joint probability distribution can be recalculated conditioned on this ‘evidence’ and the updated marginal

probability distribution over the states of each variable can be observed.

The quality of the development and testing processes is represented in the BN of Figure 1 by four variables over the

0 to 1 interval:

• probability of avoiding specification defects

• probability of avoiding defects in development

• probability of finding defects

• probability of fixing defects.

The BN in Figure 1 is a simplified version of the BN at the heart of a decision support system for software defects,

discussed below. None of these probability variables (or the ‘Effective KLOC implemented’ variable) are entered

directly by the user: instead, these variables have further parents modelling the causes of process quality as we

describe in Section 4.

2.2 Decision Support with BNs
Although the underlying theory (Bayesian probability) has been around for a long time, executing realistic BN

models was only first made possible in the late 1980s as a result of breakthrough algorithms and software tools that

implement them [15]. Methods for building large-scale BNs are even more recent ([9][22]) but it is only such work

that has made it possible to apply BNs to the problems of software engineering.

Drawing on this work in various commercial projects with Agena, Fenton and Neil have built BN-based applications

that have proved the technology is both viable and effective. Several of these applications have been related to

systems or software assessment. Especially significant was the TRACS tool [21] to assess vehicle reliability for

QinetiQ (on behalf of the MOD) and the AID tool [23] to predict software defects in consumer electronic products

for Philips. Much of the modelling work described here was done as part of the MODIST project [13], which

extends the ideas in AID. The toolset implementation has been based on Agena’s AgenaRisk technology that was

extended to incorporate recent developments in building large-scale BNs that was undertaken in the SCULLY,

SIMP and SCORE projects [9].

Three features of AgenaRisk are especially critical for building this kind of model:

 6

• Continuous nodes do not have to be discretised manually. Part of the problem in creating BN models is

determining the discretisation intervals for numeric nodes. After the MODIST project, the AgenaRisk toolset

was updated to automatically discretise - allocating more refined intervals to greater probability masses.

• The notion of ‘ranked nodes’ with a range of pre-defined functions makes it easy for domain experts to build

very large tables that otherwise would have to have been constructed manually.

• Probability tables are generated from numerical and statistical expressions by simulation. The expression given

above using the binomial distribution is not only the conceptual model but also how the model is specified.

2.3 Building the BN Model
Like all BNs, the defect model was built using a mixture of data and expert judgements. Understanding cause and

effect is a basic form of human knowledge underlying our decisions. For example, a project manager knows that

more rigorous testing increases the number – and proportion of – defects found during testing and therefore reduces

the number remaining in the delivered software.

It is obvious that the relationship is not the other way round. However, it is equally obvious that we need to take into

account whatever evidence we have about: the likely number of defects in the software following development; the

capabilities of the team; and the adequacy of the time allowed. The expert’s understanding of cause and effect is

used to connect the variables of the net with arcs drawn from cause to effect.

To ensure that our model is consistent with these empirical findings, the probability tables in the net are constructed

using data, whenever it is available. However, when there is missing data, or the data does not take account of all the

causal influences, expert judgement must be used as well.

2.4 Object Oriented Bayesian Nets
Creating large, repetitive Bayesian nets is a straightforward but highly laborious process. Object Oriented Bayesian

nets (OOBN) simplify this task by creating predefined subnets, known as Classes. Instances of these net classes are

known as Risk Objects. The theory underlying this approach was presented by Koller and Pfeffer [19], and the

practical implications outlined by Bangsø and Wuillemin [2]. The utility of OOBNs will be demonstrated in our

approach to modelling software lifecycles.

3. VARYING THE LIFECYCLE
When we describe defects being inserted in ‘implementation’ and removed in ‘testing’ we are referring to the

activities that make up the software development lifecycle. We need to fit a decision support system to the lifecycle

being used, but practical lifecycles vary greatly. In this section, we describe how this can be achieved without

having to build a bespoke BN for every different lifecycle. The solution has two steps: the idea of a lifecycle ‘phase’

modelled by a BN and a method of linking separate phase models into a model for an entire lifecycle.

