
Constraint Programming
– Modeling –

Christophe Lecoutre

CRIL-CNRS UMR 8188
Universite d’Artois

Lens, France

January 2021

1

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

2

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

3

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

Constraint Programming

CP = Modeling + Solving

1 Modeling: describing the real-world problem in a declarative way,
typically as :

• a CSP (Constraint Satisfaction Problem) instance, or
• a COP (Constraint Optimization Problem) instance.

2 Solving: applying efficient techniques to explore the search space, in
order to find solutions.

Modeling and Solving are somehow independent processes:

• a model can be applied various search/solving techniques

• a solver can be applied to various problems/models

4

CSP/COP Instances

Definition
An instance P of the Constraint Satisfaction Problem (CSP), also called
a Constraint Network (CN), is composed of:

• a finite set of variables, denoted by vars(P),

• a finite set of constraints, denoted by ctrs(P).

Definition
An instance P of the Constraint Optimisation Problem (COP)
additionally involves:

• an objective function obj(P) to be minimized or maximized.

5

CSP/COP Instances

Definition
An instance P of the Constraint Satisfaction Problem (CSP), also called
a Constraint Network (CN), is composed of:

• a finite set of variables, denoted by vars(P),

• a finite set of constraints, denoted by ctrs(P).

Definition
An instance P of the Constraint Optimisation Problem (COP)
additionally involves:

• an objective function obj(P) to be minimized or maximized.

5

Declarativity

Modeling is a declarative process.

“Describe what you see/want. Not, how to get it!”

A CSP/COP instance describes what the solutions are like, and specifies
the search space:

dom(x1)× dom(x2)× · · · × dom(xn)

Variables represents the view we have of the problem. There are several
types of variables:

• Boolean variables

• integer variables

• real variables

• set variables

• . . .

6

Declarativity

Modeling is a declarative process.

“Describe what you see/want. Not, how to get it!”

A CSP/COP instance describes what the solutions are like, and specifies
the search space:

dom(x1)× dom(x2)× · · · × dom(xn)

Variables represents the view we have of the problem. There are several
types of variables:

• Boolean variables

• integer variables

• real variables

• set variables

• . . .

6

Declarativity

Modeling is a declarative process.

“Describe what you see/want. Not, how to get it!”

A CSP/COP instance describes what the solutions are like, and specifies
the search space:

dom(x1)× dom(x2)× · · · × dom(xn)

Variables represents the view we have of the problem. There are several
types of variables:

• Boolean variables

• integer variables

• real variables

• set variables

• . . .

6

Declarativity

Modeling is a declarative process.

“Describe what you see/want. Not, how to get it!”

A CSP/COP instance describes what the solutions are like, and specifies
the search space:

dom(x1)× dom(x2)× · · · × dom(xn)

Variables represents the view we have of the problem. There are several
types of variables:

• Boolean variables

• integer variables

• real variables

• set variables

• . . .

6

our focus!

Constraints

Basically, CP is thinking Constraints.

Constraints are building blocks of
constraint reasoning:

• used to model the problem

• used to solve the problem

Remember that a constraint c has:

• a scope scp(c): the variables involved in c

• a relation rel(c): the combinations of values accepted by c

7

Constraints

Basically, CP is thinking Constraints.

Constraints are building blocks of
constraint reasoning:

• used to model the problem

• used to solve the problem

Remember that a constraint c has:

• a scope scp(c): the variables involved in c

• a relation rel(c): the combinations of values accepted by c

7

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

8

Modeling Languages

Modeling languages can be used to represent problems, using some form
of control and abstraction.

Typically, a model captures a family of problem instances, by referring to
some parameters representing the data. Building a model for a problem
involves:

1 identifying the parameters, i.e., the structure of the data

2 writting the model, by taking the parameters into account, and
using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for
each specific instance to be treated.

9

Modeling Languages

Modeling languages can be used to represent problems, using some form
of control and abstraction.

Typically, a model captures a family of problem instances, by referring to
some parameters representing the data. Building a model for a problem
involves:

1 identifying the parameters, i.e., the structure of the data

2 writting the model, by taking the parameters into account, and
using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for
each specific instance to be treated.

9

Modeling Languages

Modeling languages can be used to represent problems, using some form
of control and abstraction.

Typically, a model captures a family of problem instances, by referring to
some parameters representing the data. Building a model for a problem
involves:

1 identifying the parameters, i.e., the structure of the data

2 writting the model, by taking the parameters into account, and
using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for
each specific instance to be treated.

9

Modeling Languages

Modeling languages can be used to represent problems, using some form
of control and abstraction.

Typically, a model captures a family of problem instances, by referring to
some parameters representing the data. Building a model for a problem
involves:

1 identifying the parameters, i.e., the structure of the data

2 writting the model, by taking the parameters into account, and
using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for
each specific instance to be treated.

