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Abstract

Environmental impact assessment of design and manufacturing decisions have received significant attention in the recent years.

Researchers have not only focused on industrial waste minimization and chemical substitution in processes or products, but also on

the effect of product design decisions on the environment during the manufacturing, in-use and end-of-life stages of the product.

This research investigates the applicability of Bayesian decision networks to study the impact of design decisions on the life cycle

performance, including environmental friendliness, of a product. Bayesian decision theory provides a normative framework for

representing and reasoning about decision problems under uncertainty. A framework for integrated analysis of the product life cycle

is presented. We discuss the specification of domain models for wide range of processes, such as manufacturing, recycling and

disposal, an action model, and an utility model.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Historically, companies have invested vast amounts of
resources in the development of manufacturing process
technology, while paying relatively less attention to the
environmental consequences of these developments. In
recent years, the environmental issues have gained
prominence as the severity of the impact of manufactur-
ing on the global climate becomes evident (Cattanach
et al., 1995).
However, the task of estimating the environmental

impact of different manufacturing processes is extremely
difficult. Fig. 1 shows the complexities involved in
analyzing environmental impact throughout the life
cycle of a product. The raw material extracted from the
earth is transformed into a finished product via a series
of processes in manufacturing plants. Aggregate waste
streams are produced at each stage of the manufacturing
operations. After the product is sold to the customer,
additional waste streams may be created during the
period of service. At the end of a product’s useful life, it
is re-manufactured, recycled or disposed off. The waste
streams at different stages of the product life cycle may
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include raw material scrap, coolants, lubricants, solvents
and other catalysts used in the manufacturing processes,
waste related to the energy used by the processes, and
the product disposal waste. Accurate estimation of the
environmental impact of a product or process is
important since it can influence public policy decisions,
such as the polluter-pays principle or the allocation of
environmental credits to various manufacturers.
In order to stay competitive, organizations need to

satisfy the increasing customer demand for innovative
products. The growing complexity of products on one
hand and shortening technology life cycle on the other
hand lead to increasing pressure on enterprises and
design engineers. Hence, minimal resources are devoted
to analyzing the tradeoffs between different waste
streams generated during the product life cycle, the
impact of product design on these waste steams, and
linkages between environmental impact and maintaining
production rate to meet the market demand. Life cycle
engineering, which presents a systematic approach to
integrating design, manufacturing and operational
decisions related to a product with the objective of
optimizing the performance over the life cycle of a
product, has been proposed as an approach for reducing
the overall harmful environmental impact of a product
(Sincero and Sincero, 1996; Graedel and Allenby, 1995).
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Fig. 1. Major waste streams generated during a product life cycle.
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In life cycle engineering, elements such as design,
production, distribution, application, maintenance, dis-
posal, recycling and their environmental impact are
considered simultaneously. Thus, life cycle engineering
presents a potential methodology for evaluating pro-
ducts from an end-to-end perspective. It supports
processes to evaluate the resource consumption and
environmental burden associated with a product or a
process. The evaluation is conducted by identifying and
quantifying the energy and material usage and environ-
mental releases across all stages of the product or the
process.
Interest in life cycle engineering has increased in

recent years as design engineers have realized that they
need to integrate manufacturing cost considerations and
environmental concerns in the engineering design
process (Thurston and Essington, 1993), and the use
of even partial or uncertain information can enormously
reduce the product costs and environmentally hazardous
waste. Hence, a decision support system capturing
imprecision and modeling uncertainties in early design
and development stages of a product or process can be
an important tool in the life cycle analysis process. This
decision support system should work concurrently with
knowledge-based engineering in a product design and
manufacturing development framework. The tradeoffs
between different alternatives, both in manufacturing
and downstream use, can be analyzed before focusing
on a specific process. This tool would give the design
and manufacturing engineers some degree of quantita-
tive understanding about recycling, disposal and their
environmental impact. However, integrating decisions
over the entire life cycle of a product presents a
challenging task due to the different time scales and
uncertainty associated with long term decisions. The
current lack of technology for coordinating design
decisions and managing change over the life of a
product often results in higher product costs, longer
cycle time, poor quality and environmentally unfriendly
products.
The last few years have seen a surge in interest in