 7

3.1 A Lifecycle Phase
We model a development lifecycle as made up from ‘phases’, but a phase is not a fixed development process as in

the traditional waterfall lifecycle. Instead, a phase can consist of any number and combination of development

activities. For example, in the ‘incremental delivery’ approach the phases could correspond to the code increments;

each phase then includes all the development activities: specification, design, coding and testing. Even in a

traditional waterfall lifecycle it is likely that a phase includes more than one activity with, for example, the testing

phase involving some new design and coding work.

The incremental and waterfall models are just two ends of a continuum. To cover all parts of this continuum, we

consider all phases to include one or more of the following development activities:

• Specification/documentation: This covers any activity whose objective is to understand or describe some

existing or proposed functionality. It includes: requirements gathering, writing, reviewing, or changing any

documentation (other than comments in code).

• Development (or more simply coding): This covers any activity that starts with some predefined requirements

(however vague) and ends with executable code.

• Testing and rework: This covers any activity that involves executing code in such a way that defects are found

and noted; it also includes fixing known defects.

The phase BN includes all these activities, allowing the extent of each activity in any actual phase to be adjusted. In

the most general case, a software project will consist of a combination of these phases. In Section 4 we describe the

BN model for one phase in more detail. First, in the next section, we describe how multiple instances of the BN are

linked to model an arbitrary lifecycle.

3.2 Linking Phases: Dynamic BNs

Whatever the development lifecycle, the main objective is: given information about current and past phases we

would like to be able to predict attributes of quality for future phases. We therefore think of the set of phases as a

time series that defines the project overall. This is readily expressed as a Dynamic Bayesian Network (DBN) [2]. A

DBN allows time-indexed variables: in each time frame one of the parents of a time-indexed variable is the variable

from the previous time frame. Figure 2 shows how this is applied when the quality attribute is the number of residual

defects.

 8

Figure 2 A Dynamic BN Modelling a Software Lifecycle

The dynamic variable is shown with a dashed boundary. We construct the DBN with two nodes for each time-

indexed variable: the value in the previous time frame is the ‘input’ node (here ‘Residual defects pre’) and it has no

parents in the net. The node representing the value in this time frame is called the ‘output node’ (here ‘Residual

defects post’). Note that the variable for the current time frame ‘Residual defects post’ depends on the one for the

previous time frame, but as an ancestor rather than as a parent since it is clearer to represent the model with the

intermediate variable ‘Total defects in’.

As well as defects, we also model the documentation quality as a time-varying quality attribute. Recall that

documentation includes specification, which even in iterative developments is often prepared in one phase and

implemented in a later phase. We consider specification errors as defects so a phase in which documentation is the

main activity may lead to an important incremental change in documentation quality that is passed on to the next

phase.

4. MODELLING A SINGLE PHASE
We describe the ‘phase-level BN’, which models a single software development phase, first giving an overview and

then describing two parts of the BN in more detail.

4.1 Overview
The phase BN is constructed from five classes.

• One of three activity classes: documentation, development or testing.

• The scale of “New functionality” developed in this phase.

 9

• The defect prediction model.

Figure 3 Objects in the Phase BN

Figure 3 shows a single object instantiation of each of these classes. This object view of the single phase model

represents the BN in abstract terms. The inner details of each class are not shown – only the input and output nodes

are visible. In this view, a class is represented by its interface to other classes.

Triangular arrow heads represent input nodes within a class, whereas rounded arrow tails represent output nodes.

Lines represent input node instantiation. i.e. The output node of one object instantiates (replaces) the input node of

the connected object. Input nodes effectively act as parameters for a BN class.

Note that not all input nodes are instantiated by output nodes from another object. Input nodes have a default

probability distribution associated with them. However this is rarely used. More often, unattached input nodes are

initialised using explicit observations.