9

Let us illustrate this with the academic problem “All-Interval Series”

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence x = 〈x0, x1, . . . , xn−1〉 such that:

1 x is a permutation of {0, 1, ..., n − 1}
2 y = 〈|x1 − x0|, |x2 − x1|, ..., |xn−1 − xn−2|〉 is a permutation of
{1, 2, ..., n − 1}

A sequence satisfying these conditions is called an all-interval series of
order n. For example, for n = 8, a solution is:

1 7 0 5 4 2 6 3

10

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence x = 〈x0, x1, . . . , xn−1〉 such that:

1 x is a permutation of {0, 1, ..., n − 1}
2 y = 〈|x1 − x0|, |x2 − x1|, ..., |xn−1 − xn−2|〉 is a permutation of
{1, 2, ..., n − 1}

A sequence satisfying these conditions is called an all-interval series of
order n. For example, for n = 8, a solution is:

1 7 0 5 4 2 6 3

10

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence x = 〈x0, x1, . . . , xn−1〉 such that:

1 x is a permutation of {0, 1, ..., n − 1}
2 y = 〈|x1 − x0|, |x2 − x1|, ..., |xn−1 − xn−2|〉 is a permutation of
{1, 2, ..., n − 1}

A sequence satisfying these conditions is called an all-interval series of
order n. For example, for n = 8, a solution is:

1 7 0 5 4 2 6 3

10

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence x = 〈x0, x1, . . . , xn−1〉 such that:

1 x is a permutation of {0, 1, ..., n − 1}
2 y = 〈|x1 − x0|, |x2 − x1|, ..., |xn−1 − xn−2|〉 is a permutation of
{1, 2, ..., n − 1}

A sequence satisfying these conditions is called an all-interval series of
order n. For example, for n = 8, a solution is:

1 7 0 5 4 2 6 3

10

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Here, we just need an integer for representing the order (n) of the
problem instance.

Which format for representing effective data?

• Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for
order 5, we can generate a file containing:

{ "n": 5 }

Remark.
Technically, when the data are very basic, there is no real need to
generate such data files.

11

a lightweight data-interchange format (our choice)

Model for All-Interval Series

Second, we have to write the model.

With n being the unique “parameter” of this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables

• Constraints
• a constraint allDifferent on x
• a constraint allDifferent on “y”

Which language to choose for writting models?

• AMPL? / OPL? / MiniZinc? / Essence?

• PyCSP3

12

Model for All-Interval Series

Second, we have to write the model.

With n being the unique “parameter” of this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables

• Constraints
• a constraint allDifferent on x
• a constraint allDifferent on “y”

Which language to choose for writting models?

• AMPL? / OPL? / MiniZinc? / Essence?

• PyCSP3

12

Model for All-Interval Series

Second, we have to write the model.

With n being the unique “parameter” of this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables

• Constraints
• a constraint allDifferent on x
• a constraint allDifferent on “y”

Which language to choose for writting models?

• AMPL? / OPL? / MiniZinc? / Essence?

• PyCSP3

12

Model for All-Interval Series

Second, we have to write the model.

With n being the unique “parameter” of this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables

• Constraints
• a constraint allDifferent on x
• a constraint allDifferent on “y”

Which language to choose for writting models?

• AMPL? / OPL? / MiniZinc? / Essence?

• PyCSP3

12

a Python Library (our choice)

PyCSP3 Model for All-Interval Series

File AllInterval.py

from pycsp3 import *

n = data

x[i] is the ith note of the series
x = VarArray(size=n, dom=range(n))

satisfy(
notes must occur once , and so form a permutation
AllDifferent(x),

intervals between neighbouring notes must form a permutation
AllDifferent(abs(x[i + 1] - x[i]) for i in range(n - 1))

)

13

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format preserving the model structure

14

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format preserving the model structure

14

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format preserving the model structure

14

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format preserving the model structure

14

an XML-based representation (our choice)

XCSP3 Instance: AllInterval-05

Third, we have to provide the effective data.

python3 AllInterval.py -data=5

We obtain:

File AllInterval-5.xml

<instance format="XCSP3" type="CSP">
<variables>

<array id="x" note="x[i] is the ith series note" size="[5]">
0..4

</array>
</variables>
<constraints>

<allDifferent note="notes must occur once...">
x[]

</allDifferent>
<allDifferent note="intervals between neighbouring notes ...">

dist(x[1],x[0]) dist(x[2],x[1]) dist(x[3],x[2]) dist(x[4],x[3])
</allDifferent>

</constraints>
</instance>

15

XCSP3 Instance: AllInterval-05

Third, we have to provide the effective data.

python3 AllInterval.py -data=5

We obtain:

File AllInterval-5.xml

<instance format="XCSP3" type="CSP">
<variables>

<array id="x" note="x[i] is the ith series note" size="[5]">
0..4

</array>
</variables>
<constraints>

<allDifferent note="notes must occur once...">
x[]

</allDifferent>
<allDifferent note="intervals between neighbouring notes ...">

dist(x[1],x[0]) dist(x[2],x[1]) dist(x[3],x[2]) dist(x[4],x[3])
</allDifferent>

</constraints>
</instance>

15

Modeling Languages and Formats

Modeling
Languages/Libraries

Intermediate
Format

Flat
Formats

+

−

OPL, MiniZinc, Essence,
PyCSP3, JvCSP3, ...

