Constraint Programming
 - Modeling -

Christophe Lecoutre

CRIL-CNRS UMR 8188
Universite d'Artois
Lens, France

January 2021

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality
Case Study "Warehouse Location" introducing count and element
Case Study "Black hole" introducing channel

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

```
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality
Case Study "Warehouse Location" introducing count and element
Case Study "Black hole" introducing channel
```


Constraint Programming

$C P=$ Modeling + Solving

Constraint Programming

CP = Modeling + Solving

(1) Modeling: describing the real-world problem in a declarative way, typically as :

Constraint Programming

CP = Modeling + Solving

(1) Modeling: describing the real-world problem in a declarative way, typically as :

- a CSP (Constraint Satisfaction Problem) instance, or

Constraint Programming

CP = Modeling + Solving

(1) Modeling: describing the real-world problem in a declarative way, typically as :

- a CSP (Constraint Satisfaction Problem) instance, or
- a COP (Constraint Optimization Problem) instance.
\qquad

Modeling and Solving are somehow independent processes: - a model can he annlied various search/solving technigues - a solver can be applied to various problems/models

Constraint Programming

CP = Modeling + Solving

(1) Modeling: describing the real-world problem in a declarative way, typically as :

- a CSP (Constraint Satisfaction Problem) instance, or
- a COP (Constraint Optimization Problem) instance.
(2) Solving: applying efficient techniques to explore the search space, in order to find solutions.

Modeling and Solving are somehow independent processes: - a modal can be appliad various search/sol.ing temhiulues - a solver can be applied to various problems/models

Constraint Programming

CP = Modeling + Solving

(1) Modeling: describing the real-world problem in a declarative way, typically as :

- a CSP (Constraint Satisfaction Problem) instance, or
- a COP (Constraint Optimization Problem) instance.
(2) Solving: applying efficient techniques to explore the search space, in order to find solutions.

Modeling and Solving are somehow independent processes:

- a model can be applied various search/solving techniques
- a solver can be applied to various problems/models

CSP/COP Instances

Definition
An instance P of the Constraint Satisfaction Problem (CSP), also called a Constraint Network (CN), is composed of:

- a finite set of variables, denoted by vars (P),
- a finite set of constraints, denoted by $\operatorname{ctrs}(P)$.

An instance P of the Constraint Optimisation Problem (COP)
additionally involves:
obj (P) to be minimized or maximized

CSP/COP Instances

Definition

An instance P of the Constraint Satisfaction Problem (CSP), also called
a Constraint Network (CN), is composed of:

- a finite set of variables, denoted by vars (P),
- a finite set of constraints, denoted by $\operatorname{ctrs}(P)$.

Definition
An instance P of the Constraint Optimisation Problem (COP) additionally involves:

- an objective function obj (P) to be minimized or maximized.

Declarativity

Modeling is a declarative process.
"Describe what you see/want. Not, how to get it!"

Declarativity

Modeling is a declarative process.
"Describe what you see/want. Not, how to get it!"

A CSP/COP instance describes what the solutions are like, and specifies the search space:

$$
\operatorname{dom}\left(x_{1}\right) \times \operatorname{dom}\left(x_{2}\right) \times \cdots \times \operatorname{dom}\left(x_{n}\right)
$$

Declarativity

Modeling is a declarative process.
"Describe what you see/want. Not, how to get it!"

A CSP/COP instance describes what the solutions are like, and specifies the search space:

$$
\operatorname{dom}\left(x_{1}\right) \times \operatorname{dom}\left(x_{2}\right) \times \cdots \times \operatorname{dom}\left(x_{n}\right)
$$

Variables represents the view we have of the problem. There are several types of variables:

- Boolean variables
- integer variables
- real variables
- set variables
- ...

Declarativity

Modeling is a declarative process.
"Describe what you see/want. Not, how to get it!"

A CSP/COP instance describes what the solutions are like, and specifies the search space:

$$
\operatorname{dom}\left(x_{1}\right) \times \operatorname{dom}\left(x_{2}\right) \times \cdots \times \operatorname{dom}\left(x_{n}\right)
$$

Variables represents the view we have of the problem. There are several types of variables:

- Boolean variables
- integer variables $\$$ our focus!
- real variables
- set variables

Constraints

Basically, CP is thinking Constraints.

Constraints are building blocks of constraint reasoning:

- used to model the problem
- used to solve the problem

Remember that a constraint c has:

- a scope $\operatorname{scp}(c)$: the variables involved in c
- a relation $\operatorname{rel}(c)$: the combinations of values accepted by c

Constraints

Basically, CP is thinking Constraints.

Constraints are building blocks of constraint reasoning:

- used to model the problem
- used to solve the problem

Remember that a constraint c has:

- a scope $\operatorname{scp}(c)$: the variables involved in c
- a relation $\operatorname{rel}(c)$: the combinations of values accepted by c

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

```
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality
Case Study "Warehouse Location" introducing count and element
Case Study "Black hole" introducing channel
```


Modeling Languages

Modeling languages can be used to represent problems, using some form of control and abstraction.

Typically, a model captures a family of problem instances, by referring to some parameters representing the data. Building a model for a problem (1) identifying the parameters, i.e., the structure of the data (2) writting the model, by taking the parameters into account. and using an appropriate (high-level) language

Modeling Languages

Modeling languages can be used to represent problems, using some form of control and abstraction.

Typically, a model captures a family of problem instances, by referring to some parameters representing the data. Building a model for a problem involves:
(1) identifying the parameters, i.e., the structure of the data
(2) writting the model, by taking the parameters into account, and using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for each specific instance to be treated.

Modeling Languages

Modeling languages can be used to represent problems, using some form of control and abstraction.