Bayesian decision theory in the artificial intelligence field
using various graphical dependence models (Pearl,
1988). Bayesian decision theory provides a normative
framework for representing and reasoning with decision
problems under uncertainty (Jensen, 1996). In this
framework, a general probabilistic model of the problem
domain is created. The model can be used to reason
about the possible state of the problem domain given
partial observations of the domain. For each state of the
domain, a set of alternative actions is also specified in an
action model. For each state and each available action
in that state, the action model describes into which state
the problem domain may be transferred as a conse-
quence of the action and how probable is the
transformation.
To count the preference of the decision maker, a

utility model is specified to describe the desirability of
each state of the domain. Once the domain model, the
action model and utility model are specified, the optimal
decision or decision sequence under each state of the
domain can be computed in the form of a policy.
Although a decision problem of a small size can be
solved using decision trees, it is computationally
expensive to solve a decision problem in a domain with
a large number of states, with a sequence of decisions to
make, and with a large number of alternative actions per
state. Recent advances in probabilistic reasoning explore
structured representation of domain models. The con-
ditional independence among domain variables is
encoded in a network structure such that the joint
probability distribution of the domain can be specified
by local distributions over small subsets of variables
(Pearl 1988; Xiang et al., 1993). This structure not only
simplifies the representation but also guides the in-
ference computation. Reasoning under uncertainty has
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been applied to various application domains, such as
preserving shoreline under climate uncertain climate
changes (Chao and Hobbs, 1997) and estimating effects
of petrochemicals (Cattanach et al., 1995).
Our investigation applies advances in Bayesian

decision networks to the engineering life cycle assess-
ment problem. We investigate proper representations of
the problem domain that can provide sufficient aid in
decision making and are computationally tractable.
First, we discuss the specification of the domain model,
the action model, and the utility model. This involves
identification of design alternatives, state descriptors,
manufacturing alternatives, maintenance alternatives,
recycling and disposal, etc. To be able to use existing
computational tools which can handle discrete domains
effectively, we perform appropriate discretization for the
domain and decision variables. Once the models are
specified, we investigate policy computation using
available computational tools.
2. Overview of Bayesian decision networks

A Bayesian network consists of a directed acyclic
graph (DAG) and an associated joint probability
distribution (jpd). The nodes in the graph are labeled
by the random variables that define the jpd, we will
therefore use nodes and variables interchangeably in this
paper. These random variables represent states of the
system. Each variable may take its value from two or
more possible values. For example, a variable denoting
the intensity of a waste stream, may take its value
from no-waste, low-waste, mild-waste, high-waste and
catastrophic.
The arcs in the DAG specify causal relations among

the variables. An arc from variable x to y indicates that
x is a direct cause of y: Using standard terminology in
graph theory, x is the parent of y and y is the child of x:
A directed path x-y-z indicates that y shields all the
causal influence of x to z; in other words, z and x are
conditionally independent given y: If neither x nor y has
any parent, the two variables are marginally independent.
That is, normally, they are not relevant to each other.
The dependence and independence relations repre-

sented by the DAG allows the jpd to be specified locally
by the conditional probability distribution of each node
conditioned on its parents (Zhu et al., 1998). Let N be
the set of all variables. Let pðxÞ be the parent nodes of x

in the DAG. The conditional probability distribution of
x conditioned on its parents is denoted by PðxjpðxÞÞ:
When x has no parents, the corresponding distribution
is simply PðxÞ: The jpd PðNÞ over all variables can then
be written as

PðNÞ ¼
Y

xAN

PðxjpðxÞÞ:
Denote the cardinality of N by n: Normally, accurate
characterization of a jpd requires the specification of
parameters that are exponential order of n in number.
The major benefit of using a Bayesian network
representation is that the jpd over a very large set of
variables can be compactly specified by a much smaller
number of variables. For example, if a domain can be
described by a set N of 20 binary variables, specifying a
general jpd requires about 220 ¼ 106 parameters. If the
dependence relations of these variables can be repre-
sented as a Bayesian network where each node has no
more than 3 parents, then the jpd can be specified using
only about 20*2

3 ¼ 160 parameters. The representation
task is simplified significantly. The resultant jpd,
however, contains all the information that is needed to
answer any query of the form ‘‘what is the probability of
X given the value of Y?’’, where X and Y are any
subsets of N: The conditional independence in Bayesian
network structure plus the knowledge of the local
problem model allow us to specify the complete joint
distribution over the entire domain.
In general, decision networks can be used to decide

the best action given partial observations of the world.
A decision network represents the knowledge about an
uncertain problem domain, the available actions at each
state of the domain and the desirability of each state.
Decision networks are extensions of Bayesian networks.
A Bayesian network can be used to infer the state of the
world given partial observations of the world. In order
to avoid exponential explosion in representation of the
uncertain domain, a structured representation, such as a
Bayesian network, is often preferred. It consists of
chance nodes and arcs between them. The actions are
represented as decision nodes. The availability of an
action at different states of the domain is represented by
having specific chance nodes as its parents. The
desirability of the states of the domain is represented
by value or utility nodes.
In order to explain the applicability of Bayesian

