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Abstract

In spite of numerous methods proposed, software cost estimation remains an open issue and in most situations expert judgment is still

being used. In this paper, we propose the use of Bayesian belief networks (BBNs), already applied in other software engineering areas, to

support expert judgment in software cost estimation. We briefly present BBNs and their advantages for expert opinion support and we

propose their use for productivity estimation. We illustrate our approach by giving two examples, one based on the COCOMO81 cost factors

and a second one, dealing with productivity in ERP system localization.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and related work

Software cost estimation has been an open problem in

software engineering for many years. A number of

estimation models have been proposed, based on expert

judgment, estimation by analogy or algorithmic cost

models. These methods are not always successful, due to

the diversity of cost factors, their unclear contribution to

productivity, the high degree of uncertainty and the lack of

information in the early stages of software development.

Althoughit isawidelyheldbelief thatexpert judgmentisan

unreliable approach for estimation, this method is one of the

most commonly used today. In certain cases (new technology,

no historical project data, etc.) expert judgment is the only

feasible estimation approach. Additionally, there is research

work that suggests that expert judgment should be used in

parallel with other estimation models for better results [6].

Several tools and methods have been proposed in order to

support expert judgment. In the last years, Bayesian belief

networks (BBNs) have appeared among them. Briefly

speaking, BBNs are cause–effect graphs based on Bayesian

inference, capable of modeling uncertainty. BBNs, as a tool

for decision support, have been proposed and deployed in

various scientific domains, such as in medicine [9]. In the

field of software engineering, BBNs have been introduced in

modeling uncertainties in software testing, in defect density

prediction and other areas.

More specifically, in Ref. [15] the uncertainties in the

testing of software projects are discussed and the use of

BBNs to model these uncertainties is proposed. In Ref. [4] a

thorough critique of the existing software defect estimation

methods is presented and the use of BBNs is proposed as an

alternative method for the estimation of resident defects in

software products. In another work by the same authors [5], a

more sophisticated BBN model is proposed for the prediction

of the post-release failure density of software products.

The theoretical foundation of BBNs is Bayesian analysis

and inference, as a formal means for dealing with imprecise

data and expert judgment. Bayesian analysis has been

already applied in Ref. [3] for the calibration of COCOMO

II parametric effort estimation model [2]. More specifically,

sample project data and expert estimations are combined in

order to provide more accurate rating values for the scale

factors in the effort multipliers of the model. In Ref. [10], it

is shown that Bayesian inference can be used to produce

error distributions on subjective estimates of the cohesion

classification of software modules.

In this paper, we propose the use of BBNs as a way of

estimating the productivity of software projects in the early
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stages of the development process. We argue that BBNs can

support an expert in estimating productivity, by explicitly

modeling the uncertainties concerning the various factors

influencing the productivity. In Section 2, we present a short

overview of BBNs and their advantages, and in Section 3 we

explain how they can be used in productivity estimation. In

Section 4, we demonstrate an example of use of BBNs in the

productivity estimation, based on the COCOMO81 cost

factors [1]. We also present a tentative BBN model for

estimating productivity in ERP system localization. Finally,

in Section 5 we conclude the paper and present ideas for

future work.

For the purposes of the examples of the BBNs in Sections

2 and 4, i.e. for their graphical representations and various

probability calculations, we used the SERENE 1.0 tool [14].

2. Bayesian belief networks

BBNs, as a way of modeling uncertainty, are described in

Ref. [13]. The BBNs are directed acyclic graphs (DAGs)

expressing probabilistic cause–effect relations among the

linked nodes. Each node represents a random variable that can

take discrete or continuous values according to a probability

distribution, which can be different for each node. Each

influence relationship is described by an arc starting from the

influencing variable (parent node) and terminating on the

influenced variable (child node). The absence of an arc

connecting two nodes is an indication of conditional

independence between the corresponding variables, i.e.

there are no situations in which the probabilities of one of

the variables depend directly upon the values of the other.