For example “Residual defects pre” is used to account for defects remaining from previous phases. If this is the first

or only phase, then it should be explicitly initialised to zero.

The BN classes are:

• New Functionality Implemented. Since we are to build and test some software we may be implementing some

new functionality in this phase. This class provides a measure of the size of this functionality.

• Specification and Documentation. This class is concerned with measuring the amount of specification and

documentation work in the phase, the quality of the specification process and determining the change in the

quality of the documentation as a result of the work done in the phase (modelled as a time-indexed variable).

• Design and Development. This class models the quality of the design and development process, which

 10

influences the probability of inserting each of the potential defects into the software.

• Testing and Rework. This class models the quality of the testing process and the rework process, influencing the

probabilities of finding and fixing defects.

Defect Insertion and Discovery. This class follows the pattern already described in Section 2.1, adapted to handle

changes to the number of defects using a time-indexed variable. The amount of ‘new functionality implemented’

will influence the inherent number of defects in the new code. We distinguish between potential defects from poor

specification and ‘inherent potential defects’, which are independent of the specification.

4.2 Specification and Documentation
Figure 4 shows the Specification and Documentation class. Before implementing any functionality there is assumed

to be some specification of it. If we are lucky this specification will be a well-written document at the appropriate

level of detail. However, in many cases it may be nothing more than a vague statement of requirements. Generally,

therefore, there may be work that needs to be done on the specification as part of this lifecycle phase.

The ‘scale of all new specification and documentation work in this phase’ and ‘spec & doc process quality’ will

determine the ‘adequacy of documentation for new functionality (after spec work this phase)’ that is being

implemented in this phase. If, for example, there is very little new functionality (and so the ‘scale of new

specification and documentation work’ is low) then, even if the ‘spec & doc process quality’ is poor, it is likely that

adequacy of documentation will be sufficient. On the other hand, if there is a lot of new functionality the scale of

new specification and documentation work is likely to be high, which means that the process quality will need to be

good in order for the documentation to be adequate.

This class shows the use of ‘indicator’ nodes: for example the experience of the staff is an indicator of the process

quality. Indicators can easily be tailored to match the information available in the software development

environment – see Section 5.

 11

Figure 4 Specification and Documentation Class

4.3 Testing and Rework
Figure 5 shows the testing and rework class. The better the testing process the more likely we are to find defects. We

may or may not decide to fix the defects found in testing in this phase; the success of such fixes will depend on the

‘probability of fixing defect’. The two probabilities are used to update the number of residual defects in the ‘Defect

Insertion and Discovery’ class and to predict the number of residual defects at the start of any subsequent phase in

which further development and/or testing of the software takes place.

 12

Figure 5 Testing and Rework Class

4.4 Variations on the Phase Model
We can easily construct phase models that exclude any of the development activities already described. For

example, a phase that includes only specification or documentation is modelled by an instance of the “Specification

and documentation” class connected to an instance of the “Defect Insertion and Discovery” class.

The new functionality implemented is set to zero, and the development, testing and rework effort to zero. This

ensures that the information about defects is not changed (since without coding or testing defects are neither

introduced nor removed).

However, it is irksome for users to enter dummy information to ensure that certain variables are set to zero, so we

introduced a set of variants of the phase BN that explicitly model the cases where at least one of the software

development activities is not undertaken:

1. specification/documentation and development carried out in the phase, but not testing

2. specification/documentation and testing carried out in the phase, but not development

3. development and testing carried out in the phase, but not specification/documentation

4. only specification/documentation carried out in the phase

 13

5. only development carried out in the phase, and

6. only testing carried out in the phase.

These BNs are constructed by selecting the relevant classes and omitting those that are irrelevant. The BN modelling

the general case is known as the ‘all activities’ phase BN.

5. APPLICATION METHODOLOGY
There are two steps for applying the defect prediction model to a specific software development environment:

1. choose the ‘indicators’ used to judge the qualities of the different processes

2. link together phase BNs to model the full lifecycle.

