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Abstract
Project scheduling inevitably involves uncertainty. The basic inputs (i.e. time,
cost and resources for each activity) are not deterministic and are affected by
various sources of uncertainty. Moreover, there is a causa rdationship
between these uncertainty sources and project parameters, this causdity is not
moddled in current date-of-the-at project planning techniques (such as
amulation techniques). This paper introduces an approach, usng Bayesan
network moddling, that addresses both uncertainty and causdity in project
scheduling. Bayesian networks have been widdly used in a range of decison
support applications, but the gpplication to project management is nove. The
modd presented empowers the traditiona Criticd Path Method (CPM) to
handle uncertainty and aso provides explanatory andyss to dicit, represent,

and manage different sources of uncertainty in project planning.
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1 Introduction

Project planning is difficult because it inevitably involves uncertainty. Uncertainty in
real-world projects arises from the following characterigtics:

uniqueness (no Similar experience)

variability (trade-off between peformance measures like time, cost and

quality)

ambiguity (lack of clarity, lack of data, lack of structure and bias in estimates)
Many different techniques and tools have been developed to support better project
scheduling, and these tools are used serioudy by a large mgority of project managers
[Fox 1998, Pollack-Johnson 1998]. Yet, quantifying uncertainty is rardy prominent in

these approaches.

This paper focuses especidly on the problem of handling uncertanty in project
scheduling. Section 2 eaborates on the nature of uncertainty in project scheduling and
summarises the current state-of-the-art. The proposed approach is to adapt one of the
best-used scheduling techniques, Critical Path Method (CPM) [Kely 1961], and
incorporate it into an explicit uncertainty model (usng Bayesan Networks). Thus,
Section 3 summarises the basc CPM methodology and notation. Section 4 presents a
brief introduction to Bayesan Networks, and describes how the CPM approach can be
incorporated (using a smple illudrative example). Section 5 discusses a mechanism
to implement the modd in red-world projects. Section 6 suggests the way forward

and possible future modifications.



2 The nature of uncertainty in project scheduling

The project management body of knowledge [PMBOK 2004] identifies risk

management asakey area:

‘It indudes the processes concerned with identifying, andyzing, and
responding to project risk. It includes maximizing the results of podtive events

and minimizing the consequences of adverse events..

Centra to risk management is the issue of handling uncertainty. [Ward and Chapman
2003] argue that current project risk management processes induce a restricted focus
on managing project uncertainty. They believe it is because the term ‘risk’ has
become associated with ‘events rather than more genera sources of sgnificant

uncertainty.

In different project management processes there are different aspects of uncertainty.
The focus of this paper is on uncertainty in project scheduling. The most obvious area
of uncatanty here is in edimating duration for a paticular activity. Difficulty in this
edimation arises from a lack of knowledge of what is involved rather than from the
uncertain consequences of potentia threats or opportunities. This uncertainty arises
from one or more of the following:

Leve of available and required resource

Trade-off between resources and time

Possible occurrence of uncertain events (i.e. risks)

Causal factors and inter-dependencies between them including common casud

factors that affect more than one activity (such as organizationa issues)



Lack of previous experience and use of subjective rather than objective data
Incomplete or imprecise data or lack of data at dl

Uncertainty about the basis of subjective esimation (i.e. Biasin estimation)

The best-known technique to support project scheduling is the Critical Path Method
(CPM) (decribed in detall in Section 3). This technique, which is adapted by the
most widdy used project management software tools, is purdy determinidic. It
mekes no atempt to handle or quantify uncertainty. However, a number of
techniques such as Program Evaluation and Review Technique (PERT), Critical

Chain Scheduling (CCS) and Monte Carlo Smulation (MCS) do asfollows.

PERT [Mdcom e d 1959, Miller 1962, Moder 1988] incorporates
uncertainty in a redricted sense, by using a probability distribution for each
tak. Indead of having a sngle detlerminidic vaue, three different estimates
(pessmidtic, optimistic and most likely) are gpproximated. Then the ‘critica
pah’ and the dat and finish date are cdculated by use of digtributions
means and agpplying probability rules. Results in PERT ae more redidtic
than CPM but PERT does not address explicitly any of the sources of

uncertainty listed above.