Formally, the relation between the two nodes is based on

Bayes’ rule:

PðXlYÞ ¼ PðY lXÞPðXÞ=PðYÞ

Each discrete variable node has an N £ M node probability

table (NPT), where N is the number of node states and M is

the product of its cause-nodes states. In this table, each

column represents a conditional probability distribution and,

consequently, its values sum up to 1. Further information

about the definition, usage, updating algorithms and

complexity analysis of BBNs can be found in Refs. [12,13].

In Fig. 1, an example of a simple BBN is illustrated. The

BBN has three nodes A, B and C, whose variables take

discrete values: (T )rue and (F )alse for A, LOW, MED,

HIGH for B and ON, OFF for C. The NPTs of each node are

shown in Table 1.

In Appendix A, we give the explicit explanation of the

probabilistic relations between the nodes of the specific

BBN. We also give the calculations, which lead to the

probability distribution of each node (variable). So, for the

three nodes, we have the following distributions:

A-node

T 0.6

F 0.4

B-node

LOW 0.42

MED 0.4

HIGH 0.18

C-node

ON 0.5042

OFF 0.4958

In a BBN, it is possible to have ‘observed’ values in some

nodes. These are the values, which the nodes are known to

have in a given instance. These values represent a posteriori

probabilities, and, by applying the Bayes rule in each

affected node, they can influence other BBN nodes,

modifying the probability distributions in their NPTs. For

example, in the BBN of Fig. 1 if we have the observed value

T(rue) in node A (in other words PðA ¼ TÞ ¼ 1;

PðA ¼ FÞ ¼ 0), then the probabilities of values in B and C

nodes become: PðB ¼ LOWÞ ¼ 0:3; PðB ¼ MEDÞ ¼ 0:5;

PðB ¼ HIGHÞ ¼ 0:2; and PðC ¼ ONÞ ¼ 0:615; PðC ¼

OFFÞ ¼ 0:385; by applying Bayes’ rule.Fig. 1. A simple BBN.

Table 1

The NPT table of the nodes of the BBN in Fig. 1; (a) node A, (b) node B, and

(c) node C

(a)

A-node

T F

0.6 0.4

(b)

B-node A-node

T F

LOW 0.3 0.6

MED 0.5 0.25

HIGH 0.2 0.15

(c)

A-node

T F

B-node LOW MED HIGH LOW MED HIGH

C-node

ON 0.7 0.65 0.4 0.45 0.23 0.07

OFF 0.3 0.35 0.6 0.55 0.77 0.93
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It is possible to have observed values in input nodes (the

ones with no cause-nodes), as well as in intermediate or

output nodes (the ones having cause-nodes). It is also

possible to combine two or more observed values in the

same node. Their probabilities are then recalculated using

Bayes rule. For example, in node B, we could have observed

values LOW and MED with probabilities PðB ¼ LOWÞ ¼

0:512; PðB ¼ MEDÞ ¼ 0:488: The probabilities of the

values of the other two nodes become PðA ¼ TÞ ¼ 0:585;

PðA ¼ FÞ ¼ 0:415 and PðC ¼ ONÞ ¼ 0:551; PðC ¼

OFFÞ ¼ 0:449: Refer to Appendix A for a detailed

explanation of the calculations that underlie the above

examples of BBN behavior.

Regarding the advantages of BBNs we can mention

briefly that they are highly suitable for supporting expert

judgment in cost estimation for a number of reasons:

† BBNs can combine information from past statistical data,

where available, with expert opinion. Expert opinion

may be used when the data are missing or are considered

unsuitable to be used, e.g. data taken from projects

developed in different domains, using different develop-

ment processes, etc. On the other hand, parts (sub-

networks) of a BBN may be derived from automated data

analysis.

† BBNs can be constructed fairly easily. However, they

should be constructed carefully because the size of the

probability matrices of each node grows exponentially,

as the values and the cause-nodes increase.

† BBNs can integrate partial knowledge and data concern-

ing a project in the form of observed values of some

nodes. As a consequence, they can be also used as

backward reasoning tools in post-mortem analysis, in

order to generate hypotheses about project factors

affecting productivity.

† BBNs can be used for ‘what-if’ analysis to explore the

impact of changes in some nodes to other nodes.

