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Abstract 
 

To make accurate predictions of attributes like 
defects found in complex software projects we need a 
rich set of process factors. We have developed a causal 
model that includes such process factors, both 
quantitative and qualitative. The factors in the model 
were identified as part of a major collaborative 
project. A challenge for such a model is getting the 
data needed to validate it. We present a dataset, 
elicited from 31 completed software projects in the 
consumer electronics industry, which we used for 
validation. The data were gathered using a 
questionnaire distributed to managers of recent 
projects. The dataset will be of interest to other 
researchers evaluating models with similar aims. We 
make both the dataset and causal model available for 
research use. 

 
 

1. Introduction 
 

The proper goal of research in software metrics [7, 
11, 12] is to help project managers make decisions 
under uncertainty. In particular, we wish to be able to 
estimate the cost of developing software, and to predict 
the quality likely to be achieved by a given 
development effort. The MODIST (‘Models of 
Uncertainty and Risk for Distributed Software 
Development’) Project [14], which was part-funded by 
the EC, was concerned with improved predictions of 
quality in large distributed software projects. The 

project partners were Agena, Israel Aircraft Industries, 
QinetiQ and Philips. As part of this project a group of 
experienced project managers identified a set of factors 
influencing cost and quality outcomes, which we 
formed into a causal model. This model is summarized 
in Section 2.  

The objective of this paper is to describe how we 
validated this model and to make the data available to 
other researchers. We needed data that was not 
available in any publicly accessible form (even though 
similar factors are used in models supporting software 
managers, most notably COCOMO-II [2] for software 
cost estimation). For example, whereas the ISBSG 
dataset [9] (which is accessible at low cost and contains 
approximately 3500 projects) helped us to quantify 
some of the relationships in the model, it does not help 
in validation because of the absence of the qualitative, 
causal factors.  

To get the necessary data, senior project managers 
in one organization provided the information for 31 
new projects. We had to provide refined and more 
detailed descriptions and measurement schemes for 
most of the factors in the model. This process is 
described in Section 3. The resulting quantitative data 
is presented in Section 4, with the qualitative data in 
Section 5. Section 6 describes some issues arising from 
data collection, while in Section 7 we summarise the 
model validation results.  The results show that the 
causal model, built using expert judgement and 
historical data, was able to make accurate predictions 
for the new projects. 
 



2. Background: the causal model 
 

This section is a summary overview of the causal 
model whose factors were elicited from experienced 
project managers in the MODIST project [14]. The 
model, which is a Bayesian Network, is presented in 
schematic form in Figure 1, where each rectangle 
represents a subnetwork. A detailed description of both 
the model itself and the Bayesian Network formalism is 
not necessary in this paper since our focus is on the 
data. However, for those interested the necessary 
details can be found in [4, 5, 6, 8, 10, 15]. The model 
itself can be downloaded from [13] and viewed and 
executed using Bayesian net software which can be 
downloaded for free from [1]. 
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Figure 1. Schematic view of defect prediction 

model 
 

Examples of two of the subnetworks, shown as 
rectangles in Figure 1, are provided in Figure 2 and 
Figure 3. Each subnetwork is a part of the Bayesian 
Network, with nodes representing probabilistic 
variables and arcs representing causal relationships 
between variables. It is important to note that the model 
not only reflects relationships between variables which 
could be reflected in regression-type models, but also 
direct cause-effect relationships. For example, a more 
rigorous testing process leads to an increased 
probability of finding and fixing a defect and thus to a 
reduced number of defects left in the software after 

testing.  As an extreme case, the model includes the 
knowledge that no defects will be found if no testing is 
done. 

 
Figure 2. Defect insertion and discovery subnet  

 
 
 

 
Figure 3. Testing and rework subnet 

 



Figure 2 shows the core of the Bayesian Network: 
the nodes shared between this subnetwork and the 
others are shown with dashed edges (unshaded).  These 
shared nodes are unobservable quantities, such as the 
probability of finding a defect present in the software 
during testing.  These values are predicted from 
qualitative process factors. Figure 3 shows one 
example of the subnetworks containing these 
qualitative process factors, with two of the shared 
nodes shown on the right hand side of the figure.   