Criticd Chain (CC) Scheduling is based on Goldratt's Theory of Congraints
(TOC) [Goldratt 1997]. For minimizing the impact of Parkinson's Law (jobs
expand to fill te alocated time), CC uses a 50% confidence interva for each
task in project scheduling. The safety time (remaining 50%) associated with

each task is shifted to the end of the critical chain (longest chain) to form the



project buffer. Although it is clamed that the CC approach is the most
important breskthrough in project management history, its over-amplicty is
a concern for many companies who do not understand both the strength and
weskness of CC and apply it regardless of their particular and unique
crcumdances [Pinto 1999]. The assumption that dl task durations are
overesimated by a certain factor is questionable and the main issue is How
does the project manager determine the safety time? [Raz et al 2003]. CC
ries on a fixed, right-skewed probability for activities tha may be
inappropriate [Herroden 2001] and a sound estimation of project and activity

duration (and consequently the buffer Sze) is il essentid [Trietsch 2005].

Monte Carlo Smulation (MCS) was first proposed for project scheduling in
the early 1960s [Van Slyke 1963] and implemented in the 1980s [Fishman
1986]. In the 1990s because of improvements in computer technology, MCS
rgpidly became the dominant technique for handling uncertainty in project
scheduling [Cook 2001]. A survey by the Project Management Ingtitute [PMI
1999] showed that nearly 20% of project management software packages
support MCS. For example, PertMaster[PertMaster 2006] accepts scheduling
data from tools like MS-Project and Primavera and incorporates MCS to
provide project risk analyss in time and cost. However, the Monte Carlo
agpproach has atracted some criticism. [Van Dorp and Duffey 1999] explan
the weskness of Monte Calo dgmulation, in assuming ddidica
independence of activity duration in a project network. Moreover, being
event-oriented (assuming project risks as ‘independent events'), MCS and the

tools that implement it do not identify the sources of uncertainty.



As argued in [Ward and Chgpman 2003] managing uncertainty in projects s not just
about managing percalved threats, opportunities and their implication. A proper
uncertainty management provides.  identifying various sources of  uncertanty,
undergtanding the origins of them, and then managing them to ded with dedrable or
undesirable implications.

Capturing uncertainty in projects ‘needs to go beyond varigbility and available data. It
needs to address ambiguity and incorporate structure and knowledge [Chapman and
Wards 2000]. In order to measure and analyse uncertainty properly, we need to mode
relations between trigger (source), risk and impacts (consequences). Because projects
are usudly one-off experiences, their uncertainty is epistemic (i.e. related to a lack of
complete knowledge) rather than aleatoric (i.e. related to randomness). The duration
of a task is uncertain because there is no smilar experience before, so data is
incomplete and suffers from imprecison and inaccuracy. The Edimation of this sort
of uncertainty is mogdly subjective and based on edtimator judgment. Any estimation
is conditionaly dependent on some assumptions and conditions even if they are not
mentioned  explicitly. These assumptions and conditions are mgor sources of
uncertainty and need to be addressed and handled explicitly.

The most well edtablished gpproach to handling uncertainty in these circumstances is
Bayesan approach [Goldstein 2006, Efron 2004]. Where complex causa reaionship
are involved, the Bayesan approach is extended by using of Bayesan Networks. The

chdlenge isto incorporate the CPM approach into Bayesian Networks..



3 CPM methodology and notation

CPM [Moder 1988] is a determinigic technique tha, by use of a network of
dependencies between tasks and given deterministic vaues for task durations,
caculates the longest path in the network caled the ‘critical path’. The length of the
‘Criticd Path’ is the earliest time for project completion. The criticd path can be

identified by determining the following parameters for each activity:

D - Duration

ES- earliest start time
EF - ealiegt finishtime
LF - lategt finishtime

LS- latest gart time

The earlies gtart and finish times of each activity are determined by working forward
through the network and determining the earliest time a which an activity can dart

and finish consdering its predecessor activities. For each activity j:

ES = Max [ES; + D; ; over predecessor activitiesi]

EF =ES+ D;
The latest dart and finish times are the latest times that an activity can dart and finish
without delaying the project and are found by working backward through the network.

For each activity i:

LF =Min[LF; — D; ; over successor activities]]



LS: LF - Dy
The activity's ‘Totd Float' (TF) (i.e. the amount that the activity’s duration can be
increased without increasing the overdl project completion time) is the difference in
the latest and earliest finish of each activity. A critica activity is one with no TF and
should receive specid atention (dday in a criticd activity will deay the whole
project). The critica path then is the path(s) through the network whose activities

have minimd TF.