† BBNs have strong theoretical background (Bayes theory,

Pearl’s polytree algorithm, Jensen’s junction trees).

† A number of software tools for building and using BBNs

is already available (see Ref. [11] for a list of such tools).

3. Use of BBNs in productivity estimation

As mentioned earlier, BBNs can be used to support

experts in modeling the uncertainties in the software

development process and eventually in providing a better

estimation of the expected productivity. In this paper, by the

term ‘experts’ we mean individuals with a certain degree of

experience in the field of software engineering and, in

particular, in software productivity estimation.

For the task of providing an estimate, a BBN specific

to the problem domain and development context must be

devised. In its construction, one or more experts need to

identify the significant factors, which are likely to

influence the productivity of a software project lying in

the specific domain and development context. Of course,

already proposed and defined factors from other cost

methods may be used too. The cause–effect relations

among these factors need also to be identified. The set of

factors will be the set of nodes of the BBN, and the

cause–effect relations will be represented by its edges. In

addition, for each node an appropriate measurement scale

must be defined. The output of the BBN can be a

probability distribution of interval estimates of pro-

ductivity. This is in line with the widely accepted opinion

that it is safer to produce interval estimates, along with a

probability distribution over the estimate interval (for

example, see Ref. [8]).

Since the NPTs of the BBN nodes need to be completed

by humans, care must be taken to keep their size as

manageable as possible. There is a trade-off between the

granularity of the estimation output and the manageability

of the BBN: the smaller the size of the NPTs, the more

manageable the BBNs become. On the other hand, the larger

will be the final interval estimates of the output of the BBN.

In order to reduce the size and mental complexity of the

NPTs, the values of each node must be as few as possible,

preferably no more than eight according to our experience.

More importantly, the cause-nodes of each effect-node must

also be as few as possible, preferably no more than four. If it

is not possible to respect this rule of thumb, then probably

additional nodes may be necessary to be inserted between

the cause-nodes and the effect node to keep the NPT size

manageable. See for instance, the additional nodes ‘techni-

cal factors’ and ‘human and process factors’ in the example

in Section 4.

After constructing the BBN, the experts need to provide

values and associated probabilities for the input nodes, in

order to produce an estimate for a specific new project.

Typically, the values in the NPTs of the intermediate nodes

(those having cause-nodes) will not vary for each project,

since they reflect the expert opinion about the way the nodes

affect each other in general. Partial knowledge for a project

can be included in the estimation in the form of observed

values of some nodes as explained earlier. This is done only

when making forecasts, not when preparing the model.

As said before, the output of the BBN may be an

estimation of the productivity, expressed as a probability

distribution of productivity intervals. If the probability of an

interval is not adequately high, the concatenation of two (or

more) neighboring intervals with the highest probability can

be taken. In this case, there will be more uncertainty in the

estimate, reflecting the uncertainty of the expert in assigning

probabilities to the node values. Alternatively, if a point

estimation is required, a location statistic of the probability

distribution can be taken.

Occasionally, the expert(s) may need to maintain the

BBN constructed in order to improve estimation. In this

maintenance process, the expert(s) may need to add or

exclude some nodes and edges in the BBN, obtaining
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a different set of productivity factors and cause–effect

relations among them. Additionally, they may revise the

NPTs of the nodes as well, by monitoring the results of the

initial BBN and taking into consideration new project

productivity figures as they become available.

4. Productivity estimation example

We demonstrate our approach using an example based on

the popular COCOMO81 intermediate cost model [1]. Our

choice was motivated by the wide spread of the model, the

availability of the ratings for the cost drivers and the

availability of the COCOMO81 project data.

Productivity P is defined as the ratio between the size S

and the effort E of a project, i.e. P ¼ S=E: In our example,

we are estimating productivity directly. As an alternative,

productivity may be calculated by the equation P ¼ PNOMF;

where PNOM is the nominal productivity and F is a

multiplicative factor. F could be estimated by a suitable

BBN, while PNOM might be given by the expert or

calculated from large, multi-organizational cost data sets

(e.g. the ISBSG data set [7]).