Typically, a model captures a family of problem instances, by referring to some parameters representing the data. Building a model for a problem involves:
(1) identifying the parameters, i.e., the structure of the data
(2) writting the model, by taking the parameters into account, and using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for each specific instance to be treated.

Modeling Languages

Modeling languages can be used to represent problems, using some form of control and abstraction.

Typically, a model captures a family of problem instances, by referring to some parameters representing the data. Building a model for a problem involves:
(1) identifying the parameters, i.e., the structure of the data
(2) writting the model, by taking the parameters into account, and using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for each specific instance to be treated.
\& Let us illustrate this with the academic problem "All-Interval Series"

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence $x=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ such that:

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence $x=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ such that:
(1) x is a permutation of $\{0,1, \ldots, n-1\}$

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence $x=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ such that:
(1) x is a permutation of $\{0,1, \ldots, n-1\}$
(2) $y=\langle | x_{1}-x_{0}\left|,\left|x_{2}-x_{1}\right|, \ldots,\left|x_{n-1}-x_{n-2}\right|\right\rangle$ is a permutation of $\{1,2, \ldots, n-1\}$

All-Interval Series (CSPLib 007)

Given an integer n, find a sequence $x=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ such that:
(1) x is a permutation of $\{0,1, \ldots, n-1\}$
(2) $y=\langle | x_{1}-x_{0}\left|,\left|x_{2}-x_{1}\right|, \ldots,\left|x_{n-1}-x_{n-2}\right|\right\rangle$ is a permutation of $\{1,2, \ldots, n-1\}$

A sequence satisfying these conditions is called an all-interval series of order n. For example, for $n=8$, a solution is:

17054263

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).
Here, we just need an integer for representing the order (n) of the problem instance.

Which format for representing effective data? - Tabular (Text)? / XMI? / ISON?

JSON is a good choice for representing effective data. For example, for order 5 , we can generate a file containing:

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).
Here, we just need an integer for representing the order (n) of the problem instance.

Which format for representing effective data?

- Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for order 5, we can generate a file containing:

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).
Here, we just need an integer for representing the order (n) of the problem instance.

Which format for representing effective data?

- Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for order 5 , we can generate a file containing:
\{ "n": 5 \}

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).
Here, we just need an integer for representing the order (n) of the problem instance.

Which format for representing effective data?

- Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for order 5 , we can generate a file containing:

$$
\left\{\begin{array}{l}
n ": 5\} \\
\hline
\end{array}\right.
$$

Remark.
Technically, when the data are very basic, there is no real need to generate such data files.

Data for All-Interval Series

First, we have to identify the parameters (structure of the data).
Here, we just need an integer for representing the order (n) of the problem instance.

Which format for representing effective data?

- Tabular (Text)? / XML? / JSON?

JSON is a good choice for representing effective data. For example, for order 5 , we can generate a file containing:
\{ "n": 5 \} a lightweight data-interchange format (our choice)

Remark.

Technically, when the data are very basic, there is no real need to generate such data files.

Model for All-Interval Series

Second, we have to write the model.

With n being the unique "parameter" of this problem, the structure of a - x, one-dimensional array of n integer variables

Which language to choose for writting models? - MMDI? / ODI? / MiniZinc? / Escance?

Model for All-Interval Series

Second, we have to write the model.
With n being the unique "parameter" of this problem, the structure of a natural model is:

- Variables
- x, one-dimensional array of n integer variables
- Constraints
- a constraint allDifferent on x
- a constraint allDifferent on " y "

Model for All-Interval Series

Second, we have to write the model.
With n being the unique "parameter" of this problem, the structure of a natural model is:

- Variables
- x, one-dimensional array of n integer variables
- Constraints
- a constraint allDifferent on x
- a constraint allDifferent on " y "

Which language to choose for writting models?

- AMPL? / OPL? / MiniZinc? / Essence?
- $\operatorname{PyCSP}{ }^{3}$

Model for All-Interval Series

Second, we have to write the model.
With n being the unique "parameter" of this problem, the structure of a natural model is:

- Variables
- x, one-dimensional array of n integer variables
- Constraints
- a constraint allDifferent on x
- a constraint allDifferent on " y "

Which language to choose for writting models?

- AMPL? / OPL? / MiniZinc? / Essence?
- PyCSP^{3} a Python Library (our choice)

PyCSP ${ }^{3}$ Model for All-Interval Series

```
File AllInterval.py
from pycsp3 import *
n = data
# x[i] is the ith note of the series
x = VarArray (size=n, dom=range(n))
satisfy(
    # notes must occur once, and so form a permutation
    AllDifferent(x),
    # intervals between neighbouring notes must form a permutation
    AllDifferent(abs(x[i + 1] - x[i]) for i in range(n - 1))
)
```


Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand modeling languages. For each problem instance, identified by a model and effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

Important:

- XCSP 2.1 and FlatZinc are flat formats
- XCSP^{3} is ar intermediate format preserving the model structure

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand modeling languages. For each problem instance, identified by a model and effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

- XCSP 2.1
- FlatZinc
- XCSP ${ }^{3}$

Important:

- XCSP 2.1 and FlatZinc are flat formats
- XCSP^{3} is an intermediate format preserving the model structure

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand modeling languages. For each problem instance, identified by a model and effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

- XCSP 2.1
- FlatZinc
- XCSP ${ }^{3}$

Important:

- XCSP 2.1 and FlatZinc are flat formats
- XCSP^{3} is an intermediate format preserving the model structure

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand modeling languages. For each problem instance, identified by a model and effective data, we have to generate a specific representation (new file).

Which format to choose for representing separate instances?