The CPM @gpproach is very smple and provides very usgful and fundamenta
information about a project and its activities schedule. However, because of its
dngle point esimae assumption it is too gmpligic to be used in red complex

projects. The chalenge isto incorporate the inevitable uncertainty.

4 Proposed BN solution

Bayesian Networks (BNSs) are recognised as a mature formaism for handling causdity
and uncertainty [Heckerman et a 1995]. This section provides a brief overview of
BNs and describes a new gpproach for scheduling project activities in which CPM

parameters (i.e. ES, EF, LS and LF) are determined in a BN.

4.1 Bayesian Networks: An overview

Bayesan Networks (also known as Bdief Networks, Causa Probabilistic Networks,
Causal Nets, Graphica Probability Networks, Probabilistic Cause-Effect Modeds, and
Probabiligic Influence Diagrams) provide decisonsupport for a wide range of
problems involving uncertainty and probabilistic reasoning. Examples of red-world
gpplications can be found in [Heckerman et d 1995, Fenton et a 2002, Nell e d

2001]. A BN is a directed graph, together with an associated set of probability tables.



The graph conssts of nodes and arcs. Figure 1 shows a very smple BN that models
the cause of dday in a paticular task in a project. The nodes represent uncertain
variables, which may or may not be observable. Each node has a set of dtates (e.g. ‘on
time¢ and ‘la€ for ‘Sub-contract’ node). The arcs represent causd or influentid
relaionships between variables. (e.g. ‘Sub-contract’ and ‘Staff Experience€ may cause
‘Delay in Task'). There is a probability table for each node, providing the
probabilities of each dtate of the variable. For variables without parents (caled ‘prior’
nodes) the table just contains the margind probabilities. (e.g. for ‘Sub-contract’ node
P('On-time)=0.95 and P(‘late )=0.05). This is dso cdled ‘prior digtribution’ that
represents the prior belief (state of knowledge) about the variable. For each variable
with parents, the probability table has conditional probabilities for each combination
of the parents dates (see, for example, the probability table for ‘Delay in Task’ in
Figure 1). This is dso caled ‘likelihood function’ that represents how likely is a dae

of avariable given aparticular states of its parent.

Ontime | 0.95
Late 0.05

High 0.7
Low 0.3

Sub-contract Staff Experience

Delay in Task

Sub-contract Ontime Late
Staff Exp. High | Low | High [ Low
Yes | 095 0.7 0.7 0.01
D&y o T 005 | 03 | 03 | 0%

Figurel A Bayesian Network contains nodes, arcs and probability table
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The man use of BNs is in dtuations that require datisica inference. In addition to

statements about the probabilities of events, the user knows some evidence (i.e. some

vaiable dates or events that have actually been observed), and wishes to infer the

probabilities of other variables, which have not as yet been observed. These observed

vaues represent a posterior probability, and by applying Bayes rule in each affected

node, they can influence other BN nodes via propagation, modifying the probability

digributions. For example, the probability that the task finishes on time, with no

observation, is 0.855 (Figure 2a). However if we know that the sub-contractor has

faled to ddiver on time, this probability updatesto 0.49 (Figure 2b).

Sub-contract
<

Delayin Task

04
0.3z

00

Sub-contract
| late |

<)

StafT Experience

Delayin Task

a) P(Task =on time)=0.855

b) P(Task =on time)=0.49

Figure 2 New evidence updates the probability

The key benefits of BNs that meke them highly suitable for the project planning

domain are that they:

Explicitly quantify uncertainty and mode the causd relaion between variables

Enable reasoning from effect to cause as wdll

(propagation is both ‘forward’ and ‘ backward’)

Make it possible to overturn previous beliefs in the light of new data

Make predictions with incomplete data

Combine subjective and objective data

as from cause to effect
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» Enable usersto arrive a decisons that are based on visible auditable reasoning

BNs, as a tool for decison support, have been deployed in domains ranging from
medicine to politics. BNs potentidly address many of the ‘uncertainty’ issues raised
in Section 2. In particular, incorporating CPM-gdtyle scheduling into a BN framework

makes it possble to properly handle uncertainty in project scheduling.