5.1 Quality Indicators
Indicator variables used in the BN can be customised to match the indicators used within the organisation. As well

as editing names given to an indicator in the questionnaire, its probability table can be adjusted. The formula

language of the AgenaRisk toolset makes this feasible. Consider, for example, the ‘Testing process quality’ (TPQ)

shown in Figure 5. The suggested indicators are:

• Quality of documented test cases

• Testing process well defined

• Testing staff experienced

The process quality and the indicator values are judged on a five-point scale from ‘very low’ to ‘very high’,

corresponding to an underlying 0..1 numeric range. Values are judged relative to the norm for the development

environment. To set up the indicators, an expert need only judge its ‘strength’ as an indicator of the underlying

quality attribute. Given that the process quality really is high, how certain is it that the staff will be experienced? We

have found the truncated normal distribution [4] useful for creating a probability expressing an expert’s assessment

of the ‘strength’ of an indicator. For example, suppose:

Testing process well defined = TNormal(‘TPQ’, 0.6)

Testing staff experience = TNormal(‘TPQ’, 0.2)

This expresses the judgement that the staff experience is the stronger indicator, since it has a smaller variance

parameter (0.2) than the other indicator. In both cases the mean value of the indicator is given by the parent process

quality.

 14

5.2 Lifecycle Modelling
We show two examples of how the phase BN and its variants can be linked to model different lifecycles.

5.2.1 Iterative Development
An incremental software lifecycle is modelled by a series of the ‘all activities’ phase BN. Figure 6 shows this as it is

displayed in the AgenaRisk toolset.

Figure 6 An Incremental Development Lifecycle

Figure 7 shows an example of the predicted defects for this model.

 15

median = 93 median = 335 median = 293

Figure 7 Defects Predicted at Each Increment of the Incremental Lifecycle

In increment 1, the defects before the start of the phase is set to zero and the new functionality to 5 KLOC;

increment 2 has 25 KLOC and the final increment 5 KLOC of new functionality. Although each phase includes all

the activities, the first one gives most effort to specification and the final one most effort to testing and rework. The

number of residual defects falls from increment 2 to increment 3 as a result of the testing effort.

5.2.2 A Waterfall Example with Integration
This example in Figure 8 shows a waterfall lifecycle but with initial development of modules 1 and 2, including

some low-level testing, done by two separate teams, for example modelling development at different sites or the use

of subcontractors.

 16

Figure 8 A More Complex Lifecycle with Two Teams

The initial development follows different lifecycles: the two phases for module 1 being ‘specification, development

but no testing’ followed by ‘testing only’, while module 2 has a specification only initial phase. This difference may

represent the different way that metrics data is gathered at the two sites as well as actual lifecycle differences.

The ‘join’ class combines the defect estimates for the two modules, taking account of their relative size, before two

phases of testing applied to the system as a whole. This example also shows that user trials can be modelled as a

‘testing only’ phase.

5.3 Toolset
Our experience from earlier commercial projects is that project managers and other users who are not BN experts do

not wish to use a BN directly via a general purpose BN editor. Instead, the BN needs to be hidden behind a more

specialised user interface. The toolset provided by AgenaRisk is actually an application generator that enables

toolset users to tailor both the underlying BN models and the user interface that is provided to the end-users when

the application is generated.

 17

The main functions provided to the end-user are:

1. Observations can be entered using a questionnaire interface, where questions correspond to BN variables. Each

question includes an explanation and the user can select a state (if the number of states is small) or enter a

number (if the states of the variable are intervals in a numeric range). Answers given are collected into

‘scenarios’ that can be named and saved. At least one scenario is created for each software development project

but it is possible to create and compare multiple scenarios for a project.

2. Predictions are displayed as probability distributions and as summary statistics (mean, median, variance).

Distributions are displayed either as bar charts or as line graphs (see Figure 7) depending on the type of variable

and the number of states. The predictions for several scenarios can be superimposed for ease of comparison.

