
Project Data Incorporating Qualitative Factors for
Improved Software Defect Prediction

Norman Fenton, Martin Neil, William Marsh, Peter Hearty and
Łukasz Radli

�
ski‡

Department of Computer Science
Queen Mary, University of London

Mile End Road, London

and ‡Institute of Information Technology in Management
University of Szczecin, Poland

norman, martin, william, hearty, lukrad
@dcs.qmul.ac.uk

Paul Krause
Department of Computing

University of Surrey
Guildford, Surrey, UK
p.krause@surrey.ac.uk

Abstract

To make accurate predictions of attributes like
defects found in complex software projects we need a
rich set of process factors. We have developed a causal
model that includes such process factors, both
quantitative and qualitative. The factors in the model
were identified as part of a major collaborative
project. A challenge for such a model is getting the
data needed to validate it. We present a dataset,
elicited from 31 completed software projects in the
consumer electronics industry, which we used for
validation. The data were gathered using a
questionnaire distributed to managers of recent
projects. The dataset will be of interest to other
researchers evaluating models with similar aims. We
make both the dataset and causal model available for
research use.

1. Introduction

The proper goal of research in software metrics [7,
11, 12] is to help project managers make decisions
under uncertainty. In particular, we wish to be able to
estimate the cost of developing software, and to predict
the quality likely to be achieved by a given
development effort. The MODIST (‘Models of
Uncertainty and Risk for Distributed Software
Development’) Project [14], which was part-funded by
the EC, was concerned with improved predictions of
quality in large distributed software projects. The

project partners were Agena, Israel Aircraft Industries,
QinetiQ and Philips. As part of this project a group of
experienced project managers identified a set of factors
influencing cost and quality outcomes, which we
formed into a causal model. This model is summarized
in Section 2.

The objective of this paper is to describe how we
validated this model and to make the data available to
other researchers. We needed data that was not
available in any publicly accessible form (even though
similar factors are used in models supporting software
managers, most notably COCOMO-II [2] for software
cost estimation). For example, whereas the ISBSG
dataset [9] (which is accessible at low cost and contains
approximately 3500 projects) helped us to quantify
some of the relationships in the model, it does not help
in validation because of the absence of the qualitative,
causal factors.

To get the necessary data, senior project managers
in one organization provided the information for 31
new projects. We had to provide refined and more
detailed descriptions and measurement schemes for
most of the factors in the model. This process is
described in Section 3. The resulting quantitative data
is presented in Section 4, with the qualitative data in
Section 5. Section 6 describes some issues arising from
data collection, while in Section 7 we summarise the
model validation results. The results show that the
causal model, built using expert judgement and
historical data, was able to make accurate predictions
for the new projects.

2. Background: the causal model

This section is a summary overview of the causal
model whose factors were elicited from experienced
project managers in the MODIST project [14]. The
model, which is a Bayesian Network, is presented in
schematic form in Figure 1, where each rectangle
represents a subnetwork. A detailed description of both
the model itself and the Bayesian Network formalism is
not necessary in this paper since our focus is on the
data. However, for those interested the necessary
details can be found in [4, 5, 6, 8, 10, 15]. The model
itself can be downloaded from [13] and viewed and
executed using Bayesian net software which can be
downloaded for free from [1].

Specification and
documentation

Scale of new
functionality
implemented

Common
influences

Design and
development

Testing and
rework

Defect insertion
and discovery

Existing code
base

Specification and
documentation

Scale of new
functionality
implemented

Common
influences

Design and
development

Testing and
rework

Defect insertion
and discovery

Existing code
base

Figure 1. Schematic view of defect prediction

model

Examples of two of the subnetworks, shown as
rectangles in Figure 1, are provided in Figure 2 and
Figure 3. Each subnetwork is a part of the Bayesian
Network, with nodes representing probabilistic
variables and arcs representing causal relationships
between variables. It is important to note that the model
not only reflects relationships between variables which
could be reflected in regression-type models, but also
direct cause-effect relationships. For example, a more
rigorous testing process leads to an increased
probability of finding and fixing a defect and thus to a
reduced number of defects left in the software after

testing. As an extreme case, the model includes the
knowledge that no defects will be found if no testing is
done.