There are numerous commercia tools that enable users to build BN models and run
the propagation cdculations. With such tools it is possble to perform fast propagation
in large BNs (with hundreds of nodes). In this work we have used [AgenaRisk 2006],
which is egpecidly wdl-suited to this kind of gpplication because it is the only BN

tool that can properly handle continuous variables (as opposed to just discrete).

4.2 BN for Activity Duration

-
Creome >

I
Technology

Initial Duration
Estimation

Resources

Duration

Figure 3 Bayesian Network for Activity Duration

Fgure 3 shows a prototype BN that we have bult to modd uncertainty sources and

therr affects on duration of a particular activity. The modd contans variadles that
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capture the uncertain nature of activity duration. ‘Initid Duration Edimation’ is the
firda edimatiion of the activity's duration; it is estimated based on higtorica data,
previous experience or sSmply expet judgement. ‘Resources incorporates any
affecting factor that can increase or decrease the activity duration. It is a ranked node,
which for amplicity here is redricted to three levels low, average and high. The leve
of resources can be inferred from so caled ‘indicator’ nodes. Hence, the causd link is
from the ‘resources to directly observable indicator vaues like the ‘cost’, the
experience of avalable ‘peopleé and the levd of avalable ‘technology’. There are
many dterndtive indicators. An important and novel aspect of this gpproach is to

alow the model to be adapted to use whichever indicators are available.

The power of this modd is better understood by showing the results of running it
under various scenarios. It is possible to enter observations anywhere in the modd to
perform not just predictions but dso many types of trade-off and explanatory anayss.
So, for example, we can enter observations for ‘Initial Duratiion Edimation’ and
‘Resources and let the modd show the digtributions for ‘duration’. Figure 4 shows
how the didribution of the activity duraion whose initid edimation is five days,
changes when the leve of its avallable resources changes from ‘Low’ to ‘High'. (All

the subsequent figures are outputs from the AgenaRisk software).
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Initial Duration

R s b e e e
DLW EDMD DD

Figure 4 Probability distribution for ‘Duration’ (days) changes when the level of ‘Resources’ changes

Ancther possble andyss in this modd is the trade-off andyss between ‘Duration’
and ‘Resources when there is a time condraint for activity duration and we ae
interested to know about the level of required resource. For example, consider an
activity whose initid duration is estimated as five days but which must be finished in
three days. Figure 5 shows the probability distribution of required resources to meet

this duration congraint. Note how it is highly skewed toward *high'.
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Initial Duration
Estimation
25 |

Lew Medium High

wd

Figure5 Level of required ‘Resources when thereisa constraint on ‘Duration’

4.3 Mapping CPMto BN

As described in Section 3, the main components of CPM networks are activities.
Activities are linked together to represent dependencies. In order to map a CPM
network to a BN we first need to map a single activity. Each of the activity parameters
identified in Section 3 are represented as a variable (node) in the BN.

Figure 6 shows a schematic model of the BN fragment associated with an activity. It

clearly shows the relation between the activity parameters and adso the reation with

predecessor and successor activities.

15



Activities

Duration
Model Predecessor
=

B

Successor
Activities

Figure 6 Schematic of BN for an activity

The next dep is to define the connecting link between dependent activities. The
forward pass method in CPM is mapped as a link between EF of each activity to ES of
the successor activities. The backward pass method in CPM is mapped as a link

between LS of each activity to LF of the predecessor activities.

4.4 Example

The following illustrates this mapping process The example is ddiberatey very
smple to avoid extra complexity in the BN. How the agpproach can be used in red-
sze projectsisdiscussed in section 5.

Condder a smdl project with five activities A, B, C, D and E. The Activity on Arc

(AOA) network of the project is shown in Figure 7.

16



Figure 7 CPM network

The results of the CPM cdculation issummarized in Table 1. ActivitiesA, Cand E

with TF=0 are critica and the overal project takes 20 days (i.e. earlies finish of ‘E)).