We constructed the BBN shown in Fig. 2, based on

Boehm’s informal classification of cost factors. The product

related factors—RELY, DATA and CPLX—are aggregated

to the Product node. In the same sense, TIME, STOR, VIRT,

TURN factors are aggregated to the Computer node, ACAP,

AEXP, PCAP, VEXP, and LEXP are aggregated to the

personnel node and MODP, TOOL, SCED, and RVOL are

aggregated to the project node. As another alternative, in a

more sophisticated BBN beyond the scope of our example,

size and development mode of a project may be taken into

account as well, since these variables are also quantities

subject to estimation.

The variables of each node are discrete. In each node,

except of the productivity node, the variables take five

values, namely Very Low, Low, Average, High, and Very

High.

In the productivity node, the variable takes eight values

which are numeric intervals given by an expert. They

express intervals of the productivity measured in delivered

source instructions per man-month (DSI/MM). These

intervals are shown in Table 2. Narrower estimate intervals

may be obtained through the elaboration of a more

sophisticated BBN.

Unequal intervals were chosen due to the log-normal

distribution of productivity in the COCOMO81 data base, as

shown by statistical analysis. In order to fill in the NPTs of

each node with probability values we relied entirely on the

cost driver ratings for each of the 63 projects in

COCOMO81 project database as they are given in Ref. [1],

pp. 496–497. The NPT values were decided empirically by

the authors, by observing the conditional probabilities of the

cost factor ratings. Productivity probability distributions for

each of the 63 projects selecting observed values for the

nodes of the first level (product, computer, personnel and

project) were also computed. These figures were used to

choose semi-automatically the NPT values and were further

refined based on the authors’ intuition.

The reader is reminded that cost factor ratings and

values were derived in the first place by Boehm, by

consulting the managers of the projects in the

COCOMO81 data base. The publicly available infor-

mation about COCOMO81 provided us with a situation in

which part of the expert opinion we needed to construct a

BBN was already partially modeled. Overall, we tried to

emulate the way an expert might work for constructing a

BBN, based on available information and productivity

data. In general, in a real case, we would have consulted

one or more experts and/or combine their opinions,

expressed as probability values in the NPTs, with existing

statistical data if available. Nevertheless, we believe that

this issue deserves further investigation.

The NPTs for COCOMO81, filled with probability

values, are shown in Appendix B. We must remember that

these tables were derived artificially. An expert under

different conditions might have expressed different prob-

ability values and might have filled more table cells with

values. However, this fact might increase significantly the

uncertainty in the estimates.

After having determined the BBN, we conducted a trial

study in which we took again into account the information

available in the COCOMO81 project data set. We derived

values for the BBN nodes by using simple aggregation rules

for the corresponding leaf COCOMO81 cost drivers.

Fig. 2. The COCOMO81-based BBN.

Table 2

The eight interval values of the Productivity node. The productivity is measured in DSI/MM

Interval number 1 2 3 4 5 6 7 8

DSI/MM ,30 30–60 60–100 100–160 160–270 270–450 450–750 .750
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For example, in project no. 48, the reported values for the

cost drivers affecting personnel are ACAP ¼ Low,

AEXP ¼ High, PCAP ¼ Low, VEXP ¼ High, and

LEXP ¼ High. These values have been aggregated to

PERSONNEL ¼ Average for the purposes of our tentative

BBN. Eventually, for project no. 48 we used the observed

values: PRODUCT ¼ High, COMPUTER ¼ Very High,

PROJECT ¼ Average, and PERSONNEL ¼ Average, and

produced the output productivity distribution shown in

Table 3. In this project, the productivity will range between

160 and 270 DSI/MM with a probability of 70%. An

estimation based on the interval of 160–270 DSI/MM

would be successful, since the actual productivity of this

project was 244.4 DSI/MM.

Comparing the results of this trial study with the actual

productivity values we found that the interval estimated

contained the actual value in roughly 52–67% of the

projects, depending on whether we chose one or two

neighboring intervals, respectively. The above figures

indicate the potential of providing reasonable estimates,

which can be further improved through suitable refinement.