XCSP3

XCSP 2.1, FlatZinc, wcsp

A
b

straction

www.xcsp.org

16

www.xcsp.org

A Complete Modeling/Solving Toolchain

Model PyCSP3 | JvCSP3

(Python 3 | Java 8)

Data
(JSON)

Compiler

XCSP3 Instance
(XML)

Ace Choco Mistral OscaR PicatSAT ...

17

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python (and Java), JSON, and XML are robust mainstream
technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 (or Java 8) avoids the user learning a
new programming language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

18

Did we choose the Right Language?

19

PHP?

• Is that true that any variable identifier must start with $?

• Why not using e?

• Is that true that we can find method identifiers such as:
• similar text
• addslashes

?

Asking the question was a joke!

20

PHP?

• Is that true that any variable identifier must start with $?

• Why not using e?

• Is that true that we can find method identifiers such as:
• similar text
• addslashes

?

Asking the question was a joke!

20

PHP?

• Is that true that any variable identifier must start with $?

• Why not using e?

• Is that true that we can find method identifiers such as:
• similar text
• addslashes

?

Asking the question was a joke!

20

PHP?

• Is that true that any variable identifier must start with $?

• Why not using e?

• Is that true that we can find method identifiers such as:
• similar text
• addslashes

?

Asking the question was a joke!

20

PHP?

• Is that true that any variable identifier must start with $?

• Why not using e?

• Is that true that we can find method identifiers such as:
• similar text
• addslashes

?

Asking the question was a joke!

20

JavaScript?

Evaluate the following expressions:

"2" == 2

"2" === 2

[] == []

[] == ![]

2 == [2]

true + true

"toto" instanceof String

0.1 + 0.2 == 0.3

"2" + 1

"2" - 1

21

JavaScript?

Evaluate the following expressions:

"2" == 2

"2" === 2

[] == []

[] == ![]

2 == [2]

true + true

"toto" instanceof String

0.1 + 0.2 == 0.3

"2" + 1

"2" - 1

21

JavaScript?

Evaluate the following expressions:

"2" == 2

"2" === 2

[] == []

[] == ![]

2 == [2]

true + true

"toto" instanceof String

0.1 + 0.2 == 0.3

"2" + 1

"2" - 1

true

false

false

true

true

2

false

false

"21"

1

22

C++?

• Too hard to implement and to learn: the specification has grown to
over 1000 pages.

• Everybody uses a different subset of the language, making it harder
to understand others’ code.

Four ways of declaring an array?

23

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

24

Popular Constraints

Popular constraints are those that are:

• often used when modeling problems

• implemented in many solvers

Remark.
XCSP3-core contains popular constraints over integer variables, classified
by families.

25

Popular Constraints

Popular constraints are those that are:

• often used when modeling problems

• implemented in many solvers

Remark.
XCSP3-core contains popular constraints over integer variables, classified
by families.

25

Popular Constraints

Popular constraints are those that are:

• often used when modeling problems

• implemented in many solvers

Remark.
XCSP3-core contains popular constraints over integer variables, classified
by families.

25

XCSP3-core

Constraints over Integer Variables

Generic Constraints

intension, extension

Language-based Constraints

regular, mdd

Comparison-based Constraints

allDifferent, allEqual

ordered, lex

Counting and Summing Constraints

sum (linear)

count (capturing atLeast, atMost,exactly, among)

nValues, cardinality

Connection Constraints

minimum, maximum

element, channel

Packing and Scheduling Constraints

noOverlap (capturing disjunctive and diffn)

cumulative

26

XCSP3-core

Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

Note that XCSP3-core is;

• sufficient for modeling many problems

• used in XCSP3 Solver Competititons

Remark.
We shall introduce some of these constraints in disorder (guided by case
studies).

27

XCSP3-core

Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

Note that XCSP3-core is;

• sufficient for modeling many problems

• used in XCSP3 Solver Competititons

Remark.
We shall introduce some of these constraints in disorder (guided by case
studies).

27

XCSP3-core

Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

Note that XCSP3-core is;

• sufficient for modeling many problems

• used in XCSP3 Solver Competititons

Remark.
We shall introduce some of these constraints in disorder (guided by case
studies).

27

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

28

Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

• variables,

• constants (integers),

• arithmetic, relational, set and logical operators.

Example.

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

Remark.
Above, the examples are given in “pure” mathematical forms. For
PyCSP3, operators are those of Python.

29

Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

• variables,

• constants (integers),

• arithmetic, relational, set and logical operators.

Example.

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

Remark.
Above, the examples are given in “pure” mathematical forms. For
PyCSP3, operators are those of Python.

29

Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

• variables,

• constants (integers),

• arithmetic, relational, set and logical operators.