Figure 2. Defect insertion and discovery subnet

Figure 3. Testing and rework subnet

Figure 2 shows the core of the Bayesian Network:
the nodes shared between this subnetwork and the
others are shown with dashed edges (unshaded). These
shared nodes are unobservable quantities, such as the
probability of finding a defect present in the software
during testing. These values are predicted from
qualitative process factors. Figure 3 shows one
example of the subnetworks containing these
qualitative process factors, with two of the shared
nodes shown on the right hand side of the figure.

We developed this causal model (see [8] for further
details) based on a combination of the following
sources:

• empirical data from the literature;
• empirical data from the project partners;
• subjective judgment of project managers and

other experts in the collaborative project,
where no relevant data were available.

The causal model was not developed from the data
reported in this paper, which was instead gathered after
the model had been developed to validate the model.

3. Qualitative factors

As the first stage of the development of the causal
model outlined in Section 2, partners in the MODIST
Project [14] identified qualitative factors that they
believed had a significant influence on the outcome of
a software project. Once the model had been built the
second stage was to gather a dataset to validate the
model; to do this effectively a more detailed
description of each factor was needed. In Section 3.1
we describe the set of factors, together with the first
level of detailed description. Section 3.2 gives an
extract of the subsequent questionnaire given to project
managers to gather data from completed projects.
Section 3.3 discusses some issues arising from this
method of measuring the qualitative project factors.

Although it was intended that the validation dataset
would cover all the data used in the Bayesian Network,
this was not achieved. Some questions were not
answered by some project managers. A small number
of variable were omitted altogether. This arose were
the data recording practices of the projects did not
match the assumptions of the questionnaires: in
particular rework was not distinguished from testing,
and the concept of the ‘effort’ spent on a project phase,
relative to what would be expected on average, was not
used by project managers. Fortunately, a Bayesian
Network handles missing data (see Section 6.3).

3.1. Factor descriptions

The factors are conveniently grouped under five
topics: specification and documentation process (Table
1), new functionality (Table 2), design and
development process (Table 3), testing and rework
(Table 4) and finally project management (Table 5).
However, this grouping is not part of the dataset; the
factors should all be considered to be project attributes.

Each factor is named and described by a question to
be answered. The descriptive questions were
specifically tailored for the organisation providing the
project data.

Table 1 Specification and documentation process

 Factor Name Descriptive Question

S1

Relevant
Experience of
Spec & Doc
Staff

How would you rate the
experience and skill set of your
team members for executing this
project during the requirements
and specifications phase?

S2
Quality of
Documentation
inspected

How would you rate the quality of
the requirements given by the
client or other groups?

S3
Regularity of
Spec & Doc
Reviews

Have all the Requirements,
Design Documents and Test
Specifications been reviewed in
the project?

S4
Standard
Procedures
Followed

In your opinion, how effective
was the review procedure?

S5
Quality of
Documentation
inspected

What was the review
effectiveness in the project for the
requirements phase?

S6
Spec Defects
Discovered in
Review

In your opinion, is the defect
density of spec reviews on the
high side?

S7
Requirements
Stability

How stable were the requirements
in your project?

Table 2. New functionality

 Factor Name Descriptive Question

F1
Complexity of
new
functionality

What was the complexity of the
new development or new features
that happened in your project?

F2
Scale of New
functionality
implemented

How large was the extent of
working on new functionality
rather than just enhancing the
older functionalities in your
project?

 Factor Name Descriptive Question

F3
Total no. of
Inputs and
Outputs

For your product domain, would
you rate the total no of
outputs/inputs (newly developed /
enhanced) as high?