networks, consider the following example: Suppose a
company wishes to purchase a used pipe system to
transport chemicals in its plant. The company finds a
system constructed of composite coiled-tube and priced
at$10 000. The company knows that if this type of
coiled-tube system is in good shape, it is worth $11 000.
It also learns that 80% of the coiled-tube systems were
manufactured in a plant which produces high quality
products, while 20% were manufactured in a plant
which produces inferior quality products, or lemons.
Furthermore, it learns that of the ten coiled tube
segments, each good system has one segment that will
fail, whereas each inferior system has six segments which
will fail.
The pipe system has never been repaired and no

segment of coiled tube has been replaced. Hence, it
either has one segment out of ten that will fail or six
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segments that will fail. A contractor has agreed to
charge $400 to repair one segment and $2000 to repair
six segments. Suppose the company also learns that it
has the option of performing some tests on the pipe
system before purchasing it. Specifically, it can have one
segment tested, and the cost of the test is $90, or it can
have two segments tested at the cost of $130. Hence the
company now has two decisions: first it must decide
whether to perform tests; second, it must decide whether
to purchase the pipe system.
We can apply decision tree representation to solve this

problem as shown in Fig. 2. Each branch from left to
right represents either an action (e.g., D0) or a possible
consequence (e.g., G on upper right). Each consequence
is labeled by its probability of occurrence (e.g., 0.8 for G

on the top) and the utility (e.g., 600 for G). The value for
consequence junction is calculated by weighted average
(e.g., 600*0:8� 1000*0:2 ¼ 480� 200 ¼ 280). The va-
lue for action junction is the maximum value among
that of the next level junctions (e.g., 280 ¼ maxð280; 0Þ).
0.8     G
B

R 0

D0

D1

D2

47

-113

47

-113

R

R

0.1   L

0.4    G

0.6    L

0.04  L

0.4    L

0.6     G

0.4     L

0      G

1      L

R

R

R

R

0.067 T, S

B 35

0.133 T, S

0.133 T, S

0.6     G

0.96   G

0.2    L

280

     280

262

228

280

0.9       G
0

B -450

B 406

600

-1000

510

-1090

510

-1090

0

0

   -130

-130 B  -170

B -170-130

-130 B -1130

470

-1130

470

-1130

0

0

-130

-130

-130

-90

-90

350

-90

T

0.8

0.2

T

406

0.667
T, S

Fig. 2. The decision tree for the pipe system example. The symbols are

defined as follows: D0: no test; D1: test segment one; D2: test segment

two; T : one segment test succeeds; :T : one segment test fails;

S: second segment test succeeds; :S: second segment test fails;

B: purchase; R: not purchase; G: high quality; L: lemon.
Note that a great deal of redundancy is present in the
representation. In Fig. 2, a subtree starting with the
decision of whether to purchase the pipe system is
repeated seven times. If we add another test option, it
will be repeated at least two more times. Moreover, if we
add a decision before the test options, the entire tree
may be repeated for each possible choice at that
decision.
In this research, we demonstrate how to apply

Bayesian decision networks to large and complex
domain problems. A decision network consists of three
types of nodes:

1. Zero or more chance nodes, which contain proposi-
tional variables. They are represented by circles in the
DAG.

2. Zero or more decision nodes, which contain choices
available to the decision maker. They are represented
by squares in the DAG.

3. One value node, which contains a random variable,
whose value is the utility of the outcome. This node is
represented by a diamond in the DAG.

As in a standard causal network, the arcs into chance
nodes show the variables upon which that node is
conditionally dependent. The arc into decision nodes
show exactly which variable will be known to the
decision maker at the time the decision is made. The arcs
into the value node show which variables enter into the
calculation of the utility.
As shown in Fig. 3, the first decision node contains

the decision whether to perform the test, the possible
values of decision are no test, test one, or both test one
and test two. The second decision node contains the
decision whether to buy or not to buy the pipe system.
Test one and test two are chance nodes. They contain
the results of the tests, such as test is not run, test is
positive or the test is negative. The condition node is a
chance node as well. It represents a good condition or a
bad condition of the pipe system. The node Value V

represents a function of the variables.
For example, if decision node1 has value D1 ¼ t1 (the