We developed this causal model (see [8] for further 
details) based on a combination of the following 
sources:  

• empirical data from the literature; 
• empirical data from the project partners; 
• subjective judgment of project managers and 

other experts in the collaborative project, 
where no relevant data were available. 

The causal model was not developed from the data 
reported in this paper, which was instead gathered after 
the model had been developed to validate the model.   

 

3. Qualitative factors 
 

As the first stage of the development of the causal 
model outlined in Section 2, partners in the MODIST 
Project [14] identified qualitative factors that they 
believed had a significant influence on the outcome of 
a software project. Once the model had been built the 
second stage was to gather a dataset to validate the 
model; to do this effectively a more detailed 
description of each factor was needed. In Section 3.1 
we describe the set of factors, together with the first 
level of detailed description. Section 3.2 gives an 
extract of the subsequent questionnaire given to project 
managers to gather data from completed projects.  
Section 3.3 discusses some issues arising from this 
method of measuring the qualitative project factors. 

Although it was intended that the validation dataset 
would cover all the data used in the Bayesian Network, 
this was not achieved.  Some questions were not 
answered by some project managers.  A small number 
of variable were omitted altogether.  This arose were 
the data recording practices of the projects did not 
match the assumptions of the questionnaires: in 
particular rework was not distinguished from testing, 
and the concept of the ‘effort’ spent on a project phase, 
relative to what would be expected on average, was not 
used by project managers.  Fortunately, a Bayesian 
Network handles missing data (see Section 6.3). 
 

3.1.  Factor descriptions 
 

The factors are conveniently grouped under five 
topics: specification and documentation process (Table 
1), new functionality (Table 2), design and 
development process (Table 3), testing and rework 
(Table 4) and finally project management (Table 5). 
However, this grouping is not part of the dataset; the 
factors should all be considered to be project attributes. 

Each factor is named and described by a question to 
be answered. The descriptive questions were 
specifically tailored for the organisation providing the 
project data. 
 
Table 1 Specification and documentation process 

 Factor Name Descriptive Question 

S1 

Relevant 
Experience of 
Spec & Doc 
Staff 

How would you rate the 
experience and skill set of your 
team members for executing this 
project during the requirements 
and specifications phase? 

S2 
Quality of 
Documentation 
inspected 

How would you rate the quality of 
the requirements given by the 
client or other groups? 

S3 
Regularity of 
Spec & Doc 
Reviews 

Have all the Requirements, 
Design Documents and Test 
Specifications been reviewed in 
the project? 

S4 
Standard 
Procedures 
Followed 

In your opinion, how effective 
was the review procedure? 

S5 
Quality of 
Documentation 
inspected 

What was the review 
effectiveness in the project for the 
requirements phase? 

S6 
Spec Defects 
Discovered in 
Review 

In your opinion, is the defect 
density of spec reviews on the 
high side? 

S7 
Requirements 
Stability 

How stable were the requirements 
in your project? 

 
Table 2. New functionality 

 Factor Name Descriptive Question 

F1 
Complexity of 
new 
functionality 

What was the complexity of the 
new development or new features 
that happened in your project? 

F2 
Scale of New 
functionality 
implemented 

How large was the extent of 
working on new functionality 
rather than just enhancing the 
older functionalities in your 
project? 



 Factor Name Descriptive Question 

F3 
Total no. of 
Inputs and 
Outputs 

For your product domain, would 
you rate the total no of 
outputs/inputs (newly developed / 
enhanced) as high? 

 
Table 3. Design and development process 

 Factor Name Descriptive Question 

D1 

Relevant 
Development 
Staff 
Experience 

How would you rate the 
experience and skill set of your 
team members for executing this 
project during the design and 
development phase? 

D2 
Programmer 
capability 

On an average, how would you 
assess the Quality of code 
produced by the team members? 

D3 
Defined 
processes 
followed 

What was the review effectiveness 
in the project for the Design and 
Development phase? 

D4 
Development 
Staff 
motivation 

What is your opinion about the 
motivation levels of your team 
members? 

 
Table 4. Testing and rework 

 Factor Name Descriptive Question 

T1 
Testing 
Process Well 
Defined 

How effective was the testing 
process adopted by your project? 