Table 3. Design and development process

 Factor Name Descriptive Question

D1

Relevant
Development
Staff
Experience

How would you rate the
experience and skill set of your
team members for executing this
project during the design and
development phase?

D2
Programmer
capability

On an average, how would you
assess the Quality of code
produced by the team members?

D3
Defined
processes
followed

What was the review effectiveness
in the project for the Design and
Development phase?

D4
Development
Staff
motivation

What is your opinion about the
motivation levels of your team
members?

Table 4. Testing and rework

 Factor Name Descriptive Question

T1
Testing
Process Well
Defined

How effective was the testing
process adopted by your project?

T2
Staff
Experience –
Unit Test

What was the level of software test
competence of those performing
the unit test?

T3

Staff
Experience –
Independent
Test

How would you rate the
experience and skill set of the
independent test engineers
(Integration, functional or sub-
system testing, Alpha, Beta)?

T4
Quality of
Documented
Test Cases

What was the extent of the defects
that were found using formal
testing against the intuitive /
random testing?

Table 5. Project Management

 Factor Name Descriptive Question

P1
Dev. Staff
Training
Quality

What is the coverage of the
identified project / process
related trainings as well as
trainings identified as per the
roles, by the team members?

 Factor Name Descriptive Question

P2
Configuration
Management

How effective is the project’s
document management and
configuration management?

P3
Project
Planning

Has the project planning been
done adequately?

P4
Scale of
Distributed
Communication

How many sites/groups were
involved in the project.

P5
Stakeholder
involvement

To what extent were the key
project stakeholders involved?

P6
Customer
involvement

How good was customer
interaction in the project?

P7
Vendor
Management

How would you rate the Vendor /
Sub-contractor Management (if
applicable)?

P8
Internal
communication
/ interaction

How would you the rate the
quality of internal interactions /
communication within the team?

P9
Process
Maturity

What’s your opinion about
process maturity in the project?

3.2. Questionnaire Design

Qualitative data are expressed on a 5-point ordinal
scale. The ordinal values used are: Very High, High,
Medium, Low, Very Low. The data values were
gathered using a questionnaire, which was completed
by the project manager, project quality manger or other
senior project staff. Each questionnaire item consists
of:

• More detailed questions

• An interpretation of the ordinal scale.

For example, for factor S1 ‘Relevant Experience of
Spec & Doc Staff’, the additional questions are:

1. Did the Requirements team have adequate
experience in analysing and generating
requirements?

2. Did the Requirements team have adequate
domain expertise?

and the ordinal scale points are:

Very High: Software engineers with greater than
three year’s experience in requirements
management, and with extensive domain
knowledge.

High: Software engineers with greater than three
year’s experience in requirements management,
but with limited domain knowledge.

Medium: Software engineers having between one
and three year’s experience in requirements
management.

Low: Software engineers having between one and
three year’s experience, but with no experience in
requirements management.

Very Low: Software engineers with less than one
year’s experience, and with no previous domain
experience.

In some cases the questionnaire used a set of criteria

and a score. An example is the factor S4 ‘Standard
(Review) Procedures Followed’. The detailed
questions, giving the criteria, are:

1. In case of changes after baselining, have the
major changes been re-reviewed?

2. Are there any re-review triggers/criteria defined?
3. Have some domain specific standards been

adhered to (like design rules, re-engineering
guidelines, architectural guidelines, etc)?

4. Was the requirements document checked for
review worthiness or pre-review checklist filled
before the review?

5. Have the reviews been planned upfront?
6. Have the reviewers been assigned upfront?
7. Were the reviews role-based?
8. Were the reviewers identified appropriate and

experienced enough for reviewing?
9. Was there adequate preparation time available

for the reviewers?
10. Were there overview sessions for all complex

work products?

The scale point is then derived as follows:

Very High: All the 10 sub questions answered yes
High: 7-9 of the sub questions answered yes
Medium: 5-6 of the sub questions answered yes
Low: 4 of the sub questions answered yes
Very Low: less than 4 of the sub questions

answered yes.