Activity D ES EF LS LF TF

A 5 0 5 0
B 5 13 4
C 10 5 15 5 15 0
D 9 11 13 15 4
E 0

5 15 20 15 20

Table 1 Activities' time (days) and summary of CPM calculations

Figure 8 shows the full BN representation of the above example. Each activity has 5
asociated nodes. Forward pass cdculation of CPM is done through connection
between ES and EF. Activity ‘A’, the first activity of the project, has no predecessor,
0 its ES is st to zero. ‘A’ is predecessor for ‘B’ and ‘C’ so EF of ‘A’ islinked to ES
of ‘B’ and ‘C'. EF of ‘B’ is linked to ES of its successor, ‘D’. And findly EF of ‘C
and ‘D’ are connected to ES of ‘E’. In fact ES of ‘E’ is the maximum of EF of ‘C' and

‘D’. EF of ‘E’ isthe earliest time for project completion time.

17
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nitial Du ral.lm'\l
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¥‘,< \ —

Duration Sutnet_F

Figure 8 Overview of BN for example (1)

The same approach is used for backward CPM cdculation connecting LF and LS.
Activity ‘E’ is the lagt activity of the project and has no successor, S0 its LF is set to
EF. ‘E issuccessor of ‘C' and ‘D’ so LS of ‘E’ islinked to LF of ‘C’ and ‘D’. LS of
‘D’ is linked to LF of its predecessor ‘B’. And finadly LS of ‘B’ and ‘C’ are linked to

LFof ‘A’. LFof ‘A’ istheminimum of LS of ‘B’ and ‘C'.
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For amplicity in this example, it is assumed that activities ‘A’ and ‘E are more risky
and need more detaled andyss. For dl other activities the uncertainty about

‘duration’ is expressed smply by anormal distribution.

45 Results

This section explores different scenarios of the BN mode in Figure 8. The man
objective is to predict project completion time (i.e. the earliest finish of E) in such a
way that it fully characterises uncertainty.

Suppose the initid esimation of activities duration is the same as Table 1. Suppose
the resource level for ‘A’ and ‘E’ is ‘medium’. If the earliest start of ‘A’ is set to zero,
the digribution for project completion is shown in Figure 9a The digribution’s mean
is 20 days as was expected from the CPM andyss. However, unlike CPM the
prediction is not a sngle point and its variance is 4. Figure 9b illudrates the
cumulative didribution of finishing time, which shows the probability of completing
the project before a given time. For example, with probability of 90% the project will

finishin 22 days.
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Figure 9 Distribution of project completion (days) for main Scenario in example (1)
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In addition to this basdine scenario, by entering various evidence (observations) to
the modd, it is possble to andyse the project schedule from different aspects. For
example, one scenario is to see how changing the resource level affects the project
completion time.

Figure 10 compares the digributions for project completion time as the leved of
people's experience changes. When the experience of people changes from ‘low’ to
‘high’ the mean of finishing time changes from 22.7 days to 195 days and the 90%

confidence interva changes from 26.3 days to 22.9 days.
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Figure 10 Changein project time distribution (days) when level of people’s experience changes

Another useful andyss is when there is a condraint on project completion time and
we want to know how much resource is needed. Figure 11 illudrates this trade-off
between project time and required resources. If the project needs to be completed in
18 days (instead of the basdine 20 days) then the resource required for ‘A’ most
likdy must be ‘high'; if the project completion is set to 22, the resource levd for ‘A’

moves sgnificantly in the direction of ‘low’.
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Figure 11 Probability of required resour ce changes when the time constraint changes

The next scenario invedigates the impact of risk in activity ‘A’ on the project

completion time as it is shown in Fgure 12. When there is a risk in activity ‘A’, the

mean of the digtribution for project completion time changes from 19.9 to 22.6 and

the 90% confidence interval changes from 22.5 days to 25.3 days.
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Figure 12 Theimpact of occurring risk in activity A on the project completion time

One of important advantage of BNs is ther potentid for parameter learning, which is

shown in the next scenario. Imagine activity ‘A’ actually finishes in 7 days even
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though it was origindly estimated as 5 days. Because activity ‘A’ has taken more time
than it was expected, the level of resources has probably not been sufficient.

By entering this observation the modd gives the probability of resource for activity
‘A’ as illudrated in Figure 13. This can update our belief about the actual levd of

available resources.

Lo feclivim High

Figure 13 Learnt Probability Distribution ‘Resource’ when the actual duration is 7 days

Assuming both activities ‘A’ and ‘E’ use the same resources (e.g. people), the updated
knowledge about the level of avalable resource from ‘A’ (which is finished) can be
entered as evidence in ‘Resource for activity ‘E° (which is not dtarted yet) and
consequently updates the project completion time.