T2 
Staff 
Experience – 
Unit Test 

What was the level of software test 
competence of those performing 
the unit test? 

T3 

Staff 
Experience – 
Independent 
Test 

How would you rate the 
experience and skill set of the 
independent test engineers 
(Integration, functional or sub-
system testing, Alpha, Beta)? 

T4 
Quality of 
Documented 
Test Cases 

What was the extent of the defects 
that were found using formal 
testing against the intuitive / 
random testing? 

 
Table 5. Project Management 

 Factor Name Descriptive Question 

P1 
Dev. Staff 
Training 
Quality 

What is the coverage of the 
identified project / process 
related trainings as well as 
trainings identified as per the 
roles, by the team members?  

 Factor Name Descriptive Question 

P2 
Configuration 
Management 

How effective is the project’s 
document management and 
configuration management? 

P3 
Project 
Planning 

Has the project planning been 
done adequately? 

P4 
Scale of 
Distributed 
Communication 

How many sites/groups were 
involved in the project.  

P5 
Stakeholder 
involvement  

To what extent were the key 
project stakeholders involved? 

P6 
Customer 
involvement 

How good was customer 
interaction in the project? 

P7 
Vendor 
Management 

How would you rate the Vendor / 
Sub-contractor Management (if 
applicable)? 

P8 
Internal 
communication 
/ interaction 

How would you the rate the 
quality of internal interactions / 
communication within the team? 

P9 
Process 
Maturity 

What’s your opinion about 
process maturity in the project? 

 
3.2. Questionnaire Design 
 

Qualitative data are expressed on a 5-point ordinal 
scale. The ordinal values used are: Very High, High, 
Medium, Low, Very Low. The data values were 
gathered using a questionnaire, which was completed 
by the project manager, project quality manger or other 
senior project staff. Each questionnaire item consists 
of: 

• More detailed questions 

• An interpretation of the ordinal scale. 

For example, for factor S1 ‘Relevant Experience of 
Spec & Doc Staff’, the additional questions are: 

1. Did the Requirements team have adequate 
experience in analysing and generating 
requirements? 

2. Did the Requirements team have adequate 
domain expertise? 

and the ordinal scale points are: 

Very High: Software engineers with greater than 
three year’s experience in requirements 
management, and with extensive domain 
knowledge. 

High: Software engineers with greater than three 
year’s experience in requirements management, 
but with limited domain knowledge. 



Medium: Software engineers having between one 
and three year’s experience in requirements 
management. 

Low: Software engineers having between one and 
three year’s experience, but with no experience in 
requirements management. 

Very Low: Software engineers with less than one 
year’s experience, and with no previous domain 
experience. 

 
In some cases the questionnaire used a set of criteria 

and a score. An example is the factor S4 ‘Standard 
(Review) Procedures Followed’. The detailed 
questions, giving the criteria, are:  

1. In case of changes after baselining, have the 
major changes been re-reviewed? 

2. Are there any re-review triggers/criteria defined? 
3. Have some domain specific standards been 

adhered to (like design rules, re-engineering 
guidelines, architectural guidelines, etc)? 

4. Was the requirements document checked for 
review worthiness or pre-review checklist filled 
before the review? 

5. Have the reviews been planned upfront? 
6. Have the reviewers been assigned upfront? 
7. Were the reviews role-based? 
8. Were the reviewers identified appropriate and 

experienced enough for reviewing? 
9. Was there adequate preparation time available 

for the reviewers? 
10. Were there overview sessions for all complex 

work products? 

The scale point is then derived as follows: 

Very High: All the 10 sub questions answered yes 
High: 7-9 of the sub questions answered yes 
Medium: 5-6 of the sub questions answered yes 
Low: 4 of the sub questions answered yes 
Very Low: less than 4 of the sub questions 

answered yes. 
 
3.3. Measurement Issues 
 

The factors used in the model were originally 
identified by a group of project manager from different 
partners in the MODIST project.  Although from 
different organisations, it was possible for the project 
managers to agree on the importance of factors such as 
‘Requirements Stability’. A further issue is whether it is 
possible to measure such values consistently between 
organisations.  