We are currently in the process of studying the

construction of a BBN for the estimation of the effort in

the localization process (i.e. translation and adaptation to

local requirements) of ERP systems. For this purpose, we

have built a BBN with the collaboration of experts from a

software group specializing in software localization. The

group possesses no historical data for estimation purposes.

A tentative version of this BBN is given in Appendix C.

5. Conclusions and future work

In this paper, we proposed a way for estimating the

productivity in software projects using BBNs. BBNs are

suitable for modeling uncertainty, and in our opinion can be

used to support expert judgment in the production of

reasonable and safe estimates.

We demonstrated our approach using an example

of a BBN based on the COCOMO81 cost factors.

In the construction of the BBN used in the example

above, we were based on the COCOMO81 intermediate

model for the construction of the network and also for the

determination of the probability tables of the nodes. The use

of COCOMO81 was intended for demonstration purposes of

the BBN method on productivity estimation. Nevertheless,

it is obvious that for a real problem of productivity

estimation one needs to take into consideration additional

factors, such as the important factor of software reuse, and

explore their interdependencies. As a result, he/she needs to

devise different BBNs to reflect different problem domains

and development environments.

We believe that BBNs can be proved particularly

useful to start-up companies where historical data are

totally lacking or in estimation situations where the first

steps in new problem domains or development contexts

are taken. In such situations, the expert judgment method

is often the only applicable method for productivity

estimation.

As all estimation approaches, BBNs will have to be used

in real estimation situations and validated against actual

data. In the future, we plan to refine the localization BBN,

use it for producing effort estimates and eventually validate

it against actual project effort data. A research issue that has

emerged form the trial study with COCOMO81 is the need

for a formal approach to help human experts produce the

NPT values. Another interesting idea is to study a

systematic and perhaps automated approach to derive

probability values in the NPTs from existing project cost

databases.
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Appendix A

The entries of the NPT for the A node, which is not a

child of any other node, show the probabilities assigned to

the values of the variable A:

PðA ¼ TÞ ¼ 0:6 and PðA ¼ FÞ ¼ 0:4

The entries of the NPT for the B node, which is a child of

node A, show the conditional probabilities assigned to the

values of variable B given the values of A (throughout

Appendix A L stands for LOW, M stands for MED and H

stands for HIGH):

PðB ¼ L=A ¼ TÞ ¼ 0:3; PðB ¼ L=A ¼ FÞ ¼ 0:6;

PðB ¼ M=A ¼ TÞ ¼ 0:5; PðB ¼ M=A ¼ FÞ ¼ 0:25;

PðB ¼ H=A ¼ TÞ ¼ 0:2; PðB ¼ H=A ¼ FÞ ¼ 0:15

Table 3

The output probability distribution for COCOMO81 project no. 48

(observed values PRODUCT ¼ High, Computer ¼ Very High,

PROJECT ¼ Average and PERSONNEL ¼ Average)

Productivity (in DSI/MM) distribution

From To Probability (%)

,30 0

30 60 0

60 100 4.3

100 160 4.3

160 270 69.9

270 450 17.2

450 750 4.3

.750 0
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These probabilities can be used to compute the probability

distribution for variable B:

PðB ¼ LÞ ¼ PðB ¼ L=A ¼ TÞPðA ¼ TÞ

þPðB ¼ L=A ¼ FÞPðA ¼ FÞ

¼ ð0:3Þð0:6Þ þ ð0:6Þð0:4Þ ¼ 0:42;

PðB ¼ MÞ ¼ PðB ¼ M=A ¼ TÞPðA ¼ TÞ

þPðB ¼ M=A ¼ FÞPðA ¼ FÞ

¼ ð0:5Þð0:6Þ þ ð0:25Þð0:4Þ ¼ 0:4;

PðB ¼ HÞ ¼ PðB ¼ H=A ¼ TÞPðA ¼ TÞ

þPðB ¼ H=A ¼ FÞPðA ¼ FÞ

¼ ð0:2Þð0:6Þ þ ð0:15Þð0:4Þ ¼ 0:18

From the conditional probabilities of B given A, we can

easily calculate the joint probability distribution of the

variables A and B. For example,

PðA ¼ T ;B ¼ LÞ ¼ PðB ¼ L=A ¼ TÞPðA ¼ TÞ

¼ ð0:3Þð0:6Þ ¼ 0:18;