Example.

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

Remark.
Above, the examples are given in “pure” mathematical forms. For
PyCSP3, operators are those of Python.

29

Operators used by PyCSP3

Arithmetic Operators

+ addition
- subtraction
* multiplication
// integer division
% remainder
** power

Relational Operators

< Less than
<= Less than or equal
>= Greater than or equal
> Greater than
! = Different from
== Equal to

Set Operators

in membership
not in non membership

Logical Operators

∼ logical not
| logical or
& logical and
ˆ logical xor

30

Illustration

Mathematical forms:

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

PyCSP3 forms:

• x > 2

• x <= y + 1

• abs(x − y) == z − w

• x + y ∗ 12 + z//2 == 5

• (x +y > 3) | (x ∗ z == w)

When compiling from PyCSP3 to XCSP3, we obtain functional forms:

<intension> gt(x,2) </intension>
<intension> le(x,add(y,1)) </intension>
<intension> eq(dist(x,y),sub(z,w)) </intension>
<intension> eq(add(x,mul(y,12),div(z,2)),5) </intension>
<intension> or(gt(add(x,y),3),eq(mul(x,z),w)) </intension>

31

Illustration

Mathematical forms:

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

PyCSP3 forms:

• x > 2

• x <= y + 1

• abs(x − y) == z − w

• x + y ∗ 12 + z//2 == 5

• (x +y > 3) | (x ∗ z == w)

When compiling from PyCSP3 to XCSP3, we obtain functional forms:

<intension> gt(x,2) </intension>
<intension> le(x,add(y,1)) </intension>
<intension> eq(dist(x,y),sub(z,w)) </intension>
<intension> eq(add(x,mul(y,12),div(z,2)),5) </intension>
<intension> or(gt(add(x,y),3),eq(mul(x,z),w)) </intension>

31

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (Hot research topic);
Not in XCSP3-core

32

Generic Constraint extension

The table constraint:

x y z

0 0 0
0 0 1
0 0 2
1 1 1
1 2 2
2 2 0

is written in PyCSP3 as:

(x,y,z) in {(0,0,0), (0,0,1), (0,0,2), (1,1,1), (1,2,2), (2,2,0)}

33

Generic Constraint extension

If the domain of the variable z is {0, 1, 2}, can we compress?

x y z

0 0 ∗
1 1 1
1 2 2
2 2 0

which gives in PyCSP3:

(x,y,z) in {(0,0,ANY), (1,1,1), (1,2,2), (2,2,0)}

and gives in XCSP3:

<extension>
<list> x y z </list>
<supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>

<extension>

34

Generic Constraint extension

If the domain of the variable z is {0, 1, 2}, can we compress?

x y z

0 0 ∗
1 1 1
1 2 2
2 2 0

which gives in PyCSP3:

(x,y,z) in {(0,0,ANY), (1,1,1), (1,2,2), (2,2,0)}

and gives in XCSP3:

<extension>
<list> x y z </list>
<supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>

<extension>

34

Generic Constraint extension

If the domain of the variable z is {0, 1, 2}, can we compress?

x y z

0 0 ∗
1 1 1
1 2 2
2 2 0

which gives in PyCSP3:

(x,y,z) in {(0,0,ANY), (1,1,1), (1,2,2), (2,2,0)}

and gives in XCSP3:

<extension>
<list> x y z </list>
<supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>

<extension>

34

Generic Constraint extension

If the domain of the variable z is {0, 1, 2}, can we compress?

x y z

0 0 ∗
1 1 1
1 2 2
2 2 0

which gives in PyCSP3:

(x,y,z) in {(0,0,ANY), (1,1,1), (1,2,2), (2,2,0)}

and gives in XCSP3:

<extension>
<list> x y z </list>
<supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>

<extension>

34

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

35

Global Constraint regular

With X a sequence of variables and A a deterministic (or
non-deterministic) finite automaton, X ∈ A is a constraint regular.

Example.

A constraint regular
〈x1, x2, x3, x4, x5〉 ∈ A

A

d

d d

n n

d

nn

d

n

o

oo

o

oo⇒

Remark.
In PyCSP3, for posting a regular constraint, we use the Python
operator ’in’ (as for table constraints) and a PyCSP3 object called
Automaton.

36

Global Constraint regular

Remark.
An instantiation of X satisfies the constraint if it represents a word
recognized by the automaton A.

Example.
For the previous constraint:

• {x1 = d , x2 = d , x3 = d , x4 = o, x5 = o} satisfies the constraint

• {x1 = d , x2 = d , x3 = o, x4 = o, x5 = n} does not satisfy the
constraint

Remark.
It is possible de convert a constraint regular into:

• a constraint extension (but possible memory space explosion)

• a related constraint called mdd (performed in solver Ace)

37

Global Constraint regular

Remark.
An instantiation of X satisfies the constraint if it represents a word
recognized by the automaton A.