As shown by the example in Section 3.2, we 
designed the questionnaire to used objective criteria, 

such as the number of years of experience, whether 
possible.  However, we do not claim external validity 
of these measurements, since this is not needed for our 
approach, as we explain below. 

One way experts were used in building the model 
was to estimate the ‘strength’ of the effect of each 
qualitative factor in the causal model.  This information 
is represented in the conditional probability table for 
each node in the Bayesian Network.  As a result of this 
process, the model is applicable within the organisation 
where the experts have gained their experience. Since 
the model itself is not universal, there is no need for the 
measurements to be so. It does not follow that the 
scope of the validation (see Section 7) becomes trivial, 
even tautological, as a result.  Instead, the validation 
shows that a model constructed using expert judgement 
and historical data, within one organisation, can be 
used within the same organisation to predict accurately 
the outcome of new projects.  On the other hand, the 
validation described here does not consider issues such 
as the external validity of the causal structure of our 
model (see Section 6.4).  
 
4. Quantitative data 
 

The projects developed software for consumer 
electronics products. Each project developed or 
enhanced some functionality provided by a product. 
The developed software was not stand-alone but was 
integrated with other software subsystems in the 
product. 

A waterfall lifecycle was followed. The software 
engineering part of the lifecycle covered a specification 
review, design, a design review and development up to 
unit testing. The software was then passed to 
independent test in several phases, from software 
integration testing to overall system (i.e. product) 
testing. 

 
Table 6. Size, effort and defects 

 

Project Hours KLoC Language Defects 

1 7109 6.0 C 148 

2 1308 0.9 C 31 

3 18170 53.9 C 209 

4 7006 - C 228 

5 9434 14.0 C 373 

6 9441 14.0 C 167 

7 13888 21.0 C 204 

8 8822 5.8 C 53 



Project Hours KLoC Language Defects 

9 2192 2.5 
VC++,MF

C 17 

10 4410 4.8 C 29 

11 14196 4.4 C 71 

12 13388 19.0 C 90 

13 25450 49.1 C 129 

14 33472 58.3 C 672 

15 34893 154.0 C 1768 

16 7121 26.7 C 109 

17 13680 33.0 C 688 

18 32366 155.2 C 1906 

19 12388 87.0 C 476 

20 52660 50.0 C 928 

21 18748 22.0 C 196 

22 28206 44.0 C 184 

23 53995 61.0 C 680 

24 24895 99.0 C 1597 

25 6906 23.0 C 546 

26 1642 - C 261 

27 14602 52.0 C 412 

28 8581 36.0 C 881 

29 3764 11.0 C 91 

30 1976 1.0 C 5 

31 15691 33.0 C 653 
 
Most of the software development was at one site, 

but the overall development was distributed over 
different locations in a global organisation. Both the 
software specification and the independent testing were 
typically at a different location to the software 
development.  

The data values are shown in Table 6: 

• Software size: the size, in KLoC of the developed 
code and the development language (Figure 4 
shows the distribution of code size in the dataset). 
Note that for two projects, this data was not 
available: the Bayesian Network can still be used 
and it will assume the projects to be ‘average’ but 
of uncertain size. 

• Effort: development effort measured in person 
hours for the software development, from 
specification review to unit test 
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Figure 4. Code size distribution 

• mDefects: functional defects discovered during all 
the independent testing phases, following the 
software development. 

 

In some projects existing software was reused as 
part of the development. The impact of this on the 
dataset is considered in Section 6. 

This new dataset could, of course, be used to build 
traditional statistical/regression based models, as 
indicated, for example, by Figure 5. This could be the 
basis for a simple regression model relating KLoC to 
defects; indeed the correlation coefficient here is quite 
high (0.78). However, this does not correspond to the 
way that we used this data, which was to validate a 
model created before the data was gathered.  Therefore, 
we do not pursue this comparison. 
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Figure 5. Code size versus defects 

 

5. Qualitative data 
 

The data values are shown in tables 7 to 10. Missing 
data values are marked with ‘-’ (see Section 6.3). The 
letters VL, L, M, H, VH correspond to the ordinal scale 
described in Section 3.2 (very low to very high). 