Summary statistics can be exported to a spreadsheet.

The questionnaires shown to the end user can be configured widely. For example, questions can be grouped and

ordered arbitrarily and the question text is fully editable. Not all variables need have a question, allowing any BN

variable to be hidden from the end user.

6. VALIDATION
The toolset and models have been widely trialled by various commercial organisations, including those involved in

the MODIST project [13], namely Philips, Israel Aircraft Industries (Tel Aviv) and QinetiQ (Malvern). In addition,

Philips has recently completed a retrospective trial of thirty projects carried out at Bangalore.

6.1 Aim and Methodology
The aim of the recent Philips trial (2004-2005) was to evaluate the accuracy of the defect prediction BN capabilities

in software projects. Initially, 116 consumer electronics software projects completed between 2001 and 2004 were

assessed for inclusion in the trial against the following criteria:

• reliable data was available

• project resulted in a commercial product

• the size of the project was within the scope of the model’s data ranges

• some key people from the project were still available for interview

• the projects should represent a range of product domains and a variety of design layers, including user

interface, intermediate and driver layers.

Thirty projects were identified as suitable for the trial, based on these criteria.

 18

A questionnaire, based on the AgenaRisk form for entering observations, was used to collect qualitative and

quantitative information from key project members. This data was entered into the model to predict the number of

defects found in testing. These predictions were then compared with the actual number of defects found in all testing

phases. Data was collected in two rounds: in the second round a more detailed interview was conducted with the

‘Quality Leaders’ for each project resulting in improved data and improved predictions.

The trial used a variant of the ‘all-activities’ phase-level net. It is important to note that the model was developed in

one development centre but trialled in another. These two development centres did not share a common corporate

culture or development methodology. Apart from the involvement of their parent company, they were effectively

separate organisations.

It was supposed at the time that all of the data supplied, applied to software projects which consisted of a single

development phase.

6.2 Results

Figure 9 shows the predicted versus the actual defect counts for the projects in the initial trial.

BN Predictions (initial trial)

y = 0.5611x + 219.46
R2 = 0.8779

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Actual

Pr
ed

ic
te

d

Predicted v actual
Linear (Predicted v actual)

Figure 9 Predicted verses actual defects (initial trial)

For comparison, a regression-based model was constructed using the same data. The subjective data was converted

from the ranked set of values: ‘Very High’, “High’, ‘Medium’, ‘Low’, ‘Very Low’; to a numeric scale: 5 down to 1.

Each of the model factors, including the subjective values and the quantitative factor, KLOC, were then tested for

their degree of correlation with the actual number of defects found.

 19

Eight factors were found to have significantly stronger correlations with the actual defect count. These had R2 values

in the range 0.12 – 0.78. These are listed in Table 1.

Factor R2

KLOC 0.78

requirements stability 0.41

new features complexity 0.24

configuration management 0.2

distributed development 0.19

specification review defects 0.19

new functionality 0.17

internal communications 0.12

Table 1

All other factors had R2 ≤ 0.08. The open source statistics package, gretl [14], was used to create an ordinary least

squares model of the eight factors as predictors of the actual defect count. The results are shown in Figure 10.

Gretl Predictions

y = 0.8499x + 95.52
R2 = 0.8245

-500

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

Actual

pr
ed

ic
tio

n

Gretl prediction
Linear (Gretl prediction)

Figure 10 Regression model defect counts against actuals

As can be seen, the causal model outperforms the regression model with respective R2 values of 0.8779 and 0.8245.

However, it is important to note that the regression model was built using the data for these specific projects, so it

will almost inevitably produce reasonable predictions. The underlying causal model is completely independent of

the data set.