3.3. Measurement Issues

The factors used in the model were originally
identified by a group of project manager from different
partners in the MODIST project. Although from
different organisations, it was possible for the project
managers to agree on the importance of factors such as
‘Requirements Stability’. A further issue is whether it is
possible to measure such values consistently between
organisations.

As shown by the example in Section 3.2, we
designed the questionnaire to used objective criteria,

such as the number of years of experience, whether
possible. However, we do not claim external validity
of these measurements, since this is not needed for our
approach, as we explain below.

One way experts were used in building the model
was to estimate the ‘strength’ of the effect of each
qualitative factor in the causal model. This information
is represented in the conditional probability table for
each node in the Bayesian Network. As a result of this
process, the model is applicable within the organisation
where the experts have gained their experience. Since
the model itself is not universal, there is no need for the
measurements to be so. It does not follow that the
scope of the validation (see Section 7) becomes trivial,
even tautological, as a result. Instead, the validation
shows that a model constructed using expert judgement
and historical data, within one organisation, can be
used within the same organisation to predict accurately
the outcome of new projects. On the other hand, the
validation described here does not consider issues such
as the external validity of the causal structure of our
model (see Section 6.4).

4. Quantitative data

The projects developed software for consumer
electronics products. Each project developed or
enhanced some functionality provided by a product.
The developed software was not stand-alone but was
integrated with other software subsystems in the
product.

A waterfall lifecycle was followed. The software
engineering part of the lifecycle covered a specification
review, design, a design review and development up to
unit testing. The software was then passed to
independent test in several phases, from software
integration testing to overall system (i.e. product)
testing.

Table 6. Size, effort and defects

Project Hours KLoC Language Defects

1 7109 6.0 C 148

2 1308 0.9 C 31

3 18170 53.9 C 209

4 7006 - C 228

5 9434 14.0 C 373

6 9441 14.0 C 167

7 13888 21.0 C 204

8 8822 5.8 C 53

Project Hours KLoC Language Defects

9 2192 2.5
VC++,MF

C 17

10 4410 4.8 C 29

11 14196 4.4 C 71

12 13388 19.0 C 90

13 25450 49.1 C 129

14 33472 58.3 C 672

15 34893 154.0 C 1768

16 7121 26.7 C 109

17 13680 33.0 C 688

18 32366 155.2 C 1906

19 12388 87.0 C 476

20 52660 50.0 C 928

21 18748 22.0 C 196

22 28206 44.0 C 184

23 53995 61.0 C 680

24 24895 99.0 C 1597

25 6906 23.0 C 546

26 1642 - C 261

27 14602 52.0 C 412

28 8581 36.0 C 881

29 3764 11.0 C 91

30 1976 1.0 C 5

31 15691 33.0 C 653

Most of the software development was at one site,

but the overall development was distributed over
different locations in a global organisation. Both the
software specification and the independent testing were
typically at a different location to the software
development.

The data values are shown in Table 6:

• Software size: the size, in KLoC of the developed
code and the development language (Figure 4
shows the distribution of code size in the dataset).
Note that for two projects, this data was not
available: the Bayesian Network can still be used
and it will assume the projects to be ‘average’ but
of uncertain size.

• Effort: development effort measured in person
hours for the software development, from
specification review to unit test

0

1

2

3

4

5

6

7

8

<5 5-10 10-25 25-50 50-75 75-100 100-
200

>200

Code Size (KLoC)

N
u

m
b

er
 o

f
P

ro
je

ct
s

Figure 4. Code size distribution

• mDefects: functional defects discovered during all
the independent testing phases, following the
software development.

In some projects existing software was reused as
part of the development. The impact of this on the
dataset is considered in Section 6.