Example.
For the previous constraint:

• {x1 = d , x2 = d , x3 = d , x4 = o, x5 = o} satisfies the constraint

• {x1 = d , x2 = d , x3 = o, x4 = o, x5 = n} does not satisfy the
constraint

Remark.
It is possible de convert a constraint regular into:

• a constraint extension (but possible memory space explosion)

• a related constraint called mdd (performed in solver Ace)

37

Global Constraint regular

Remark.
An instantiation of X satisfies the constraint if it represents a word
recognized by the automaton A.

Example.
For the previous constraint:

• {x1 = d , x2 = d , x3 = d , x4 = o, x5 = o} satisfies the constraint

• {x1 = d , x2 = d , x3 = o, x4 = o, x5 = n} does not satisfy the
constraint

Remark.
It is possible de convert a constraint regular into:

• a constraint extension (but possible memory space explosion)

• a related constraint called mdd (performed in solver Ace)

37

Nonogram Puzzle

2 2 2 2 2 2 2
3 3 2 2 2 2 2 3 3

2 2
4 4

1 3 1
2 1 2

1 1
2 2
2 2

3
1

38

Solution to the Nonogram Puzzle

2 2 2 2 2 2 2
3 3 2 2 2 2 2 3 3

2 2 � � � �

4 4 � � � � � � � �

1 3 1 � � � � �

2 1 2 � � � � �

1 1 � �

2 2 � � � �

2 2 � � � �

3 � � �

1 �

39

Using regular for Nonogram

Remark.
Each clue corresponds to a regular expression

Example.
The clue 2 1 corresponds to:

0∗120+10∗

0

1 1 0

0

1

0

⇒

When we consider the benchmark proposed by G. Pesant:

• tables are huge (more than 1, 000, 000 tuples for some of them)

• MDDs are rather compact (a few hundreds of nodes, at the most)

40

Using regular for Nonogram

Remark.
Each clue corresponds to a regular expression

Example.
The clue 2 1 corresponds to:

0∗120+10∗

0

1 1 0

0

1

0

⇒

When we consider the benchmark proposed by G. Pesant:

• tables are huge (more than 1, 000, 000 tuples for some of them)

• MDDs are rather compact (a few hundreds of nodes, at the most)

40

Specifying Data

The data for the previous Nonogram puzzle can simply be in JSON:

{
"rowPatterns":

[[2,2],[4,4],[1,3,1],[2,1,2],[1,1],[2,2],[2,2],[3],[1]],
"colPatterns":

[[3] ,[2 ,3] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,3] ,[3]]
}

Remark.
Remember that we store the data corresponding to each instance in a
specific file (here, called ’heart.json’).

41

Specifying Data

The data for the previous Nonogram puzzle can simply be in JSON:

{
"rowPatterns":

[[2,2],[4,4],[1,3,1],[2,1,2],[1,1],[2,2],[2,2],[3],[1]],
"colPatterns":

[[3] ,[2 ,3] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,2] ,[2 ,3] ,[3]]
}

Remark.
Remember that we store the data corresponding to each instance in a
specific file (here, called ’heart.json’).

41

PyCSP3 Model

For the model, we use tuple unpacking, and NumPy-like notations:

File Nonogram.py

from pycsp3 import *

row_patterns , col_patterns = data
nRows , nCols = len(row_patterns), len(col_patterns)

x[i][j] is 1 iff the cell at row i and col j is colored in black
x = VarArray(size=[nRows , nCols], dom={0, 1})

def automaton(pattern):
... # to be written

satisfy(
[x[i] in automaton(row_patterns[i]) for i in range(nRows)],

[x[:, j] in automaton(col_patterns[j]) for j in range(nCols)]
)

python3 Nonogram.py -data=heart.json

42

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

43

Global Constraint allDifferent

allDifferent(X , E), with X = 〈x1, x2, . . .〉, iff
∀(i, j) : 1 ≤ i < j ≤ |X |, x i 6= x j ∨ x i ∈ E ∨ x j ∈ E

allDifferent(X) iff allDifferent(X , ∅)

Semantics

allDifferent-matrix(M), with M a matrix of variables of size n × m, iff
∀i : 1 ≤ i ≤ n, allDifferent(M[i])

∀j : 1 ≤ j ≤ m, allDifferent(MT [j])

Semantics

Remark.
One form accepts excepting values, and another is lifted to matrices.

Remark.
In PyCSP3, we call the function AllDifferent() that accepts two
optional named parameters called excepting and matrix.

44

Global Constraint allDifferent

allDifferent(X , E), with X = 〈x1, x2, . . .〉, iff
∀(i, j) : 1 ≤ i < j ≤ |X |, x i 6= x j ∨ x i ∈ E ∨ x j ∈ E

allDifferent(X) iff allDifferent(X , ∅)

Semantics

allDifferent-matrix(M), with M a matrix of variables of size n × m, iff
∀i : 1 ≤ i ≤ n, allDifferent(M[i])

∀j : 1 ≤ j ≤ m, allDifferent(MT [j])

Semantics

Remark.
One form accepts excepting values, and another is lifted to matrices.