PðA ¼ F;B ¼ LÞ ¼ PðB ¼ L=A ¼ FÞPðA ¼ FÞ

¼ ð0:6Þð0:4Þ ¼ 0:24; etc:

So the joint probability distribution of A and B is:

A

T F

L 0:18 0:24

B M 0:3 0:1

H 0:12 0:06

Since now the node C is a child of A and B, the entries of its

NPT are the conditional probabilities of the values of

variable C given the joint values of A and B. That is:

PðC ¼ ON=A ¼ T ;B ¼ LÞ

¼ 0:7;…;PðC ¼ OFF=A ¼ F;B ¼ HÞ ¼ 0:93

We can now compute the probability distribution of variable

C:

PðC ¼ ONÞ

¼
X

x[{T ;F}
y[{L;M;H}

PðC ¼ ON=A ¼ x;B ¼ yÞPðA ¼ x;B ¼ yÞ

¼ 0:5042

and

PðC ¼ OFFÞ

¼
X

x[{T ;F}
y[{L;M;H}

PðC ¼ OFF=A ¼ x;B ¼ yÞPðA ¼ x;B ¼ yÞ

¼ 0:4958

Note that the above notation of the calculations can be

simplified by using matrix multiplication:

PðBÞ¼NPTðBÞNPTðAÞ¼

0:3 0:6

0:5 0:25

0:2 0:15

0
BBB@

1
CCCA

0:6

0:4

0
@

1
A¼

0:42

0:4

0:18

0
BBB@

1
CCCA

PðA;BÞ¼NPTðBÞdiagðNPTðAÞÞ¼

0:3 0:6

0:5 0:25

0:2 0:15

0
BB@

1
CCA 0:6 0

0 0:4

 !

¼

0:18 0:24

0:3 0:1

0:12 0:06

0
BB@

1
CCA

PðCÞ¼NPTðCÞvectorðPðA;BÞÞ

¼
0:7 0:65 0:4 0:45 0:23 0:07

0:3 0:35 0:6 0:55 0:77 0:93

 !
0:18

0:3

0:12

0:24

0:1

0:06

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼
0:5042

0:4958

 !

If we have observed value T for variable A (i.e.

PðA¼TÞ¼1), then the probability distributions of variables

B and C can be computed as before:

PðBÞ¼

0:3 0:6

0:5 0:25

0:2 0:15

0
BB@

1
CCA 1

0

 !
¼

0:3

0:5

0:2

0
BB@

1
CCA

PðA;BÞ¼

0:3 0:6

0:5 0:25

0:2 0:15

0
BB@

1
CCA 1 0

0 0

 !
¼

0:3 0

0:5 0

0:2 0

0
BB@

1
CCA

PðCÞ¼
0:7 0:65 0:4 0:45 0:23 0:07

0:3 0:35 0:6 0:55 0:77 0:93

 !
0:3

0:5

0:2

0

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

0:615

0:385

 !

When in node B we have some evidence that the values

LOW and MED are observed with probabilities PðB¼LÞ¼

0:512; PðB¼MÞ¼0:488 and PðB¼HÞ¼0; then the calcu-

lation of the probability distributions of the variables A and

C is obtained by the following steps.
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Using the Bayes rule, we calculate the conditional

probabilities of A given B:

PðA ¼ T=B ¼ LÞ ¼ PðB ¼ L=A ¼ TÞPðA ¼ TÞ=PðB ¼ LÞ

¼ ð0:3Þð0:6Þ=ð0:42Þ ¼ 0:429;

PðA ¼ T=B ¼ MÞ ¼ PðB ¼ M=A ¼ TÞPðA ¼ TÞ=PðB ¼ MÞ

¼ ð0:5Þð0:6Þ=ð0:4Þ ¼ 0:75;