- XCSP 2.1
- FlatZinc
- XCSP^{3} an XML-based representation (our choice)

Important:

- XCSP 2.1 and FlatZinc are flat formats
- XCSP^{3} is an intermediate format preserving the model structure

XCSP3 Instance: Alllnterval-05

Third, we have to provide the effective data.
>- python3 AllInterval.py -data=5

XCSP3 Instance: Alllnterval-05

Third, we have to provide the effective data.
>- python3 AllInterval.py -data=5
We obtain:
File AllInterval-5.xml

```
<instance format="XCSP3" type="CSP">
```

 <variables>
 <array id="x" note="x[i] is the ith series note" size="[5]">
 0.4
 </array>
 </variables>
 <constraints>
 <allDifferent note="notes must occur once...">
 x[]
 </allDifferent>
 <allDifferent note="intervals between neighbouring notes ...">
 dist(x[1], \(x[0]) \operatorname{dist(x[2],x[1])~dist(x[3],x[2])~dist(x[4],~} x[3])\)
 </allDifferent>
 </constraints>
 </instance>

Modeling Languages and Formats

Intermediate
Format

Flat
Formats
XCSP 2.1, FlatZinc, wcsp

WWW. xcsp.org

A Complete Modeling/Solving Toolchain

Mainstream Technologies

The complete Toolchain PyCSP ${ }^{3}+$ XCSP 3 has many advantages:
Python (and Java), JSON, and XML are robust mainstream technologies
snecifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

Mainstream Technologies

The complete Toolchain PyCSP ${ }^{3}+$ XCSP 3 has many advantages:

- Python (and Java), JSON, and XML are robust mainstream technologies
specifying data with JSON guarantees a unified notation, easy to read for both humans and machines
- writing models with Python 3 (or Java 8) avoids the user learning a new programming language

Mainstream Technologies

The complete Toolchain PyCSP ${ }^{3}+$ XCSP 3 has many advantages:

- Python (and Java), JSON, and XML are robust mainstream technologies
- specifying data with JSON guarantees a unified notation, easy to read for both humans and machines
writing models with Python 3 (or Java 8) avoids the user learning a new programming language
- representing problem instances with coarse-grained XML guarantees compactness and readability

Mainstream Technologies

The complete Toolchain PyCSP ${ }^{3}+$ XCSP 3 has many advantages:

- Python (and Java), JSON, and XML are robust mainstream technologies
- specifying data with JSON guarantees a unified notation, easy to read for both humans and machines
- writing models with Python 3 (or Java 8) avoids the user learning a new programming language
representing problem instances with coarse-grained XML guarantees compactness and readability

[^0] some (minor) drawbacks.

Mainstream Technologies

The complete Toolchain $\mathrm{PyCSP}^{3}+\mathrm{XCSP}^{3}$ has many advantages:

- Python (and Java), JSON, and XML are robust mainstream technologies
- specifying data with JSON guarantees a unified notation, easy to read for both humans and machines
- writing models with Python 3 (or Java 8) avoids the user learning a new programming language
- representing problem instances with coarse-grained XML guarantees compactness and readability

Mainstream Technologies

The complete Toolchain $\mathrm{PyCSP}^{3}+\mathrm{XCSP}^{3}$ has many advantages:

- Python (and Java), JSON, and XML are robust mainstream technologies
- specifying data with JSON guarantees a unified notation, easy to read for both humans and machines
- writing models with Python 3 (or Java 8) avoids the user learning a new programming language
- representing problem instances with coarse-grained XML guarantees compactness and readability

Remark.

At the intermediate level, using JSON instead of XML is possible but has some (minor) drawbacks.

Did we choose the Right Language?

PHP?
Php

- Is that true that any variable identifier must start with \$?
- Why not using $€$?

PHP?

Php

- Is that true that any variable identifier must start with $\$$?
- Why not using €? - similar_text - addslashes

PHP?

Php

- Is that true that any variable identifier must start with $\$$?
- Why not using $€$?
- Is that true that we can find method identifiers such as: - similar_text - addslashes

PHP?

Php

- Is that true that any variable identifier must start with $\$$?
- Why not using $€$?
- Is that true that we can find method identifiers such as:
- similar_text
- addslashes
?

PHP?

Php

- Is that true that any variable identifier must start with $\$$?
- Why not using $€$?
- Is that true that we can find method identifiers such as:
- similar_text
- addslashes
?

Asking the question was a joke!

JavaScript?

JS

Evaluate the following expressions:

```
"2" == 2
"2" === 2
[] == []
[] == ![]
2 == [2]
true + true
"toto" instanceof String
0.1 + 0.2 == 0.3
"2" + 1
"2" - 1
```


JavaScript?

JS

Evaluate the following expressions:

```
"2" == 2
"2" === 2
[] == []
[] == ![]
2 == [2]
true + true
"toto" instanceof String
0.1 + 0.2 == 0.3
"2" + 1
"2" - 1
```


JavaScript?

JS

Evaluate the following expressions:

```
"2" == 2
"2" === 2
[] == []
[] == ![]
2 == [2]
true + true
"toto" instanceof String
0.1 + 0.2 == 0.3
"2" + 1
"2" - 1
true
false
"21"
1
```


$\mathrm{C}++$?

+4

- Too hard to implement and to learn: the specification has grown to over 1000 pages.
- Everybody uses a different subset of the language, making it harder to understand others' code.

Four ways of declaring an array?

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality Case Study "Warehouse Location" introducing count and element
Case Study "Black hole" introducing channel

Popular Constraints

Popular constraints are those that are:

- often used when modeling problems
- implemented in many solvers

Remark.
XCSP^{3}-core contains popular constraints over integer variables, classified by families.