Remark.
In PyCSP3, we call the function AllDifferent() that accepts two
optional named parameters called excepting and matrix.

44

Global Constraint allDifferent

allDifferent(X , E), with X = 〈x1, x2, . . .〉, iff
∀(i, j) : 1 ≤ i < j ≤ |X |, x i 6= x j ∨ x i ∈ E ∨ x j ∈ E

allDifferent(X) iff allDifferent(X , ∅)

Semantics

allDifferent-matrix(M), with M a matrix of variables of size n × m, iff
∀i : 1 ≤ i ≤ n, allDifferent(M[i])

∀j : 1 ≤ j ≤ m, allDifferent(MT [j])

Semantics

Remark.
One form accepts excepting values, and another is lifted to matrices.

Remark.
In PyCSP3, we call the function AllDifferent() that accepts two
optional named parameters called excepting and matrix.

44

Sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

The data (clues) must be stored in a JSON file; here a file grid.json:

{
"clues": [[0,2,0,5,0,1,0,9,0],...,[0,1,0,9,0,7,0,6,0]]

}

45

Sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

The data (clues) must be stored in a JSON file; here a file grid.json:

{
"clues": [[0,2,0,5,0,1,0,9,0],...,[0,1,0,9,0,7,0,6,0]]

}

45

PyCSP3 Model

File Sudoku.py

from pycsp3 import *

clues = data

x[i][j] is the value in cell at row i and col j.
x = VarArray(size=[9, 9], dom=range(1, 10))

satisfy(
imposing distinct values on each row and each column
AllDifferent(x, matrix=True),

imposing distinct values on each block tag(blocks)
[AllDifferent(x[i:i + 3, j:j + 3])

for i in [0, 3, 6] for j in [0, 3, 6]],

imposing clues tag(clues)
[x[i][j] == clues[i][j]

for i in range (9) for j in range (9) if clues[i][j] > 0]
)

python3 Sudoku.py -data=grid.json

46

File Sudoku-grid.xml

<instance format="XCSP3" type="CSP">
<variables>

<array id="x" size="[9][9]"> 1..9 </array>
</variables>
<constraints>

<allDifferent>
<matrix> x[][] </matrix>

</allDifferent>
<group>

<allDifferent> %... </allDifferent>
<args> x[0..2][0..2] </args>
<args> x[0..2][3..5] </args>
<args> x[0..2][6..8] </args>
<args> x[3..5][0..2] </args>
<args> x[3..5][3..5] </args>
<args> x[3..5][6..8] </args>
<args> x[6..8][0..2] </args>
<args> x[6..8][3..5] </args>
<args> x[6..8][6..8] </args>

</group>
<instantiation class="clues" note="Just 2 clues here for the

simplicity of the illustration">
<list> x[0][2] x[8][7] </list>
<values> 2 6 </values>

</instantiation>
</constraints>

</instance>

47

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

48

Global Constraint sum

A constraint sum is a constraint of the form:∑r
i=1 cixi <op> L

where:

• ci ∈ Z,∀i ∈ 1..r

• <op> ∈ {<,≤,≥, >,=, 6=,∈, /∈}
• L is an integer, a variable or an interval

Coefficients can also be given under the form of variables.

Remark.
In PyCSP3, we must call the function Sum() (or use a dot product).

49

Global Constraint cardinality

For the semantics, V is a sequence of values and O is assumed to be a
sequence of variables (for simplicity).

cardinality(X ,V ,O), with X = 〈x1, x2, . . .〉, V = 〈v1, v2, . . .〉, O = 〈o1, o2, . . .〉,
iff ∀j : 1 ≤ j ≤ |V |, |{i : 1 ≤ i ≤ |X | ∧ x i = vj}| = o j

Semantics

Remark.
In PyCSP3, we must call the function Cardinality() that accepts a list
of variables as first parameter, and a named parameter called
occurrences whose value must be a dictionary.

50

Global Constraint cardinality

Example.
We give an example where O contains intervals.

cardinality(〈x , y , z〉, {N,D,O}, {0..1, 1..1, 1..2})

As an illustration, we have:

• Instantiation (N,D,O)

• Instantiation (O,D,O)

• Instantiation (D,D,O)

51

Global Constraint cardinality

Example.
We give an example where O contains intervals.

cardinality(〈x , y , z〉, {N,D,O}, {0..1, 1..1, 1..2})

As an illustration, we have:

• Instantiation (N,D,O) ⇒ OK

• Instantiation (O,D,O)

• Instantiation (D,D,O)

51

Global Constraint cardinality

Example.
We give an example where O contains intervals.

cardinality(〈x , y , z〉, {N,D,O}, {0..1, 1..1, 1..2})

As an illustration, we have:

• Instantiation (N,D,O)

• Instantiation (O,D,O) ⇒ OK

• Instantiation (D,D,O)

51

Global Constraint cardinality

Example.
We give an example where O contains intervals.

cardinality(〈x , y , z〉, {N,D,O}, {0..1, 1..1, 1..2})

As an illustration, we have:

• Instantiation (N,D,O)

• Instantiation (O,D,O)

• Instantiation (D,D,O) ⇒ KO

51

Global Constraint cardinality

Example.
We give an example where O contains intervals.

cardinality(〈x , y , z〉, {N,D,O}, {0..1, 1..1, 1..2})

As an illustration, we have:

• Instantiation (N,D,O) ⇒ OK

• Instantiation (O,D,O) ⇒ OK

• Instantiation (D,D,O) ⇒ KO

51

Magic Sequence

Problem 019, proposed by T. Walsh, on CSPLib.