PðA ¼ T=B ¼ HÞ ¼ PðB ¼ H=A ¼ TÞPðA ¼ TÞ=PðB ¼ HÞ

¼ ð0:2Þð0:6Þ=ð0:18Þ ¼ 0:667;

PðA ¼ F=B ¼ LÞ ¼ PðB ¼ L=A ¼ FÞPðA ¼ FÞ=PðB ¼ LÞ

¼ ð0:6Þð0:4Þ=ð0:42Þ ¼ 0:571;

PðA ¼ F=B ¼ MÞ ¼ PðB ¼ M=A ¼ FÞPðA ¼ FÞ=PðB ¼ MÞ

¼ ð0:25Þð0:4Þ=ð0:4Þ ¼ 0:25;

PðA ¼ F=B ¼ HÞ ¼ PðB ¼ H=A ¼ FÞPðA ¼ FÞ=PðB ¼ HÞ

¼ ð0:15Þð0:4Þ=ð0:18Þ ¼ 0:333

Then, using the new observed probabilities we have:

PðA¼ TÞ ¼PðA¼ T =B¼ LÞPðB¼ LÞ

þPðA¼ T=B¼MÞPðB¼MÞ

þPðA¼ T=B¼HÞPðB¼HÞ ¼ ð0:429Þð0:512Þ

þ ð0:75Þð0:488Þþ ð0:667Þð0Þ ¼ 0:585

and

PðA ¼ FÞ ¼ PðA ¼ F=B ¼ LÞPðB ¼ LÞ

þPðA ¼ F=B ¼ MÞPðB ¼ MÞ

þPðA ¼ F=B ¼ HÞPðB ¼ HÞ ¼ ð0:571Þð0:512Þ

þ ð0:25Þð0:488Þ þ ð0:333Þð0Þ ¼ 0:415

The joint probability distribution of the variables A and B is

now:

PðA ¼ T ;B ¼ LÞ ¼ PðA ¼ T=B ¼ LÞPðB ¼ LÞ

¼ ð0:429Þð0:512Þ ¼ 0:219;

PðA ¼ F;B ¼ LÞ ¼ PðA ¼ F=B ¼ LÞPðB ¼ LÞ

¼ ð0:571Þð0:512Þ ¼ 0:292; etc:

So the joint probability distribution of A and B is:

A

T F

L 0:219 0:292

B M 0:365 0:122

H 0 0

Then, we have for node C:

PðCÞ ¼
0:7 0:65 0:4 0:45 0:23 0:07

0:3 0:35 0:6 0:55 0:77 0:93

 !
0:219

0:365

0

0:292

0:122

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼
0:551

0:449

 !

Appendix B

Tables (B1)–(B3).

Table B1

The NPT of technical factors node

Computer VERY HIGH HIGH AVERAGE

Product VH H AV LO VL VH H AV LO VL VH H AV LO VL

Technical factors

VERY HIGH 1 0.57 0 0 0 0.5 0 0 0 0 0.01 0 0 0 0

HIGH 0 0.43 1 1 0 0.5 1 0.75 0 0 0.99 0.5 0 0 0

AVERAGE 0 0 0 0 0.67 0 0 0.25 1 0.24 0 0.5 1 0.25 0

LOW 0 0 0 0 0.33 0 0 0 0 0.76 0 0 0 0.75 1

VERY LOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Computer LOW VERY LOW

Product VH H AV LO VL VH H AV LO VL

Technical factors

VERY HIGH 0 0 0 0 0 0 0 0 0 0

HIGH 0.42 0 0 0 0 0 0 0 0 0

AVERAGE 0.58 1 1 0 0 0.66 0.17 0 0 0

LOW 0 0 0 1 1 0.34 0.83 1 1 0

VERY LOW 0 0 0 0 0 0 0 0 0 1
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Appendix C

The tentative BBN shown represents the experts’ opinion

about cause–effect relationships of the localization process

productivity. In the following, the description of each input

node is given, along with levels for all nodes.

Text expansion (text swell). Ability to handle expanded

translated text in dialog boxes, pop-up windows, menus, etc.