Popular Constraints

Popular constraints are those that are:

- often used when modeling problems
- implemented in many solvers

[^1]by families

Popular Constraints

Popular constraints are those that are:

- often used when modeling problems
- implemented in many solvers

Remark.

XCSP ${ }^{3}$-core contains popular constraints over integer variables, classified by families.

XCSP^{3}-core

Constraints over Integer Variables

XCSP^{3}-core

XCSP3-core

Note that XCSP^{3}-core is;

- sufficient for modeling many problems
- used in XCSP ${ }^{3}$ Solver Competititons

XCSP3-core

Note that XCSP^{3}-core is;

- sufficient for modeling many problems
- used in XCSP ${ }^{3}$ Solver Competititons

Remark.

We shall introduce some of these constraints in disorder (guided by case studies).

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

```
    Case Study "Nonogram" introducing regular
    Case Study "Sudoku" introducing allDifferent
    Case Study "Magic Sequence" introducing sum and cardinality
    Case Study "Warehouse Location" introducing count and element
    Case Study "Black hole" introducing channel
```


Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

- variables,
- constants (integers),
- arithmetic, relational, set and logical operators.

Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

- variables,
- constants (integers),
- arithmetic, relational, set and logical operators.

Example.

- $x>2$
- $x \leq y+1$
- $|x-y|=z-w$
- $x+y * 12+z / 2=5$
- $x+y>3 \vee x * z=w$

Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

- variables,
- constants (integers),
- arithmetic, relational, set and logical operators.

Example.

- $x>2$
- $x \leq y+1$
- $|x-y|=z-w$
- $x+y * 12+z / 2=5$
- $x+y>3 \vee x * z=w$

Remark.
Above, the examples are given in "pure" mathematical forms. For PyCSP ${ }^{3}$, operators are those of Python.

Operators used by PyCSP ${ }^{3}$

Arithmetic Operators

$\begin{aligned} & + \\ & - \\ & * \\ & / / \\ & \% \\ & * * \end{aligned}$	addition subtraction multiplication integer division remainder power
Relational Operators	
$<$	Less than
<=	Less than or equal
$>=$	Greater than or equal
>	Greater than
$!=$	Different from
$==$	Equal to

Set Operators

in	membership
not in	non membership

Logical Operators
\sim
\sim
$\&$
:---
logical or
logical and

Illustration

Mathematical forms:

- $x>2$
- $x \leq y+1$
- $|x-y|=z-w$
- $x+y * 12+z / 2=5$
- $x+y>3 \vee x * z=w$

PyCSP ${ }^{3}$ forms:

- $x>2$
- $x<=y+1$
- $a b s(x-y)==z-w$
- $x+y * 12+z / / 2==5$
- $(x+y>3) \mid(x * z==w)$

Illustration

Mathematical forms:

- $x>2$
- $x \leq y+1$
- $|x-y|=z-w$
- $x+y * 12+z / 2=5$
- $x+y>3 \vee x * z=w$

PyCSP ${ }^{3}$ forms:

- $x>2$
- $x<=y+1$
- $a b s(x-y)==z-w$
- $x+y * 12+z / / 2==5$
- $(x+y>3) \mid(x * z==w)$

When compiling from PyCSP^{3} to XCSP^{3}, we obtain functional forms:

```
<intension> gt(x,2) </intension>
<intension> le(x,add(y,1)) </intension>
<intension> eq(dist(x,y),sub(z,w)) </intension>
<intension> eq(add(x,mul(y,12),div(z,2)),5) </intension>
<intension> or(gt(add(x,y),3),eq(mul(x,z),w)) </intension>
```


Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Tuples are respectively called supports and conflicts in positive and negative tables.

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Remark.

Tuples are respectively called supports and conflicts in positive and negative tables.

- ordinary tables that contain ordinary tuples

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and negative tables.

We can build:

- ordinary tables that contain ordinary tuples
- short tables that contain short tuples, i.e., tuples involving the

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and negative tables.

We can build:

- ordinary tables that contain ordinary tuples
- short tables that contain short tuples, i.e., tuples involving the
- and even compressed tables, and smart tables (Hot research topic); Not in XCSP^{3}-core

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and negative tables.

We can build:

- ordinary tables that contain ordinary tuples
- short tables that contain short tuples, i.e., tuples involving the symbol '*'

Generic Constraint extension

With X a sequence of variables and T a set of tuples,

- $X \in T$ is a positive table constraint,
- $X \notin T$ is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and negative tables.

We can build:

- ordinary tables that contain ordinary tuples
- short tables that contain short tuples, i.e., tuples involving the symbol '*'
- and even compressed tables, and smart tables (Hot research topic); Not in XCSP^{3}-core

Generic Constraint extension

The table constraint:

x	y	z
0	0	0
0	0	1
0	0	2
1	1	1
1	2	2
2	2	0

is written in PyCSP^{3} as:

$$
(x, y, z) \text { in }\{(0,0,0),(0,0,1),(0,0,2),(1,1,1),(1,2,2),(2,2,0)\}
$$

Generic Constraint extension

If the domain of the variable z is $\{0,1,2\}$, can we compress?