This new dataset could, of course, be used to build
traditional statistical/regression based models, as
indicated, for example, by Figure 5. This could be the
basis for a simple regression model relating KLoC to
defects; indeed the correlation coefficient here is quite
high (0.78). However, this does not correspond to the
way that we used this data, which was to validate a
model created before the data was gathered. Therefore,
we do not pursue this comparison.

0

500

1000

1500

2000

2500

0 50 100 150 200

Code Size (KLoC)

D
ef

ec
ts

 F
o

u
n

d

Figure 5. Code size versus defects

5. Qualitative data

The data values are shown in tables 7 to 10. Missing
data values are marked with ‘-’ (see Section 6.3). The
letters VL, L, M, H, VH correspond to the ordinal scale
described in Section 3.2 (very low to very high).

Table 7. Specification and documentation process
data

Project S1 S2 S3 S4 S5 S6 S7

1 H M VH H M H L
2 H H VH H M H H
3 H H VH H H VH H
4 L L M L L L L
5 H M H M H - M
6 VH M VH M H - H
7 L M VH H H L M
8 M M H M H L H
9 H VH VH H VH M VH
10 H H H M H M H
11 H M H M H H H
12 H M H M M M L
13 VH M M L M H L
14 H H H H H H H
15 H H H H H VH VL
16 H H H H H H M
17 VH H M L H H M
18 M H H H H VH VL
19 H M H H H H M
20 L L M VL L M VL
21 H H H M L M M
22 L L M M M M L
23 M H VH H L M M
24 M M M H M H L
25 M H - H M M M
26 M M H M H H H
27 H M VH M M VH M
28 H L VH M M M L
29 H M VH H M M VH
30 H H VH H H M VH
31 - H H M M H M

Table 8. Data for new functionality, design and

development process

Project F1 F2 F3 D1 D2 D3 D4
1 M L M L H H H
2 L VL M L H H H
3 H H VH H VH H VH
4 M L M L M L M
5 H H VH L M H H
6 M M VH M H M M
7 L VL M M VH H H
8 M L M H H M M

Project F1 F2 F3 D1 D2 D3 D4
9 L L M H VH VH H
10 M L M H H H H
11 H H H H H H H
12 H H H VH M M H
13 H H H H H H H
14 VH H H H H H H
15 H H M H H H H
16 L VL M H H H H
17 L VL M M M H H
18 VH VH H M H H H
19 H H H H H H H
20 VH H VH VL VL L H
21 L M VH H H H H
22 M M VH H M L H
23 H VH VH L H H H
24 M M H M H H M
25 H VL H M H M H
26 M H M L M M M
27 H VH VH M L M H
28 VH VH VH M L H H
29 M M H VH VH H H
30 L L M H H H H
31 M M H H H H H

Table 9. Testing and rework data

Project T1 T2 T3 T4

1 M H L H
2 H H L H
3 H H H H
4 VL VL VL L
5 M M L M
6 H - M M
7 H M M H
8 H M M M
9 H VH VH H
10 H M M M
11 H H M M
12 H H M M
13 M M L M
14 H H H H
15 M H M M
16 M H M M
17 M L L H
18 H H M M
19 H M M H
20 VL VL VH H

Project T1 T2 T3 T4
21 H H H H
22 H M M H
23 H H H H
24 H M M M
25 VL M H L
26 M L H M
27 M M M M
28 M M M M
29 H VH VH H
30 H H H H
31 M H M M

Table 10. Project management data

Project P1 P2 P3 P4 P5 P6 P7 P8 P9

1 VH H H L H M - VH H
2 VH H H L H M - VH H
3 H VH H - VH VH - VH VH
4 L M VL L M M M H M
5 H H H M M H L VH M
6 H H H M M VH L VH H
7 H H VH VL VH VH - H VH
8 M H H VL H H - H H
9 VH VH VH L VH VH - VH VH
10 H H H VL H H - M H
11 H H H VL H H - M M
12 H H H L H H - M H
13 M H H VL H M H M M
14 H H H - H H - H H
15 VH M H M VH VH - VH H
16 VH M H M VH VH - VH H
17 M M M M M H - H M
18 VH M H H VH VH - VH H
19 M H H L H H - H H
20 H M L H H M - H H
21 H H H H H H - H H
22 H H M H H H - H H
23 H H H H H M - H H
24 H H M L M H - VH H
25 M M M M M M M H H
26 L M M L H H L H M
27 H M L L M H H H M
28 H M L L M M - H M
29 M H H L VH VH - H H
30 M H H L VH VH - H H
31 H H H H VH VH - VH VH