Software designers may have anticipated this. (Levels: Yes

(handles), partially, No)

Message concatenation. A frequently used method

that should be avoided because it creates significant

problems in the localization process due to different

grammatical rules each language may have. All

sentences should be self-contained and complete.

(Levels: Yes (uses), No)

Table B2

The NPT of human and process factors

Project VERY HIGH HIGH AVERAGE

Personnel VH H AV LO VL VH H AV LO VL VH H AV LO VL

Technical factors

VERY HIGH 1 0.17 0 0 0 0.33 0 0 0 0 0 0 0 0 0

HIGH 0 0.83 0 0 0 0.67 1 0.4 0 0 1 0.61 0 0 0

AVERAGE 0 0 1 1 0.55 0 0 0.6 0.67 0.14 0 0.39 1 0 0

LOW 0 0 0 0 0.45 0 0 0 0.33 0.86 0 0 0 1 1

VERY LOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Computer LOW VERY LOW

Product VH H AV LO VL VH H AV LO VL

Technical factors

VERY HIGH 0 0 0 0 0 0 0 0 0 0

HIGH 0.57 0 0 0 0 0.11 0 0 0 0

AVERAGE 0.43 1 1 0 0 0.89 0.73 0.08 0 0

LOW 0 0 0 1 0.47 0 0.27 0.92 0.62 0

VERY LOW 0 0 0 0 0.53 0 0 0 0.38 1

Table B3

The NPT of productivity

Technical factors VERY HIGH HIGH AVERAGE

Human and process factors VH H AV LO VL VH H AV LO VL VH H AV LO VL

Productivity

,30 0 0 0 0 0.57 0 0 0 0 0.732 0 0 0 0.66 0.9

30–60 0 0 0 0 0.19 0 0 0 0.33 0.184 0.155 0 0 0.17 0.1

60–100 0 0 0 0 0.14 0.14 0 0.1 0.67 0.084 0.14 0 0.33 0.12 0

100–160 0.09 0 0 0 0.1 0.125 0.133 0.1 0 0 0.13 0.43 0.67 0.05 0

160–270 0.15 0 1 1 0 0.14 0 0.3 0 0 0.145 0.285 0 0 0

270–450 0.14 0.25 0 0 0 0.14 0.333 0.4 0 0 0.14 0.285 0 0 0

450–750 0.14 0.25 0 0 0 0.14 0.4 0.1 0 0 0.14 0 0 0 0

.750 0.48 0.5 0 0 0 0.315 0.133 0 0 0 0.14 0 0 0 0

Technical factors LOW VERY LOW

Human and process factors VH H AV LO VL VH H AV LO VL

,30 0 0 0.375 0.806 1 0.375 0.56 0.778 1 1

30–60 0 0.33 0.25 0.156 0 0.185 0.17 0.167 0 0

60–100 0 0 0.25 0.038 0 0.135 0.12 0.055 0 0

100–160 0 0.17 0.125 0 0 0.125 0.11 0 0 0

160–270 1 0 0 0 0 0.138 0.4 0 0 0

270–450 0 0 0 0 0 0.042 0 0 0 0

450–750 0 0 0 0 0 0 0 0 0 0

.750 0 0 0 0 0 0 0 0 0 0
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Software architecture.Localizable elements should be in

separate resources and not hardcoded in the source files.

(Levels: Yes (separate), No (hardcoded))

Localizable images. Use of images or graphics that

contain text or in any way should be localized. (Levels:

Many, Few, None)

Text flow. Different text flow required by the target

language (left-to-right, right-to-left, vertical, etc.) may have

significant impact in the localization process and pro-

ductivity. (Levels: Same, Different)

Regional settings. Ability to handle different settings for

date and number format. (Level: Yes, partially, No)

Product translatability. Level of difficulty for the

product to be translated. (Levels: Low, Med, High)

Target language/environment. Levels: Similar, Different

Translation efficiency. Very Low, Low, Med, High

Personnel. Personnel experience (Levels: Low, Med,

High)

Localization difficulty level: Low, Med, High

Legal/business requirements. Number and difficulty

level combined (Levels: Low, High)
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