Generic Constraint extension

If the domain of the variable z is $\{0,1,2\}$, can we compress?

x	y	z
0	0	$*$
1	1	1
1	2	2
2	2	0

Generic Constraint extension

If the domain of the variable z is $\{0,1,2\}$, can we compress?

x	y	z
0	0	$*$
1	1	1
1	2	2
2	2	0

which gives in PyCSP ${ }^{3}$:

$$
(x, y, z) \text { in }\{(0,0, \text { ANY }),(1,1,1),(1,2,2),(2,2,0)\}
$$

Generic Constraint extension

If the domain of the variable z is $\{0,1,2\}$, can we compress?

x	y	z
0	0	$*$
1	1	1
1	2	2
2	2	0

which gives in PyCSP ${ }^{3}$:

$$
(x, y, z) \text { in }\{(0,0, \text { ANY }),(1,1,1),(1,2,2),(2,2,0)\}
$$

and gives in XCSP^{3} :

```
<extension>
    <list> x y z </list>
    <supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>
    <extension>
```


Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

> Case Study "Nonogram" introducing regular
> Case Study "Sudoku" introducing allDifferent
> Case Study "Magic Sequence" introducing sum and cardinality
> Case Study "Warehouse Location" introducing count and element Case Study "Black hole" introducing channel

Global Constraint regular

With X a sequence of variables and A a deterministic (or non-deterministic) finite automaton, $X \in A$ is a constraint regular.

Example.

Remark.

In PyCSP ${ }^{3}$, for posting a regular constraint, we use the Python operator 'in' (as for table constraints) and a PyCSP ${ }^{3}$ object called Automaton.

Global Constraint regular

Remark.
An instantiation of X satisfies the constraint if it represents a word recognized by the automaton A.

Global Constraint regular

Remark.

An instantiation of X satisfies the constraint if it represents a word recognized by the automaton A.

Example.
For the previous constraint:

- $\left\{x_{1}=d, x_{2}=d, x_{3}=d, x_{4}=0, x_{5}=0\right\}$ satisfies the constraint
- $\left\{x_{1}=d, x_{2}=d, x_{3}=0, x_{4}=0, x_{5}=n\right\}$ does not satisfy the constraint

It is possible de convert a constraint regular into:

- a constraint eutension (hut nossihle memory srace explosion)
- a related constraint called mdd (performed in solver Ace)

Global Constraint regular

Remark.

An instantiation of X satisfies the constraint if it represents a word recognized by the automaton A.

Example.

For the previous constraint:

- $\left\{x_{1}=d, x_{2}=d, x_{3}=d, x_{4}=0, x_{5}=0\right\}$ satisfies the constraint
- $\left\{x_{1}=d, x_{2}=d, x_{3}=o, x_{4}=o, x_{5}=n\right\}$ does not satisfy the constraint

Remark.

It is possible de convert a constraint regular into:

- a constraint extension (but possible memory space explosion)
- a related constraint called mdd (performed in solver Ace)

Nonogram Puzzle

			2	2	2	2	2	2	2	
		3	3	2	2	2	2	2	3	3
2	2									
4	4									
1	3	1								
2	1	2								
1	1									
2	2									
2	2									
	3									
1										

Solution to the Nonogram Puzzle

	3	2 3	2	2	2	2	2	2 3	3
22		\square	\square				\square	\square	
44	■	\square	-	-		-	\square	\square	\square
1 3 1 2	\square			-	-	\square			\square
2181	■	\square			\square			\square	\square
11		\square						\square	
22		\square	\square				-	\square	
22			\square	\square		\square	\square		
3				\square	\square	\square			
1					\square				

Using regular for Nonogram

Remark.
Each clue corresponds to a regular expression

Example.
The clue 21 corresponds to:
$0^{*} 1^{2} 0^{+} 10^{*}$

Using regular for Nonogram

Remark.
Each clue corresponds to a regular expression

Example.
The clue 21 corresponds to:

$$
0^{*} 1^{2} 0^{+} 10^{*}
$$

When we consider the benchmark proposed by G. Pesant:

- tables are huge (more than $1,000,000$ tuples for some of them)
- MDDs are rather compact (a few hundreds of nodes, at the most)

Specifying Data

The data for the previous Nonogram puzzle can simply be in JSON: \{
"rowPatterns":
$[[2,2],[4,4],[1,3,1],[2,1,2],[1,1],[2,2],[2,2],[3],[1]]$,
"colPatterns":
$[[3],[2,3],[2,2],[2,2],[2,2],[2,2],[2,2],[2,3],[3]]$
\}

Specifying Data

The data for the previous Nonogram puzzle can simply be in JSON: \{
"rowPatterns":
$[[2,2],[4,4],[1,3,1],[2,1,2],[1,1],[2,2],[2,2],[3],[1]]$,
"colPatterns":
$[[3],[2,3],[2,2],[2,2],[2,2],[2,2],[2,2],[2,3],[3]]$
\}

Remark.

Remember that we store the data corresponding to each instance in a specific file (here, called 'heart.json').

PyCSP ${ }^{3}$ Model

For the model, we use tuple unpacking, and NumPy-like notations:

```
File Nonogram.py
from pycsp3 import *
row_patterns, col_patterns = data
nRows, \(n C o l s=\) len(row_patterns), len(col_patterns)
\# x[i][j] is 1 iff the cell at row i and col \(j\) is colored in black
\(\mathrm{x}=\operatorname{VarArray(size=[nRows,~nCols],~} \operatorname{dom}=\{0,1\})\)
def automaton(pattern):
    ... \# to be written
satisfy(
    [x[i] in automaton(row_patterns[i]) for i in range(nRows)],
    [x[:, j] in automaton(col_patterns[j]) for \(j\) in range(nCols)]
)
```

>- python3 Nonogram.py -data=heart.json

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent

```
Case Study "Magic Sequence" introducing sum and cardinality
Case Study "Warehouse Location" introducing count and element
Case Study "Black hole" introducing channel
```


Global Constraint allDifferent

Semantics

allDifferent (X, E), with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$, iff $\forall(i, j): 1 \leq i<j \leq|X|, \boldsymbol{x}_{i} \neq \boldsymbol{x}_{j} \vee \boldsymbol{x}_{i} \in E \vee \boldsymbol{x}_{j} \in E$ allDifferent (X) iff allDifferent (X, \emptyset)