first test), we will spend $90 to run test one. If decision
Test 2

Value
node

DecisionTest 1
node

Decision

tion
Condi

Fig. 3. The decision network for pipe system example.
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node2 has the value D2 ¼ b1 then we buy the pipeline. If
the chance node C has value C ¼ c1 then the pipeline in
good condition. The company makes $1000 when it
purchases the pipeline and spends $400 to repair the
pipeline. The expected value will be V ðd1; b1; c1Þ ¼
�90þ 1000� 400 ¼ 510: Actually, this node can be
considered a propositional variable which can take
exactly one value for each combination of values of its
parents. The possible values which a variable contri-
butes to V can be stored on the arc for that variable.
Each chance node is conditionally dependent on its
parents as in a standard causal network.
In Bayesian networks, we also need to specify

prior probabilities of the root nodes and the condi-
tional probability of the non-root nodes. Suppose
Pðgood jpipelineÞ ¼ 0:8 and PðlemonjpipelineÞ ¼ 0:2 are
given. Then, Pðþt1jgoodpipelineÞ ¼ 0:9 since a good
pipeline has one of 10 segments bad, and Pðþt1j
lemonpipelineÞ ¼ 0:4 since a lemon pipeline has six out
of 10 segments bad. Given that the pipeline is good and
the first test is positive, the probability that the second
test is positive is Pðþt2jgoodpipeline;þt1Þ ¼ 8=9 ¼ 0:889:
Given that the pipeline is bad and the first test is posi-
tive, the probability that the second test is positive is
Pðþt2jlemonpipeline;þt1Þ ¼ 3=9 ¼ 0:333: All these va-
lues are stored in the decision network as shown in Fig. 4.
Now in order to make the decisions, we perform

inference in the decision network. For each decision
combination, we calculate its expected utility. First, we
order the decision nodes according to time to obtain the
ordering ½D1;D2	: Next we let D1 equal its first value d1
and proceed to next decision node D2: When this
decision is made, the information at T1 and T2 is
available. We can then compute the expected utility by
marking T1 and T2 together with a 1 and letting T1
equal its first value t11 and T2 equal its first value t21:
Then we let D2 equal its first value b1; and compute the
expected value of V given these instantiations. The
expected value EðV jd1; t11; t21; b1Þ ¼ V ðd1; b1; c1ÞPðc1jd1;
t11; t21; b1Þ þ V ðd1; b1; c2ÞPðc2jd1; t11; t12; b1Þ; where the
values of V can be obtained directly from the informa-
Test 1

Test 2 Condi
tion

P(+t2|good pipe-line, +t1) = 0.899

P(good pipe-line) = 0.8
P(lemon pipe-line) = 0.2

P(-t2|good pipe-line, +t1) = 0.111
P(-t2|good pipe-line, -t1) = 0
P(-t2|lemon pipe-line, -t1) = 0.677
P(-t2|lemon pipe-line, -t1) = 0.566

P(+t1|good pipe-line) = 0.9
P(+t1|lemon pipe-line) = 0.4
P(-t1|good pipe-line) = 0.1
P(-t1|lemon pipe-line) = 0.6

P(+t2|good pipe-line, -t1) = 1
P(+t2|lemon pipe-line, +t1) = 0.333
P(+t2|lemon pipe-line, +t1) = 0.444

Fig. 4. The resultant decision network.
tion stored in the decision network. The required
conditional probabilities can be obtained in the follow-
ing way: Given D1 ¼ d1 and D2 ¼ b1; the three chance
nodes comprise a Bayesian causal network. Using the
inference computation for a Bayesian network, we can
compute the probability of c1 given ðt11; t12Þ and
probability of c2 given ðt11; t12Þ in that network.
The main advantage of the decision network is to

reduce the redundancy in representation and to provide
a compact and intuitive formalism for modeling the
decision problem. Conditional independence embedded
in the network structure specifies the full joint distribu-
tion over domain by requiring the specification of only
local distributions. Hence, any query that can be
answered by a decision tree can be answered using a
decision network. Using shells for decision networks,
the redundant components of the decision tree are
generated on the fly, and analysis and inference can be
carried out automatically.
3. Bayesian networks for life cycle engineering

Traditionally, decisions involved in the life cycle of an
engineering product were made independently. Design
engineers did not anticipate potential production or
environmental problems. Their primary focus was on
engineering properties of the products. The economic
and environmental analyses were performed after the

fact, after design and manufacturing alternatives had
been developed. Life cycle engineering is a systematic
approach integrating the design and manufacture of
products with the view of optimizing all elements
involved in the life cycle of the product.
Trade-offs between economic and technical consid-

erations need be considered well before alternative
configurations are developed, as it has been estimated
that 70–80% of the cost of product development and
manufacture is determined at the initial design states.
Life cycle engineering can improve efficiency signifi-
cantly if combined with Bayesian decision theory which
provides a normative framework for representing and
reasoning with decision problems under uncertainty.
This work presents a methodology for formulating
design optimization problems that directly incorporates
manufacturing, economic and environmental considera-
tions into the initial design decision-making process.
Our representation using a decision network consists of
four classes of variables:

1. design, manufacturing, end of life use and other
choices,

2. performance measures,
3. desirability of products in terms of performance
measures, and

4. economic considerations in terms of costs.
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The first class of variables are decision nodes. Design
choices may include materials, dimensions, shapes,
surface finish, etc. Manufacturing choices may include
process choices such as shaping, machining, assembling,
etc. End of life use choices may include re-manufactur-
ing, recycling and disposal.
Performance measures of the product may include

load limit, speed limit, vibration, life span, etc. The
actual performance of a product being designed usually
cannot be precisely determined by the design/manufac-
turing choices. For example, how much traffic a bridge
can endure before collapsing cannot be determined
precisely based only on its design. Considerable
uncertainty exists due to many operational factors
which are not under the control of the design engineer.
As a consequence of the uncertainty about the
performance limit of products, over-design is common
in engineering products, as the design engineer tries to
place the normal work load of a product well below its
actual performance limit.
For example, suppose the normal load of a particular

product is distributed in the range of ð40; 80Þ measured
according to some unit. The expected value of the load is
in the center of the range (around 60). An over design
Des1 may have the load limit in the range of ð90; 130Þ in
which the products under Des1 have their load limit
around the center of the range (about 110). Hence for
majority of products and majority of loads, there is
about 50 units of unused load performance. The
consequence is that extra materials, energy, labor and
other resources are wasted to ensure the additional 50
units of load performance. Due to the above reasons, we
represent performance measures as chance nodes, which
are dependent on choice nodes and possibly other
chance nodes.
Different performance measures and costs cannot be

directly compared. For example, if a design Des2 has
20% higher load limit but 30% higher manufacturing
cost than another design Des1: Which one should we
choose? It certainly depends on the utility the user
places on higher load limit and the reduced cost. In
general, we evaluate the desirability of performance
measures and costs in terms of utilities and represent
them as utility nodes. Utility nodes may have deci-
sion nodes and chance nodes as their parents. To
simplify the representation and decision making, a
common assumption made is additivity: the utility of
individual product performance and cost can be
combined linearly.
Due to the existence of chance nodes, we cannot

evaluate the desirability of a design deterministically,
but instead must compare different design options
through their expected utility. For example, the load
limit of a product is 80 units if the product operates
under normal weather conditions, but the load limit
reduces to 50 units under severe weather conditions.
As the weather condition is not controllable, we
use expected load limit 80*PðnormalweatherÞ þ
50*PðsevereweatherÞ: Using PðnormalweatherÞ ¼
1� PðsevereweatherÞ; the expected load limit becomes
80� 30*PðsevereweatherÞ: As PðsevereweatherÞ in-
creases from 0 to 1, the expected load limit decreases
from 80 to 50. Formally, the expected utility of a
product based on a particular performance measure
vi is

ui ¼
X

j

uðvi ¼ vijÞPðvi ¼ vij jpiÞ;

where pi is a set of choices and conditions that vi is
dependent upon (directly or indirectly), Pðvi jpiÞ is the
performance distribution, and uðviÞ is the utility
distribution. Similarly, the expected utility of a product
based on a particular cost hi is

ci ¼
X

j

cðhi ¼ hijÞPðhi ¼ hij jpiÞ;

where pi is a set of choices and conditions that hi is
dependent upon, PðhijpiÞ is the cost distribution, and
cðhiÞ is the utility distribution of hi: The total expected
utility of a produce design is then

u ¼
X

i

si *ui �
X

k

sk *ck;

where each siðskÞ is a coefficient which determines the
relative weight of each performance measure.
4. Implementation

We demonstrate the implementation of the concept
using WEBWEAVR-III (Haddawy, 1999), a toolkit for
Bayesian decision networks.
The major steps involved in the implementation are:

1. Represent four classes of variables and their relations
as a decision network using the Network Editor.

2. Compile the decision network into a runtime
structure using the Network Compiler.

3. Inference about the performance distribution and
cost distribution given a set of design/manufacture/
end of life use choices using the Inference Engine.