 



Table 7. Specification and documentation process 
data 

 
Project S1 S2 S3 S4 S5 S6 S7 

1 H M VH H M H L 
2 H H VH H M H H 
3 H H VH H H VH H 
4 L L M L L L L 
5 H M H M H - M 
6 VH M VH M H - H 
7 L M VH H H L M 
8 M M H M H L H 
9 H VH VH H VH M VH 
10 H H H M H M H 
11 H M H M H H H 
12 H M H M M M L 
13 VH M M L M H L 
14 H H H H H H H 
15 H H H H H VH VL 
16 H H H H H H M 
17 VH H M L H H M 
18 M H H H H VH VL 
19 H M H H H H M 
20 L L M VL L M VL  
21 H H H M L M M 
22 L L M M M M L 
23 M H VH H L M M 
24 M M M H M H L 
25 M H - H M M M 
26 M M H M H H H 
27 H M VH M M VH M 
28 H L VH M M M L 
29 H M VH H M M VH 
30 H H VH H H M VH 
31 - H H M M H M 

 
Table 8. Data for new functionality, design and 

development process 
 

Project F1 F2 F3 D1 D2 D3 D4 
1 M L M L H H H 
2 L VL M L H H H 
3 H H VH H VH H VH 
4 M L M L M L M 
5 H H VH L M H H 
6 M M VH M H M M 
7 L VL M M VH H H 
8 M L M H H M M 

Project F1 F2 F3 D1 D2 D3 D4 
9 L L M H VH VH H 
10 M L M H H H H 
11 H H H H H H H 
12 H H H VH M M H 
13 H H H H H H H 
14 VH H H H H H H 
15 H H M H H H H 
16 L VL M H H H H 
17 L VL M M M H H 
18 VH VH H M H H H 
19 H H H H H H H 
20 VH H VH VL VL L H 
21 L M VH H H H H 
22 M M VH H M L H 
23 H VH VH L H H H 
24 M M H M H H M 
25 H VL H M H M H 
26 M H M L M M M 
27 H VH VH M L M H 
28 VH VH VH M L H H 
29 M M H VH VH H H 
30 L L M H H H H 
31 M M H H H H H 

 
Table 9. Testing and rework data 

 
Project T1 T2 T3 T4 

1 M H L H 
2 H H L H 
3 H H H H 
4 VL VL VL L 
5 M M L M 
6 H - M M 
7 H M M H 
8 H M M M 
9 H VH VH H 
10 H M M M 
11 H H M M 
12 H H M M 
13 M M L M 
14 H H H H 
15 M H M M 
16 M H M M 
17 M L L H 
18 H H M M 
19 H M M H 
20 VL VL VH H 



Project T1 T2 T3 T4 
21 H H H H 
22 H M M H 
23 H H H H 
24 H M M M 
25 VL M H L 
26 M L H M 
27 M M M M 
28 M M M M 
29 H VH VH H 
30 H H H H 
31 M H M M 

 
Table 10. Project management data 

 
Project P1 P2 P3 P4 P5 P6 P7 P8 P9 

1 VH H H L H M - VH H 
2 VH H H L H M - VH H 
3 H VH H - VH VH - VH VH 
4 L M VL L M M M H M 
5 H H H M M H L VH M 
6 H H H M M VH L VH H 
7 H H VH VL VH VH - H VH 
8 M H H VL H H - H H 
9 VH VH VH L VH VH - VH VH 
10 H H H VL H H - M H 
11 H H H VL H H - M M 
12 H H H L H H - M H 
13 M H H VL H M H M M 
14 H H H - H H - H H 
15 VH M H M VH VH - VH H 
16 VH M H M VH VH - VH H 
17 M M M M M H - H M 
18 VH M H H VH VH - VH H 
19 M H H L H H - H H 
20 H M L H H M - H H 
21 H H H H H H - H H 
22 H H M H H H - H H 
23 H H H H H M - H H 
24 H H M L M H - VH H 
25 M M M M M M M H H 
26 L M M L H H L H M 
27 H M L L M H H H M 
28 H M L L M M - H M 
29 M H H L VH VH - H H 
30 M H H L VH VH - H H 
31 H H H H VH VH - VH VH 

 
6. Issues arising from the data collection  
 

The complexity of software projects make gathering 
data challenging. The most important challenges we 
faced and lessons we learned during this work are 
described below. Some of these challenges are not fully 
resolved by the data included in this dataset; how these 
issues were addressed in our models is described 
elsewhere [8]. 