Semantics

allDifferent-matrix (\mathcal{M}), with \mathcal{M} a matrix of variables of size $n \times m$, iff $\forall i: 1 \leq i \leq n$, allDifferent $(\mathcal{M}[i])$
$\forall j: 1 \leq j \leq m$, allDifferent $\left(\mathcal{M}^{T}[j]\right)$

Global Constraint allDifferent

Semantics

allDifferent (X, E), with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$, iff $\forall(i, j): 1 \leq i<j \leq|X|, \boldsymbol{x}_{i} \neq \boldsymbol{x}_{j} \vee \boldsymbol{x}_{i} \in E \vee \boldsymbol{x}_{j} \in E$ allDifferent (X) iff allDifferent (X, \emptyset)

Semantics

allDifferent-matrix (\mathcal{M}), with \mathcal{M} a matrix of variables of size $n \times m$, iff $\forall i: 1 \leq i \leq n$, allDifferent $(\mathcal{M}[i])$ $\forall j: 1 \leq j \leq m, \operatorname{allDifferent}\left(\mathcal{M}^{T}[j]\right)$

Remark.

One form accepts excepting values, and another is lifted to matrices.

Global Constraint allDifferent

Semantics

```
allDifferent( }X,E)\mathrm{ , with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle, if
    \forall(i,j):1\leqi<j\leq|X|,\mp@subsup{\boldsymbol{x}}{i}{}\not=\mp@subsup{\boldsymbol{x}}{j}{}\vee\mp@subsup{\boldsymbol{x}}{i}{}\inE\vee\mp@subsup{\boldsymbol{x}}{j}{}\inE
allDifferent( }X\mathrm{ ) iff allDifferent( }X,\emptyset
```


Semantics

allDifferent-matrix (\mathcal{M}), with \mathcal{M} a matrix of variables of size $n \times m$, iff $\forall i: 1 \leq i \leq n$, allDifferent $(\mathcal{M}[i])$ $\forall j: 1 \leq j \leq m$, allDifferent $\left(\mathcal{M}^{T}[j]\right)$

Remark.

One form accepts excepting values, and another is lifted to matrices.
Remark.
In PyCSP ${ }^{3}$, we call the function AllDifferent () that accepts two optional named parameters called excepting and matrix.

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

The data (clues) must be stored in a JSON file; here a file grid.json: \{

$$
\text { "clues": }[[0,2,0,5,0,1,0,9,0], \ldots,[0,1,0,9,0,7,0,6,0]]
$$

\}

PyCSP ${ }^{3}$ Model

```
File Sudoku.py
from pycsp3 import *
clues = data
# x[i][j] is the value in cell at row i and col j.
x = VarArray(size=[9, 9], dom=range(1, 10))
satisfy(
    # imposing distinct values on each row and each column
    AllDifferent(x, matrix=True),
    # imposing distinct values on each block tag(blocks)
    [AllDifferent(x[i:i + 3, j:j + 3])
            for i in [0, 3, 6] for j in [0, 3, 6]],
    # imposing clues tag(clues)
    [x[i][j] == clues[i][j]
            for i in range(9) for j in range(9) if clues[i][j] > 0]
)
```

>- python3 Sudoku.py -data=grid.json

File Sudoku-grid.xml

```
<instance format="XCSP3" type="CSP">
    <variables>
        <array id="x" size="[9][9]"> 1..9 </array>
    </variables>
    <constraints>
            <allDifferent>
            <matrix> x[][] </matrix>
        </allDifferent>
        <group>
            <allDifferent> %... </allDifferent>
            <args> x[0..2][0..2] </args>
            <args> x[0..2][3..5] </args>
            <args> x[0..2][6..8] </args>
            <args> x[3..5][0..2] </args>
            <args> x[3..5][3..5] </args>
            <args> x[3..5][6..8] </args>
            <args> x[6..8][0..2] </args>
            <args> x[6..8][3..5] </args>
            <args> x[6..8][6..8] </args>
        </group>
        <instantiation class="clues" note="Just 2 clues here for the
                    simplicity of the illustration">
            <list> x[0][2] x[8][7] </list>
            <values> 2 6 </values>
        </instantiation>
    </constraints>
</instance>
```


Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality Case Study "Warehouse Location" introducing count and element Case Study "Black hole" introducing channel

Global Constraint sum

A constraint sum is a constraint of the form:

$$
\sum_{i=1}^{r} c_{i} x_{i}<\text { op> } L
$$

where:

- $c_{i} \in \mathbb{Z}, \forall i \in 1 . . r$
- <op> $\in\{<, \leq, \geq,>,=, \neq, \in, \notin\}$
- L is an integer, a variable or an interval

Coefficients can also be given under the form of variables.
Remark.
In PyCSP ${ }^{3}$, we must call the function Sum() (or use a dot product).

Global Constraint cardinality

For the semantics, V is a sequence of values and O is assumed to be a sequence of variables (for simplicity).

Semantics

cardinality (X, V, O), with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle, \quad V=\left\langle v_{1}, v_{2}, \ldots\right\rangle, \quad O=\left\langle o_{1}, o_{2}, \ldots\right\rangle$, iff $\forall j: 1 \leq j \leq|V|,\left|\left\{i: 1 \leq i \leq|X| \wedge \boldsymbol{x}_{i}=v_{j}\right\}\right|=\boldsymbol{o}_{j}$

Remark.

In PyCSP ${ }^{3}$, we must call the function Cardinality () that accepts a list of variables as first parameter, and a named parameter called occurrences whose value must be a dictionary.

Global Constraint cardinality

Example.

