
CELL AND METABOLISM

EXERCISE 1

Fill in the diagram below

EXERCISE 2

Associate the structure with its function(s):

	 Glycolysis 	
	 Proteins sorting 	
• Cytosol	 Krebs cycle 	
 Cytoskeleton 	• Storing of genetic information	
 Rough endoplasmic reticulum 	 Respiratory chain 	
 Golgi apparatus 	 Microtubules, microfilaments 	
Mitochondrion	• Cell support and motion	
• Nucleus	 Protein synthesis 	
	• ATP production	

EXERCISE 3

- 1- What are the main roles of membrane proteins?
- 2- What cellular exchanges are essential for the life of the cell?
- **3-** Fill the following text with: *enzymes-hormones, hepatic, degradation, energetic substrate, phospholipids, oxygen, carbon, mitochondria, anabolism, glucose, muscle fiber, annex, glycogen, lipolysis, hydrogen.*

_____:

- macromolecule made of glucose.
- stock: ______ in muscle fibers and in _____ cells.
- o reaction of glycogene _____ to release glucose: glycogenolyse.
- Gucose: essential _____: catabolism in the cytoplasm (without _____) and in mitochondrias (presence of oxygen).
- Lipids: essentially made of ______ and _____

 Stock: triglycerides = glycerol + fatty acids

 in _____ and in cells of fat.
 - Reaction of triglyceride degradation to release fatty acids:
 - Fatty acids: energetic substrate: catabolism in _____
 - Lipid bilayer of ______ in the cell membrane.

Protids: proteins

- Macromolecule of amino-acids.
- _____ in the cytoplasm: protein synthesis (in ribosomes).
- Membrane protein and ______.
 Energetic substrate ______: catabolism in mitochondrias.

EXERCISE 4

Ion	Intracellular concentration (mmol/L)	Extracellular concentration (mmol/L)
Na ⁺	7	144
K ⁺	160	4
Ca ²⁺	10-5-10-4	2
Cl ⁻	7	120
HCO3 ⁻	8	27
Protéine <u>anionique</u> (chargée négativement)	155	5

- 1- What is your main observation concerning ions distribution?
- 2- What type of transport will this encourage? Take the example of Na and K. Explain the characteristics and functions of this kind of transport.
- 3- Actually, this unequal distribution remains unchanged even though the previous transport exists. What other type of transport allow for maintaining this concentration gradient?

EXERCISE 5

- **1-** Give the definition of ATP.
- 2- Schematize the reaction of ATP degradation; give its name, and the name of the enzyme that is involved in this reaction. What does this allow in a muscle fiber? Why is it important to resynthetize ATP?