6. Issues arising from the data collection

The complexity of software projects make gathering
data challenging. The most important challenges we
faced and lessons we learned during this work are
described below. Some of these challenges are not fully
resolved by the data included in this dataset; how these
issues were addressed in our models is described
elsewhere [8].

6.1. Software size: intrinsic complexity

Because of the need to have a size based measure
based only on the amount of functionality to be
implemented, we had hoped to use function points as
the key metric for this purpose, as recommended from
the MODIST work. Unfortunately, function points
were not used by the software development
organisation providing this data. It is well known [7]
that KLoC measures program length but the length of
the program is only one aspect of the size of the
development task – which we term the ‘intrinsic
complexity’. The factors F1-F3 were included in the
data gathered to give a better estimate of the intrinsic
complexity than code size alone. Unfortunately,
intrinsic complexity is not an observable quantity, so
finding sufficient factors to estimate the size of the
development task remains a challenge.

6.2. Code reuse

It is very common for software development to be
carried out as part of a product line development,
naturally giving rise to software reuse. This
complicates the measurement of software size – the
lines of developed software differs from the length of
the developed program – and also impacts the
prediction of defects, since the quality of the reused
software is variable.

6.3. Missing Data Values

Given the complexity of a dataset that attempts to
cover relevant software cost and quality drivers, it is
inevitable that some data values will be missing. It is
essential that software prediction methods are able to
cope with missing data values.

The Bayesian net model used in this study is one
such method that handles missing data, since the model
includes prior probability distributions for all the
project data.

6.4. Generality of the data

An objective of the partners in the MODIST project
was to identify only factors (and the means of
measuring them) that were generally relevant to
complex software projects. Achieving this objective
would enable different organizations to make use of the
causal model. We recognize that the more detailed
descriptions and questionnaires refer to process-
specific information. The objective of generality would
still be partly achieved if other organizations (using
different processes) used the same factors, but adapted
the questionnaire as a means of measuring them.

7. Model validation

We validated the causal model using the presented
project dataset. We did this by entering, for each
project, data excluding the defect data and ran the
Bayesian net model. This produces a (predicted)
probability distribution for number of defects found in
independent testing. Using the median values of these
distributions enables us to calculate the accuracy of the
predictions. As presented in Figure 6, we achieved a
very high accuracy with an R2 value of 0.9311.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

Actual

P
re

d
ic

te
d

Figure 6. Predicted and actual values

The outstanding result of the model validation gives

great confidence in the value of the causal model, but
of course further validation using additional datasets
would provide even greater confidence in the integrity
and robustness of the model. Moreover, the validation
we have described does not cover all the ways that the
Bayesian net model can be used, since it is possible to
enter data at any of the variables and obtain the

probability distributions at any of the unobserved
variables.

8. Conclusion

We have presented a comprehensive dataset for 31
software development projects. This dataset
incorporates the set of quantitative and qualitative
factors that were previously built into a causal model of
the software process. The factors (which had been
identified by a consortium of software project experts)
include values for code size, effort and defects,
together with qualitative data values judged by project
managers (or other project staff) using a questionnaire.
We have used these data to evaluate the causal model
and the results are extremely promising. Specifically
the model predicts, with remarkable accuracy, the
number of software defects that will be found in
independent testing.