We give an example where O contains intervals.

$$
\text { cardinality }(\langle x, y, z\rangle,\{N, D, O\},\{0 . .1,1 . .1,1 . .2\})
$$

As an illustration, we have:

- Instantiation (N,D,O)
- Instantiation (O,D,O)
- Instantiation (D,D,O)

Global Constraint cardinality

Example.

We give an example where O contains intervals.

$$
\text { cardinality }(\langle x, y, z\rangle,\{N, D, O\},\{0 . .1,1 . .1,1 . .2\})
$$

As an illustration, we have:

- Instantiation (N,D,O) \Rightarrow OK
- Instantiation (O,D,O)
- Instantiation (D,D,O)

Global Constraint cardinality

Example.

We give an example where O contains intervals.

$$
\text { cardinality }(\langle x, y, z\rangle,\{N, D, O\},\{0 . .1,1 . .1,1 . .2\})
$$

As an illustration, we have:

- Instantiation (N,D,O)
- Instantiation (O,D,O) \Rightarrow OK
- Instantiation (D,D,O)

Global Constraint cardinality

Example.

We give an example where O contains intervals.

$$
\text { cardinality }(\langle x, y, z\rangle,\{N, D, O\},\{0 . .1,1 . .1,1 . .2\})
$$

As an illustration, we have:

- Instantiation (N,D,O)
- Instantiation (O,D,O)
- Instantiation (D,D,O) $\Rightarrow \mathrm{KO}$

Global Constraint cardinality

Example.

We give an example where O contains intervals.

$$
\text { cardinality }(\langle x, y, z\rangle,\{N, D, O\},\{0 . .1,1 . .1,1 . .2\})
$$

As an illustration, we have:

- Instantiation (N,D,O) \Rightarrow OK
- Instantiation (O,D,O) \Rightarrow OK
- Instantiation (D,D,O) $\Rightarrow \mathrm{KO}$

Magic Sequence

Problem 019, proposed by T. Walsh, on CSPLib.
"A magic sequence of length (order) n is a sequence of integers $v_{0}, v_{1}, \ldots, v_{n-1}$ between 0 and $n-1$, such that for each value $i \in 0 . . n-1$ the value i occurs exactly v_{i} times in the sequence."

Magic Sequence

Problem 019, proposed by T. Walsh, on CSPLib.
"A magic sequence of length (order) n is a sequence of integers $v_{0}, v_{1}, \ldots, v_{n-1}$ between 0 and $n-1$, such that for each value $i \in 0 . . n-1$ the value i occurs exactly v_{i} times in the sequence."

For instance,

6210001000

is a magic sequence of length 10 since:

- 0 occurs 6 times in it,
- 1 occurs twice,
- 2 occurs once,
- ...

PyCSP ${ }^{3}$ Model

```
File MagicSequence.py
from pycsp3 import *
\(\mathrm{n}=\mathrm{data}\)
\# x[i] is the ith value of the sequence
\(\mathrm{x}=\operatorname{VarArray}(\) size=n, dom=range(n))
satisfy(
    \# each value i occurs exactly \(x[i]\) times in the sequence
    Cardinality (x, occurrences=\{i: \(x[i]\) for \(i\) in range(n) \}),
    \# tag (redundant-constraints)
    [Sum(x) \(==n\), Sum((i - 1) * \(x[i]\) for i in range(n)) == 0]
)
```

>- python3 MagicSequence.py -data=10

Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints
Case Study "Nonogram" introducing regular
Case Study "Sudoku" introducing allDifferent
Case Study "Magic Sequence" introducing sum and cardinality
Case Study "Warehouse Location" introducing count and element Case Study "Black hole" introducing channel

Global Constraint count

Can you say with your words what is the semantics of this constraint?

Semantics

$\operatorname{count}(X, V) \odot k$, with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$, iff
$\left|\left\{i: 1 \leq i \leq|X| \wedge \boldsymbol{x}_{i} \in V\right\}\right| \odot \boldsymbol{k}$

Special cases of count are

- atLeast
- atMont
- exactly
- amoner

In PyCSP ${ }^{3}$, we must call the function Count () that accepts a list of
variables as first narameter and a named narameter which is either
value or values.

Global Constraint count

Can you say with your words what is the semantics of this constraint?

Semantics

$\operatorname{count}(X, V) \odot k$, with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$, iff
$\left|\left\{i: 1 \leq i \leq|X| \wedge \boldsymbol{x}_{i} \in V\right\}\right| \odot \boldsymbol{k}$

Special cases of count are:

- atLeast
- atMost
- exactly
- among

Global Constraint count

Can you say with your words what is the semantics of this constraint?

Semantics

$\operatorname{count}(X, V) \odot k$, with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$, iff
$\left|\left\{i: 1 \leq i \leq|X| \wedge \boldsymbol{x}_{i} \in V\right\}\right| \odot \boldsymbol{k}$

Special cases of count are:

- atLeast
- atMost
- exactly
- among

Remark.
In PyCSP ${ }^{3}$, we must call the function Count () that accepts a list of variables as first parameter, and a named parameter which is either value or values.

Global Constraint element

Semantics

```
element(X,v), with X = \langlex, , x2,..\rangle, iff // indexing assumed to start at 1
    \existsi:1\leqi\leq|X|\wedge 攵}=\boldsymbol{v
element(X,i,v), with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle\mathrm{ , iff
    \mp@subsup{\boldsymbol{x}}{\boldsymbol{i}}{}=\boldsymbol{v}
```

- The first form of constraint element allows us to test the membershin of an element in a list
- The second form allows us to make a connection between a list of variables (or integers) and a variable; this is the usual case

Global Constraint element

Semantics

```
element (X,v), with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle, if
    // indexing assumed to start at 1
    \existsi:1\leqi\leq|X|^\mp@subsup{\boldsymbol{x}}{i}{}=v
element(X,i,v), with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle\mathrm{ , iff
    \mp@subsup{\boldsymbol{x}}{\boldsymbol{i}}{}=\boldsymbol{v}
```

- The first form of constraint element allows us to test the membership of an element in a list.
- The second form allows us to make a connection between a list of variables (or integers) and a variable; this is the usual case.