“A magic sequence of length (order) n is a sequence of integers
v0, v1, . . . , vn−1 between 0 and n − 1, such that for each value
i ∈ 0..n − 1 the value i occurs exactly vi times in the sequence.”

For instance,

6 2 1 0 0 0 1 0 0 0

is a magic sequence of length 10 since:

• 0 occurs 6 times in it,

• 1 occurs twice,

• 2 occurs once,

• . . .

52

Magic Sequence

Problem 019, proposed by T. Walsh, on CSPLib.

“A magic sequence of length (order) n is a sequence of integers
v0, v1, . . . , vn−1 between 0 and n − 1, such that for each value
i ∈ 0..n − 1 the value i occurs exactly vi times in the sequence.”

For instance,

6 2 1 0 0 0 1 0 0 0

is a magic sequence of length 10 since:

• 0 occurs 6 times in it,

• 1 occurs twice,

• 2 occurs once,

• . . .

52

PyCSP3 Model

File MagicSequence.py

from pycsp3 import *

n = data

x[i] is the ith value of the sequence
x = VarArray(size=n, dom=range(n))

satisfy(
each value i occurs exactly x[i] times in the sequence
Cardinality(x, occurrences ={i: x[i] for i in range(n)}),

tag(redundant -constraints)
[Sum(x) == n, Sum((i - 1) * x[i] for i in range(n)) == 0]

)

python3 MagicSequence.py -data=10

53

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

54

Global Constraint count

Can you say with your words what is the semantics of this constraint?

count(X ,V)� k, with X = 〈x1, x2, . . .〉, iff
|{i : 1 ≤ i ≤ |X | ∧ x i ∈ V}| � k

Semantics

Special cases of count are:

• atLeast

• atMost

• exactly

• among

Remark.
In PyCSP3, we must call the function Count() that accepts a list of
variables as first parameter, and a named parameter which is either
value or values.

55

Global Constraint count

Can you say with your words what is the semantics of this constraint?

count(X ,V)� k, with X = 〈x1, x2, . . .〉, iff
|{i : 1 ≤ i ≤ |X | ∧ x i ∈ V}| � k

Semantics

Special cases of count are:

• atLeast

• atMost

• exactly

• among

Remark.
In PyCSP3, we must call the function Count() that accepts a list of
variables as first parameter, and a named parameter which is either
value or values.

55

Global Constraint count

Can you say with your words what is the semantics of this constraint?

count(X ,V)� k, with X = 〈x1, x2, . . .〉, iff
|{i : 1 ≤ i ≤ |X | ∧ x i ∈ V}| � k

Semantics

Special cases of count are:

• atLeast

• atMost

• exactly

• among

Remark.
In PyCSP3, we must call the function Count() that accepts a list of
variables as first parameter, and a named parameter which is either
value or values.

55

Global Constraint element

element(X , v), with X = 〈x1, x2, . . .〉, iff // indexing assumed to start at 1
∃i : 1 ≤ i ≤ |X | ∧ x i = v

element(X , i, v), with X = 〈x1, x2, . . .〉, iff
x i = v

Semantics

• The first form of constraint element allows us to test the
membership of an element in a list.

• The second form allows us to make a connection between a list of
variables (or integers) and a variable; this is the usual case.

Remark.
In PyCSP3, we use natural indexing on lists (see Problem Warehouse).

56

Global Constraint element

element(X , v), with X = 〈x1, x2, . . .〉, iff // indexing assumed to start at 1
∃i : 1 ≤ i ≤ |X | ∧ x i = v

element(X , i, v), with X = 〈x1, x2, . . .〉, iff
x i = v

Semantics

• The first form of constraint element allows us to test the
membership of an element in a list.

• The second form allows us to make a connection between a list of
variables (or integers) and a variable; this is the usual case.

Remark.
In PyCSP3, we use natural indexing on lists (see Problem Warehouse).

56

Global Constraint element

element(X , v), with X = 〈x1, x2, . . .〉, iff // indexing assumed to start at 1
∃i : 1 ≤ i ≤ |X | ∧ x i = v

element(X , i, v), with X = 〈x1, x2, . . .〉, iff
x i = v

Semantics

• The first form of constraint element allows us to test the
membership of an element in a list.