4. Calculate the total expected utility for each design
based on the above inference results.

5. Repeat the last two steps for each design.
6. Determine the optimal design for various design
constraints.

Our pilot implementation is performed on the design
of an oil-drill platform. Drilling is a critical component
for oil production. The decision network for the
platform design example is shown in Fig. 5. The
network defines all possible alternative processing paths
in the life cycle for a given design. Four decision
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alternatives are represented by material choice, manu-
facturing choice, endoflifeuse choice and quantity
choice. Each choice is specified by a design variable.
Material choice has the alternatives of steel, alumi-

num and composite. Manufacturing choice has the
alternatives of casting, milling and shaping. Endoflifeuse
choice has the options of re-manufacture, recycling and
disposal. Quantity choice has the options of large,
medium and small, each of which can be associated with
a numeric range. Each choice or decision has an
associated cost distribution. Note that each node of
cost

material
manufacture

endoflifeuse

wastestream

limit_speed limit_load

cost2utility2utility1

cost3

utility3

1

quantity

Fig. 5. The decision network for life cycle analysis of an oil-drill.

Fig. 6. The prior probabilities for oil-drill example. Each variable is labeled b
the network shown in Fig. 6 is identified by a name, such
as material or cost1 or limit-load, and a unique integer,
specifying the node number. Each node is assigned the
node number based on the sequence in which it was
created in the network. Hence, material, 6 denotes
material node which is identified internally by WEB-
WEAVER as node 6 and this node has three alter-
natives, steel, aluminum and composite.
For the performance measures, the designers can

choose the criteria of load limit, speed limit and waste
stream. Each performance measure is specified by the
three values of high, medium and low as shown in Fig. 6.
Every performance measure has an associated utility
distribution over its possible values conditioned on its
parents, the choice variables. In practice, these distribu-
tions can be obtained by estimation from available
statistics or from subjective estimation of domain
experts. The probability distribution associated with
speed limit is shown in Fig. 7. Estimation of these
probability distributions is critical in any application as
it can drastically affect the predictions and outcomes of
the analysis.
The probability distributions for performance mea-

sures, selecting different design choices for the example
are shown in the following figures. In Fig. 8, the designer
chooses steel for material, milling for manufacturing, re-
manufacturing for endoflifeuse, and a large production
quantity.
y its name followed by a variable index, e.g., material, 6 and utility2, 1.



Fig. 7. The probabilities associated with speed limit.

Fig. 8. The event probabilities for choosing re-manufacturing as endoflifeuse.
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Marginal probability distributions for all variables are
then computed for this design. We can then calculate the
expected utility of the design. The value for this
particular example is 3.1433. The total expected utility
of each possible design can be computed by a simple
program outside of WEBWEAVR-III. The optimal
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configuration can be identified based on the expected
total utility from the various partial design alternatives.
In Fig. 9, the designer changes the endoflifeuse

variable value from re-manufacturing to recycling. It is
assumed (reflected in the utility distributions) that
recycling induces more cost on the product itself than
re-manufacturing, but it will reduce aggregated waste at
each stage. A new set of the probability distributions are
calculated. The expected utility is computed as 3.5533.
Note that the expected utility increased from 3.1433 to
3.5533. It indicates that the second decision is better
than the first one.
In Fig. 10, the designer modifies the endoflifeuse

variables value from recycling to disposal. It is assumed
that disposal induces the highest expenditure on waste
management. We obtain a new set of the probability
distributions and a new value of utility 3.3933. The value
is lower than that for recycling. Hence, in this example
recycling results in the highest overall utility. One can
deduce that in this example the waste reduction at each
stage outweights the cost savings associated with
disposal.
The designer can choose different combination of

material, manufacturing process, endoflifeuse. Each
choice also includes the waste aggregated during the
production process and the probability distributions on
all variables are then automatically computed. The
designer thus directly accesses performance, quality,
waste, cost and utility of a product up front. This
facilitates reduction of the lead time of product,
increases product development efficiency and reduces
the operation wastes.
Table 1 shows the experimental results for 18 different

design choices, their performance measures and ex-
pected utilities obtained by our implementation. The
first three columns show the design choices for material,
end of life use, and quantity. The next nine columns are
divided into three groups. Each group represents one of
the performance measures in load limit, speed limit and
waste stream. Each group has three columns represent-
ing the probability distribution over the possible values
of the performance. The last column shows the expected
utility of the design. This method enables us to analyze
the often complex relationships among materials,
manufacturing processes, waste management, as well
as the economics of manufacturing operation.
As an example of the computational process, consider

the second row of Table 1, where the design choices are
steel for material, recycling for end of life use, large for
quantity, and mill for manufacture. After these choices
are entered into the WEBWEAVR-III inference engine,
it produces the distribution on performance measures as



Fig. 10. The event probabilities for choosing disposal for endoflifeuse.