 
6.1. Software size: intrinsic complexity 
 

Because of the need to have a size based measure 
based only on the amount of functionality to be 
implemented, we had hoped to use function points as 
the key metric for this purpose, as recommended from 
the MODIST work. Unfortunately, function points 
were not used by the software development 
organisation providing this data. It is well known [7] 
that KLoC measures program length but the length of 
the program is only one aspect of the size of the 
development task – which we term the ‘intrinsic 
complexity’. The factors F1-F3 were included in the 
data gathered to give a better estimate of the intrinsic 
complexity than code size alone. Unfortunately, 
intrinsic complexity is not an observable quantity, so 
finding sufficient factors to estimate the size of the 
development task remains a challenge. 

 
6.2. Code reuse 
 

It is very common for software development to be 
carried out as part of a product line development, 
naturally giving rise to software reuse. This 
complicates the measurement of software size – the 
lines of developed software differs from the length of 
the developed program – and also impacts the 
prediction of defects, since the quality of the reused 
software is variable. 
 
6.3. Missing Data Values 
 

Given the complexity of a dataset that attempts to 
cover relevant software cost and quality drivers, it is 
inevitable that some data values will be missing. It is 
essential that software prediction methods are able to 
cope with missing data values.  

The Bayesian net model used in this study is one 
such method that handles missing data, since the model 
includes prior probability distributions for all the 
project data. 
 



6.4. Generality of the data 
 

An objective of the partners in the MODIST project 
was to identify only factors (and the means of 
measuring them) that were generally relevant to 
complex software projects. Achieving this objective 
would enable different organizations to make use of the 
causal model. We recognize that the more detailed 
descriptions and questionnaires refer to process-
specific information. The objective of generality would 
still be partly achieved if other organizations (using 
different processes) used the same factors, but adapted 
the questionnaire as a means of measuring them. 
 

7. Model validation 
 

We validated the causal model using the presented 
project dataset. We did this by entering, for each 
project, data excluding the defect data and ran the 
Bayesian net model. This produces a (predicted) 
probability distribution for number of defects found in 
independent testing. Using the median values of these 
distributions enables us to calculate the accuracy of the 
predictions. As presented in Figure 6, we achieved a 
very high accuracy with an R2 value of 0.9311. 
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Figure 6. Predicted and actual values 
 
The outstanding result of the model validation gives 

great confidence in the value of the causal model, but 
of course further validation using additional datasets 
would provide even greater confidence in the integrity 
and robustness of the model.  Moreover, the validation 
we have described does not cover all the ways that the 
Bayesian net model can be used, since it is possible to 
enter data at any of the variables and obtain the 

probability distributions at any of the unobserved 
variables. 
 

8. Conclusion 
 

We have presented a comprehensive dataset for 31 
software development projects. This dataset 
incorporates the set of quantitative and qualitative 
factors that were previously built into a causal model of 
the software process. The factors (which had been 
identified by a consortium of software project experts) 
include values for code size, effort and defects, 
together with qualitative data values judged by project 
managers (or other project staff) using a questionnaire. 
We have used these data to evaluate the causal model 
and the results are extremely promising. Specifically 
the model predicts, with remarkable accuracy, the 
number of software defects that will be found in 
independent testing.  

Although it is beyond the scope of the paper to 
discuss the causal model in detail, it should be noted 
that good predictions of the defects can be achieved by 
entering relatively few of the project factors (size plus 
2 or 3 others). Hence this kind of model can be used 
for effective decision-support and trade-off analysis 
during early development phases.  

By presenting the raw data in this paper, we hope to 
enable other researchers to evaluate similar models and 
decision-support techniques for software managers (the 
dataset can of course also be used for evaluating more 
traditional types of software prediction models). We 
also hope that similar datasets will become more 
widely available in future.  

To ensure full visibility and repeatability, we also 
provide an electronic version of the causal model for 
researchers [13]. The model can be viewed and 
executed by downloading the free trial version of the 
Bayesian network software [1]. 
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