 20

The validation also showed the need to ensure that the model closely matches the situation. For example, the

inaccuracies for projects outside the range of the default model are largely explained by the ‘defects pre’ variable,

representing the number of defects before the (one and only) development phase. Unless a value is explicitly entered

here, a default distribution is assumed, which heavily biased the defect predictions upwards for the smaller projects

and may also bias the prediction downwards for larger projects.

Although it is easy to enter a value in the AgenaRisk toolset, we did not provide a systematic method to determine

the appropriate value. Many of the projects in the trial enhanced existing software, so the initial defects was not

expected to be zero. This problem was easily overcome by explicitly modelling the pre-existing code, using an

initial stub phase (no specification, development or testing).

This led to the final trial results shown in Figure 11. As can be seen, the two phase model resulted in a significantly

more accurate defect prediction model.

BN Predictions (final trial)

y = 0.8675x + 91.053
R2 = 0.9311

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 500 1000 1500 2000 2500

Actual

Pr
ed

ic
te

d Predicted v Actual

Linear (Predicted v
Actual)

Figure 11 Two phase prediction result

7. CONCLUSIONS

We have shown how a wide variety of software lifecycles can be modelled using a Dynamic Bayesian Net, in which

each time frame is a lifecycle ‘phase’ combining all software development activities in different amounts. This

approach allows a BN for software defect prediction to be tailored to different software development environments.

The AgenaRisk toolset makes this a practical approach, providing a formula language with standard statistical

distributions that can be used to change the quality indicators available in each software development team.

 21

The approach and toolset have been extensively trialled by industrial partners in a collaborative project. Despite

making little use of the available tailoring capabilities, a retrospective trial of 30 projects showed a good fit between

predicted and actual defect counts. Once a small amount of tailoring was undertaken (to take account of the size of

any legacy code in the projects under assessment) the predictions were outstanding (over 93% correlation between

predicted and actual defects).

The AgenaRisk toolset allows the use of large variable state spaces that are necessary to achieve accurate

predictions, with the formula language making the construction of very large probability tables feasible. The

AgenaRisk toolset also now incorporates dynamic discretisation [18][20] to overcome the classic BN problem of

discretisation errors that occur when numeric variables have a widely varying scale.

We have also used BNs to reason about software projects as a whole [13] and the trade-off between time, resources

and quality. Many of the factors are common in these two models, covering both the assessment of process quality

and the product quality achieved and required. In future, we hope to combine the two models into a single decision

support system for software projects. Part of this is being done in the eXdecide project [6].

8. ACKNOWLEDGMENTS
This report is based in part on work undertaken on the following funded research projects:

• MODIST (EC Framework 5 Project IST-2000-28749),

• SCULLY (EPSRC Project GR/N00258),

• SIMP (EPSRC Systems Integration Initiative Programme Project GR/N39234),

• SCORE (EPSRC Project Critical Systems Programme GR/R24197/01),

• eXdecide (EPSRC Grant Reference: EP/C005406/1).

We also acknowledge the contributions of the following individuals: Patrick Cates, Manesh Tailor and Simon Forey

from Agena, Geert Acke and Shoaib Qurashi from Philips, Schlomo Gluck from Israel Aircraft Industries, Dave

Milledge, John Elliot and Lisa Tipping from QinetiQ and David Corrall and members of the ASTUTE project team

at BAe Systems.

9. REFERENCES
[1] AgenaRisk: Adavanced risk analysis for important decisions. http://www.agenarisk.com

[2] Bangsø, O. and Wuillemin, P. H., Top-down construction and repetitive structures representation in Bayesian

networks, In ‘Proceedings of The Thirteenth International Florida Artificial Intelligence Research Symposium

Conference’, Florida, USA., 2000. AAAI Press.

 22

[3] Bibi, S. and Stamelos, I. Software Process Modeling with Bayesian Belief Networks In Proceedings of 10th

International Software Metrics Symposium (Metrics 2004) 14-16 September 2004, Chicago, USA.

[4] Cozman F. and Krotkov E. “Truncated Gaussians as Tolerance Sets”. Technical Report CMU-RI-TRI,

Robotics Institute, Carnegie Mellon University, 1997.