Table 1

Experimental results

Design choice Performance measure ExpUtil

Material EndLife Quant LimitLd LimitSd WasteStr Value

High Med Low High Med Low High Med Low

Steel Remanu Large 0.67 0.25 0.08 0.8 0.1 0.1 0.3 0.5 0.2 3.41

Steel Recycl Large 0.67 0.25 0.08 0.8 0.1 0.1 0.1 0.3 0.6 3.55

Steel Dispos Large 0.67 0.25 0.08 0.8 0.1 0.1 0.1 0.2 0.7 3.39

Alum Remanu Large 0.6 0.2 0.2 0.08 0.6 0.32 0.3 0.5 0.2 2.71

Alum Recycl Large 0.6 0.2 0.2 0.08 0.6 0.32 0.1 0.3 0.6 2.85

Alum Dispos Large 0.6 0.2 0.2 0.08 0.6 0.32 0.1 0.2 0.7 2.69

Compos Remanu Large 0.7 0.15 0.15 0.2 0.4 0.4 0.3 0.5 0.2 1.32

Compos Recycl Large 0.7 0.15 0.15 0.2 0.4 0.4 0.1 0.3 0.6 1.46

Compos Dispos Large 0.7 0.15 0.15 0.2 0.4 0.4 0.1 0.2 0.7 1.3

Steel Remanu Small 0.67 0.25 0.08 0.8 0.1 0.1 0.3 0.5 0.2 0.26

Steel Recycl Small 0.67 0.25 0.08 0.8 0.1 0.1 0.1 0.3 0.6 0.3

Steel Dispos Small 0.67 0.25 0.08 0.8 0.1 0.1 0.1 0.2 0.7 0.14

Alum Remanu Small 0.6 0.2 0.2 0.08 0.6 0.32 0.3 0.5 0.2 0.81

Alum Recycl Small 0.6 0.2 0.2 0.08 0.6 0.32 0.1 0.3 0.6 0.85

Alum Dispos Small 0.6 0.2 0.2 0.08 0.6 0.32 0.1 0.2 0.7 0.69

Compos Remanu Small 0.7 0.15 0.15 0.2 0.4 0.4 0.3 0.5 0.2 1.72

Compos Recycl Small 0.7 0.15 0.15 0.2 0.4 0.4 0.1 0.3 0.6 1.76

Compos Dispos Small 0.7 0.15 0.15 0.2 0.4 0.4 0.1 0.2 0.7 1.60
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shown in the columns 4 through 12. For instance, the
distribution for load limit is (high: 0.6667, media: 0.25,
low: 0.0833). As specified in the network parameters, the
conditional distribution of utility1 is as follows:
Util1
 LimitLd
Fig. 11. The
pðUtil1jLimitLdÞ
1
 High
 1.0

0.8
 Media
 1.0

0.3
 Low
 1.0
Based on this information and the distribution for
load limit, WEBWEAVR-III inference engine will
compute the posterior distribution of utility1 as

ð0:3 : 0:08333333; 0:8 : 0:25; 1 : 0:6666666Þ:

The expected utility for the performance of load limit is
then calculated as a weighted sum,

0:3*0:08333333þ 0:8*0:25þ 1*0:6666666 ¼ 0:89:

Similarly, the posterior distribution of utility2 is

ð0:4 : 0:1; 0:7 : 0:10000002; 1 : 0:8Þ

and that of utility3 is

ð0:2 : 0:10000001; 0:6 : 0:29999998; 1 : 0:6Þ:

They produce expected utilities of 0.91 and 0.8.
Similar to the conditional distribution of utility1

above, the network model also specifies the condi-
tional distribution for each of the cost variables. The
inference engine will accordingly compute the posterior
distribution of each of cost1; cost2 and cost3: Through
a similar computation process, their expected utilities
are calculated as 0.1 for cost1; 0.3 for cost2; and 0.2
for cost3: Using the weights for utility1; utility2 and
utility3 as 2.0, 2.0 and 1.0, respectively, and the weights
for of cost1; cost2 and cost3 as 2.0, 1.5 and 1.0,
respectively, the total expected utility of the design
alternative is

2:0*0:89þ 2:0*0:91þ 1:0*0:8� 2:0*0:1� 1:5

*0:3� 1:0*0:2 ¼ 3:55:
DAG and corresponding m
5. Compilation and inference computation