• The second form allows us to make a connection between a list of
variables (or integers) and a variable; this is the usual case.

Remark.
In PyCSP3, we use natural indexing on lists (see Problem Warehouse).

56

Warehouse Location Problem

Problem 034, proposed by B. Hnich, on CSPLib.

“A company considers opening warehouses at some candidate locations
in order to supply its existing stores. Each possible warehouse has the
same maintenance cost, and a capacity designating the maximum
number of stores that it can supply. Each store must be supplied by
exactly one open warehouse.”

“The supply cost to a store depends on the warehouse. The objective is
to determine which warehouses to open, and which of these warehouses
should supply the various stores, such that the sum of the maintenance
and supply costs is minimized.”

57

Data

{
"fixedCost": 30,
"warehouseCapacities": [1,4,2,1,3],
"storeSupplyCosts":

[[100 ,24 ,11 ,25 ,30] ,[28 ,27 ,82 ,83 ,74] ,[74 ,97 ,71 ,96 ,70] ,
[2 ,55 ,73 ,69 ,61] ,[46 ,96 ,59 ,83 ,4] ,[42 ,22 ,29 ,67 ,59] ,
[1 ,5 ,73 ,59 ,56] ,[10 ,73 ,13 ,43 ,96] ,[93 ,35 ,63 ,85 ,46] ,[47 ,65 ,55 ,71 ,95]]

}

Note that:
• warehouseCapacities[i] indicates the maximum number of stores

that can be supplied by the ith warehouse
• storeSupplyCosts[i][j] indicates the cost of supplying the ith store

with the jth warehouse

58

File Warehouse.py

from pycsp3 import *

cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

c[i] is the cost of supplying the ith store
c = VarArray(size=nStores , dom=lambda i: costs[i])

o[j] is 1 if the jth warehouse is open
o = VarArray(size=nWarehouses , dom={0, 1})

satisfy(
capacities of warehouses must not be exceeded
[Count(w, value=j) <= capacities[j] for j in range(nWarehouses)],

the warehouse supplier of the ith store must be open
[o[w[i]] == 1 for i in range(nStores)],

computing the cost of supplying the ith store
[costs[i][w[i]] == c[i] for i in range(nStores)]

)

minimize(
minimizing the overall cost
Sum(c) + Sum(o) * cost

)

59

Outline

1 Reminder

2 Languages and Formats

3 Some Popular Constraints
Generic Constraints

Case Study “Nonogram” introducing regular

Case Study “Sudoku” introducing allDifferent

Case Study “Magic Sequence” introducing sum and cardinality

Case Study “Warehouse Location” introducing count and element

Case Study “Black hole” introducing channel

60

Global Constraint channel

Three possible forms for this constraint:

channel(X), with X = 〈x1, x2, . . .〉, iff // indexing assumed to start at 1
∀i : 1 ≤ i ≤ |X |, x i = j ⇒ x j = i

Semantics

channel(X ,Y), with X = 〈x1, x2, . . .〉 and Y = 〈y1, y2, . . .〉, iff
∀i : 1 ≤ i ≤ |X |, x i = j ⇔ y j = i

Semantics

channel(X , v), with X = {x1, x2, . . .}, iff // indexing assumed to start at 1
∀i : 1 ≤ i ≤ |X |, x i = 1⇔ v = i
∃i : 1 ≤ i ≤ |X | ∧ x i = 1

Semantics

61

Black Hole (solitaire)

62

Data

{
"nCardsPerSuit": 4,
"nCardsPerPile": 3,
"piles": [[1 ,4 ,13] ,[15 ,9 ,6] ,[14 ,2 ,12] ,[7 ,8 ,5] ,[11 ,10 ,3]]

}

Note that:

• piles[i][j] indicates the value of the jth card on the ith pile

63

File Blackhole.py

from pycsp3 import *

m, piles = data # m denotes the number of cards per suit
nCards = 4 * m

table = {(i, j) for i in range(nCards) for j in range(nCards)
if i % m == (j + 1) % m or j % m == (i + 1) % m}

x[i] is the value j of the card at the ith position of the stack
x = VarArray(size=nCards , dom=range(nCards))

y[j] is the position i of the card whose value is j
y = VarArray(size=nCards , dom=range(nCards))

satisfy(
linking variables of x and y
Channel(x, y),

the Ace of Spades is initially put on the stack
y[0] == 0,

cards must be played in the order of the piles
[Increasing ([y[j] for j in pile], strict=True) for pile in piles],

each new card must be at a higher or lower rank
[(x[i], x[i + 1]) in table for i in range(nCards - 1)]

)

64

	Reminder
	Languages and Formats
	Some Popular Constraints
	Generic Constraints
	Case Study ``Nonogram'' introducing regular
	Case Study ``Sudoku'' introducing allDifferent
	Case Study ``Magic Sequence'' introducing sum and cardinality
	Case Study ``Warehouse Location'' introducing count and element
	Case Study ``Black hole'' introducing channel