[5] Dean, T. and Kanazawa, K. A model for reasoning about persistence and causation, Computational

Intelligence, 5:142-150, 1989.

[6] eXdecide: Quantified Risk Assessment and Decision Support for Agile Software Projects, EPSRC project

EP/C005406/1, www.dcs.qmul.ac.uk/~norman/radarweb/core_pages/projects.html

[7] Fan, Chin-Feng, Yu, Yuan-Chang. BBN-based software project risk management, J Systems Software, 73,

193-203, 2004.

[8] Fenton, N. E. and Neil, M. A Critique of Software Defect Prediction Models, IEEE Transactions on Software

Engineering, 25(5), 675-689, 1999.

[9] Fenton, N. E. and Neil, M. SCULLY: Scaling up Bayesian Nets for Software Risk Assessment, Queen Mary

University of London, www.dcs.qmul.ac.uk/research/radar/Projects, 2001.

[10] Fenton, N. E. and Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach (2nd Edition), PWS,

ISBN: 0534-95429-1, 1998.

[11] Fenton, N. E., Krause, P., Neil, M., Probabilistic Modelling for Software Quality Control, Journal of Applied

Non-Classical Logics 12(2), 173-188, 2002

[12] Fenton, N. E., Krause, P., Neil, M., Software Measurement: Uncertainty and Causal Modelling, IEEE Software

10(4), 116-122, 2002.

[13] Fenton, N. E., Marsh, W., Neil, M., Cates, P., Forey, S. and Tailor, T. Making Resource Decisions for

Software Projects. In Proceedings of 26th International Conference on Software Engineering (ICSE 2004),

(Edinburgh, United Kingdom, May 2004) IEEE Computer Society 2004, ISBN 0-7695-2163-0, 397-406

[14] Gnu Regression, Econometrics and Time-series Library. http://gretl.sourceforge.net/.

[15] Jensen, F.V. An Introduction to Bayesian Networks, UCL Press, 1996.

[16] Jones, C. Programmer Productivity, McGraw Hill, 1986.

[17] Jones, C. Software sizing, IEE Review 45(4), 165-167, 1999.

[18] Koller, D., Lerner, U. and Angelov, D. A General Algorithm for Approximate Inference and its Application to

Hybrid Bayes Nets, In Proceedings of the 15th Annual Conference on Uncertainty in AI (UAI), Stockholm,

Sweden, August 1999, pages 324—333

[19] Koller, D., Pfeffer, A. Object-Oriented Bayesian Networks, Proceedings of the Thirteenth Conference on

Uncertainty in Artificial Intelligence (UAI97), Providence, Rhode Island, USA, 1997, pages 302-313

[20] Kozlov, A.V. and Koller, D. Nonuniform dynamic discretization in hybrid networks, Proceedings of the 13th

Annual Conference on Uncertainty in AI (UAI), Providence, Rhode Island, August 1997, pages 314--325.

[21] Neil, M., Fenton, N. E., Forey, S. and Harris, R. Using Bayesian Belief Networks to Predict the Reliability of

Military Vehicles, IEE Computing and Control Engineering, 12(1), 2001, pp. 11-20.

 23

[22] Neil, M., Fenton, N. E., Nielsen, L. Building large-scale Bayesian Networks, The Knowledge Engineering

Review, 15(3), 2000, pp. 257-284.

[23] Neil, M., Krause, P., Fenton, N. E., Software Quality Prediction Using Bayesian Networks in Software

Engineering with Computational Intelligence, (Ed Khoshgoftaar TM), Kluwer, ISBN 1-4020-7427-1, Chapter

6, 2003

[24] Stamelosa, I., Angelisa, L., Dimoua, P., Sakellaris, P. On the use of Bayesian belief networks for the prediction

of software productivity Information and Software Tech, 45 (1), 51-60, 2003.