In the previous section, we have demonstrated the use
of Bayesian decision analysis for design of an oil-drill
platform. We have not, however, explained how the
toolkit performs the necessary computation. In this
section, we outline the key steps which ensure the
inference to be performed both correctly and effectively
when the decision problems are large in size.
In general, the topology of a decision network

contains (undirected) loops. For example, the structure
in Fig. 11 contains three loops. Effective exact inference
cannot be performed in such structures (Xiang and
Lesser, 2000). Instead, we need to compile the network
into a tree to support such inference.
The first step of compilation is to convert the DAG

into an undirected structure by pairwise connecting
parents of each node and drop the direction of links.
The resultant structure is called a moral graph of the
DAG. The addition of links between parents of each
node is necessary since when a child variable is observed,
its ‘causes’ (its parents) will compete to explain the
observation, hence the dependence between the parents.
These links signify the dependence. Fig. 11 shows the
moral graph of the previous decision network.
It has been shown (Jensen, 1996) that effective

inference can be performed by message passing in a
tree structure called a junction tree (JT) as illustrated in
Fig. 12. Each cluster in the JT is labeled (inside) by a set
of variables indicated by the index of each variable. A
JT has the following running intersection property: the
intersection of any two clusters is contained in each
cluster on the unique path between them. For example,
cluster C4 and C5 has the intersection C4-C5 ¼ f9g:
Hence variable 9 is contained in the two clusters C3 and
C8 on the path between C4 and C5:
To compile an undirected graph into a JT, we must

define the clusters. Each cluster in the JT should be a
maximal set of nodes that are pairwise connected in the
undirected graph, called a clique. Such a JT exists if and
only if the undirected graph is chordal. A path or loop in
oral graph of the decision network.



Fig. 12. The junction tree.
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Fig. 13. Inference by message passing in the JT.
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an undirected graph has a chord if there is a link in the
graph between two non-adjacent nodes on the path or
loop. A undirected graph is chordal if every loop of
length longer than 3 has a chord. Therefore, in order to
compile the moral graph of a decision network into a
JT, the moral graph must be made chordal by adding
some links, called fill-ins. The moral graph in Fig. 11 is
already chordal, but in general, a moral graph may not
be chordal.
Once the JT is constructed, the probability distribu-

tions of the decision network can be converted to
distributions associated with each cluster. For each
variable in the decision network, its associated distribu-
tion is assigned to a cluster in the JT if the cluster
contains the variable as well as its parents in the decision
network.
Effective inference can be performed by passing

messages along the links of the JT. Each link in
the JT is associated with the intersection of the two
clusters it connects. A message over a link is a
distribution over the corresponding intersection. For
example, a message sent from C4 to C8 is a distribution
over variables 7 and 9.
Each inference consists of two passes of message

exchange. A cluster is selected as the root of message
passing, say, C5: In the first pass, messages flow towards
the root as shown in Fig. 13 by the black arrows. After
the first pass is completed, a second pass starts where
messages flow away from the root as shown by the white
arrows. After the second pass, correct posterior prob-
abilities for each variable can be obtained from any
cluster containing it. The inference computation is linear
on the number of clusters and is exponential on the
cardinality of the largest cluster. Hence it can be
efficiently used for large scale environmental decision
problems if the largest cluster is small in size.
6. Summary

Life cycle engineering at the design stage can
significantly reduce cost and environmental impact over
the life of a product. Automated decision aids will
facilitate rational decision making in concurrent en-
gineering design. However, direct representation of all
design alternatives and their evaluation is computation-
ally intractable. We explore the structured represen-
tation which allows effective representation and
decision-making. A methodology using Bayesian deci-
sion networks for life cycle engineering is proposed. A
pilot implementation on an oil-drill design using
WEBWEAVR-III was performed. We can observe that
in this example the recycling alternative results in
highest overall utility, although the disposal option
would result in lower short term costs. The ability of the
proposed approach to incorporate long term implica-
tions in presence of uncertainty in design decisions is
important in estimating true costs of engineering design
decisions.
The proposed method is founded in Bayesian

probability theory and decision theory, and a rigorous
theory on graphical representation of probabilis-
tic dependency. The computations in this analysis
are exact. Therefore, unlike ad-hoc methods, the
proposed method introduces no systematic decision
errors. The reliability of the results depends mainly on
two factors: the accuracy of the graphical dependence
structure and that of the associated distributions. It has
been shown that the accuracy of the structure is more
crucial than that of the distributions (Jensen, 1996;
Haddawy, 1999).
Future research directions include application and

testing of our method in complex product design
situations and development of a system to facilitate
the preference and utility specification process based on
the inputs from the domain experts.
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