Although it is beyond the scope of the paper to
discuss the causal model in detail, it should be noted
that good predictions of the defects can be achieved by
entering relatively few of the project factors (size plus
2 or 3 others). Hence this kind of model can be used
for effective decision-support and trade-off analysis
during early development phases.

By presenting the raw data in this paper, we hope to
enable other researchers to evaluate similar models and
decision-support techniques for software managers (the
dataset can of course also be used for evaluating more
traditional types of software prediction models). We
also hope that similar datasets will become more
widely available in future.

To ensure full visibility and repeatability, we also
provide an electronic version of the causal model for
researchers [13]. The model can be viewed and
executed by downloading the free trial version of the
Bayesian network software [1].

9. Acknowledgments

This report is based in part on work undertaken on
the following funded research projects: MODIST (EC
Framework 5 Project IST-2000-28749), SCULLY
(EPSRC Project GR/N00258), SIMP (EPSRC Systems
Integration Initiative Programme Project GR/N39234),
and eXdecide (EPSRC project EP/C005406) [3]. We
also acknowledge the contributions of individuals from
Agena, Philips, Israel Aircraft Industries, QinetiQ and
BAE Systems.

10. References

[1] AgenaRisk Bayesian Network Software Tool,
www.agenarisk.com, 2007.
[2] B. Boehm, B. Clark, E. Horowitz, C. Westland, R.
Madachy, and R. Selby, “Cost models for future
software life cycle process: COCOMO 2.0”, Annals of
Software Engineering, 1995.
[3] eXdecide, “Quantified Risk Assessment and
Decision Support for Agile Software Projects”, EPSRC
project EP/C005406/1,
www.dcs.qmul.ac.uk/~norman/radarweb/core_pages/pr
ojects.html .
[4] N.E. Fenton, P. Krause, and M. Neil,
“Probabilistic Modelling for Software Quality
Control”, Journal of Applied Non-Classical Logics
12(2), 2002, pp. 173-188.
[5] N.E. Fenton, P. Krause, and M. Neil, “Software
Measurement: Uncertainty and Causal Modelling”,
IEEE Software 10(4), 2002, pp. 116-122.
[6] N.E. Fenton, W. Marsh, M. Neil, P. Cates, S.
Forey, and M Tailor, “Making Resource Decisions for
Software Projects”, Proceedings of 26th International
Conference on Software Engineering (ICSE 2004),
(Edinburgh, United Kingdom, May 2004) IEEE
Computer Society 2004, ISBN 0-7695-2163-0, pp.
397-406.
[7] N.E. Fenton, and S.L. Pfleeger, Software Metrics:
A Rigorous and Practical Approach (2nd Edition),
PWS, ISBN: 0534-95429-1, 1998.

[8] N.E. Fenton, M. Neil, W. Marsh, P. Hearty, D.
Marquez, P. Krause, and R. Mishra, “Predicting
Software Defects in Varying Development Lifecycles
using Bayesian Nets”, Information and Software
Technology, Vol. 49 Issue 1, January 2007.
[9] ISBSG International Software Benchmarking
Standards Group, www.isbsg.org.
[10] F.V. Jensen, An Introduction to Bayesian
Networks, UCL Press, 1996.
[11] C. Jones, Programmer Productivity, McGraw
Hill, 1986.
[12] C. Jones, “Software sizing”, IEE Review 45(4),
1999, pp.165-167.
[13] MODIST BN Model, 2007,
http://www.dcs.qmul.ac.uk/~norman/Models/BN_Mod
el_PROMISE.html.
[14] MODIST, “Models of Uncertainty and Risk for
Distributed Software Development”, EC Information
Society Technologies Project IST-2000-28749,
www.modist.org.
[15] M. Neil, P. Krause, and N.E. Fenton, “Software
Quality Prediction Using Bayesian Networks”, in
Software Engineering with Computational Intelligence,
(Ed T.M. Khoshgoftaar), Kluwer, ISBN 1-4020-7427-
1, Chapter 6, 2003.