Fgure 14 shows the didributions of completion time when the levd of avalable

resource of ‘E’ islearned from the actua duration of activity ‘A’.
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Figure 14 completion time (days) based on learned parameters compare with baseline scenario

Another application of parameter learning in these modes is the ability to incorporate
and learn about bias in estimation. So if there are severd observations in which actua
task completion times are underestimated the modd learns that this may be due to
bias rather than unforeseen risks and this information will inform subsequent
predictions. Work on this type of application (cdled ‘Dynamic Learning'), is dill in

progress and can be a possible way of extending the BN version of CPM.

5 Object Oriented Bayesian Network (OOBN)

It is clear from Figure 8 that even smple CPM networks leads to a fairly large BNs.
In red-szed projects with severd activities, congructing the network needs a huge
effort, which is not effective especidly for users without much experience in BNs.
However, this complexity can be handled usng the so-called Object Oriented
Bayesan Network (OOBN) approach [Koller and Pfeffer 1997]. This approach,
analogous to the Object-oriented programming languages, supports a naturd
framework for abdraction and refinement, which dlows complex domains to be

described in terms of inter-related objects.
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The basic dement in OOBN is an object; an entity with identity, state and behavior.
An object has some set of attributes each of which is an object. Each object is
assigned to a class. Classes provide the ability to describe a generd, reusable network
that can be usad in different instances. A classin OOBN isaBN fragment.

The proposed modd has a highly repetitive structure and fits the Object Oriented
framework pefectly. The intend pats of the activity subnet (Figure 6) are

encapaulated within the activity class as shown in Figure 15.

Figure 15 Activity class encapsulates inter nal parts of network

Classes can be used as libraries and combined into a model as needed. By connecting
inter-related objects, complex network with several dozen nodes can be constructed

eadly. Figure 16 shows the OOBN modd for the example presented in section 4.4.
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Figure 16 OO model for the presented example

The OOBN agpproach can dso dgnificantly improve the performance of inference in
the modd. Although a full discusson of the OOBN agpproach to this particular
problem is beyond the scope of this paper, the key point to note is that there is an
exising mechanism (and implementation of it) that endbles the proposed solution to
be genuindy ‘scded-up’ to red-world projects. Moreover, AgenaRisk is one of the
few BN tools that implements the OOBN solution and research is emerging [Agena
2006] to develop the new generation of BNs tools that support OOBN concept bothin

condructing large-scale model's and a so in propagation aspects.

6 Conclusions and way forward

Handling risk and uncertainty is increesingly seen as a crucid component of project
management and planning. One classc problem is how to incorporate uncertainty in

project scheduling. Despite the avallability of different approaches and tools, the
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dilemma is 4ill chalenging. Mogt current techniques for handling risk and uncertainty
in project scheduling (smulation based techniques) are often event-oriented and try to
modd the impact of possble ‘threats on project performance. They ignore the source
of uncertainty and the causa relations between project parameters. More advanced

techniques are required to capture different aspects of uncertainty in projects.

This paper has proposed a new approach that makes it possible to incorporate risk,
uncertainty and causdity in project scheduling. Specificdly, we have shown how a
Bayesan Network model can be generated from a project’'s CPM network. Part of this
process is automatic and pat involves identifying gpecific risks (which may be
common to many eactivities) and resource indicators. The gpproach brings the full
weight and power of BN analyss to bear on the problem of project scheduling. This

makesit possbleto:

Capture different sources of uncertainty and use them to inform project
scheduling.

«  Express uncertainty about completion time for esch activity and the whole
project with full probability distributions
Model the ‘trade-off’ between ‘time and ‘resources’ in project activities
Use ‘what-if? andyss for finding the level of required resources given
congraints like, for example, a gpecific completion time

« Learn from data so that predictions become more relevant and accurate

The application of the gpproach was explained by use of a smple example. In order to

scae this up to red projects with many activities the gpproach must be extended to
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use the so-caled Object Oriented BNs. There is ongoing work to accommodate such
object oriented moddling so that building a BN verson of CPM is just as smple as

building abasc CPM modd.

Other extensons to the work described hereinclude:

« Incorporating additiona uncertainty sourcesin the duration network

« Handling dynamic parameter learning as more information becomes avaladle
when project progresses

«  Handling common causd risks which affect more than one activity

»  Handling management action when the project is behind its plan
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