Global Constraint element

Semantics

```
element(X,v), with X = \langlex, , x2,..\rangle, iff // indexing assumed to start at 1
    \existsi:1\leqi\leq|X|\wedge 攵}=\boldsymbol{v
element(X,i,v), with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle, iff
    xi}=\boldsymbol{v
```

- The first form of constraint element allows us to test the membership of an element in a list.
- The second form allows us to make a connection between a list of variables (or integers) and a variable; this is the usual case.

Remark.
In PyCSP ${ }^{3}$, we use natural indexing on lists (see Problem Warehouse).

Warehouse Location Problem

Problem 034, proposed by B. Hnich, on CSPLib.
"A company considers opening warehouses at some candidate locations in order to supply its existing stores. Each possible warehouse has the same maintenance cost, and a capacity designating the maximum number of stores that it can supply. Each store must be supplied by exactly one open warehouse."
"The supply cost to a store depends on the warehouse. The objective is to determine which warehouses to open, and which of these warehouses should supply the various stores, such that the sum of the maintenance and supply costs is minimized."

Data

$$
\begin{gathered}
\{ \\
\\
\\
\text { \} }
\end{gathered}
$$

 "fixedCost": 30,
 "warehouseCapacities": [1, 4, 2, 1, 3],
 "storeSupplyCosts":
 \([[100,24,11,25,30],[28,27,82,83,74],[74,97,71,96,70]\),
 \([2,55,73,69,61],[46,96,59,83,4],[42,22,29,67,59]\),
 \([1,5,73,59,56],[10,73,13,43,96],[93,35,63,85,46],[47,65,55,71,95]]\)
 Note that:

- warehouseCapacities[i] indicates the maximum number of stores that can be supplied by the ith warehouse
- storeSupplyCosts[i][j] indicates the cost of supplying the ith store with the jth warehouse

File Warehouse.py

```
from pycsp3 import *
cost, capacities, costs = data
nWarehouses, nStores = len(capacities), len(costs)
# w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores, dom=range(nWarehouses))
# c[i] is the cost of supplying the ith store
c = VarArray(size=nStores, dom=lambda i: costs[i])
# o[j] is 1 if the jth warehouse is open
O = VarArray(size=nWarehouses, dom={0, 1})
satisfy(
    # capacities of warehouses must not be exceeded
    [Count(w, value=j) <= capacities[j] for j in range(nWarehouses)]
    # the warehouse supplier of the ith store must be open
    [o[w[i]] == 1 for i in range(nStores)],
    # computing the cost of supplying the ith store
    [costs[i][w[i]] == c[i] for i in range(nStores)]
)
minimize(
    # minimizing the overall cost
    Sum(c) + Sum(o) * cost
)
```


Outline

(1) Reminder
(2) Languages and Formats
(3) Some Popular Constraints

Generic Constraints

Case Study "Black hole" introducing channel

Global Constraint channel

Three possible forms for this constraint:

Semantics

```
channel(X), with }X=\langle\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots\rangle, if
```

 // indexing assumed to start at 1

Semantics

channel (X, Y), with $X=\left\langle x_{1}, x_{2}, \ldots\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots\right\rangle$, iff $\forall i: 1 \leq i \leq|X|, \boldsymbol{x}_{i}=j \Leftrightarrow \boldsymbol{y}_{j}=i$

Semantics

channel (X, v), with $X=\left\{x_{1}, x_{2}, \ldots\right\}$, iff // indexing assumed to start at 1 $\forall i: 1 \leq i \leq|X|, \boldsymbol{x}_{i}=1 \Leftrightarrow \boldsymbol{v}=i$ $\exists i: 1 \leq i \leq|X| \wedge \boldsymbol{x}_{i}=1$

Black Hole (solitaire)

Data

```
{
    "nCardsPerSuit": 4,
    "nCardsPerPile": 3,
    "piles": [[1,4,13],[15,9,6],[14,2,12],[7,8,5],[11,10,3]]
}
```

Note that:

- piles $[i][j]$ indicates the value of the j th card on the ith pile


```
File Blackhole.py
from pycsp3 import *
\(m\), piles = data \# m denotes the number of cards per suit
nCards \(=4 * \mathrm{~m}\)
table \(=\{(i, j)\) for \(i\) in range(nCards) for \(j\) in range(nCards)
    if i \(\% \mathrm{~m}==(j+1) \% \mathrm{~m}\) or \(\mathrm{j} \% \mathrm{~m}==(\mathrm{i}+1) \% \mathrm{~m}\}\)
\# x[i] is the value j of the card at the ith position of the stack
\(\mathrm{x}=\mathrm{VarArray}(\mathrm{size}=\mathrm{nCards}\), dom=range(nCards))
\# y[j] is the position i of the card whose value is j
\(y=\) VarArray (size=nCards, dom=range(nCards))
satisfy (
    \# linking variables of \(x\) and \(y\)
    Channel(x, y),
    \# the Ace of Spades is initially put on the stack
    \(y[0]==0\),
    \# cards must be played in the order of the piles
    [Increasing([y[j] for \(j\) in pile], strict=True) for pile in piles],
    \# each new card must be at a higher or lower rank
    [(x[i], \(x[i+1])\) in table for \(i\) in range (nCards - 1)]
)
```


[^0]: At the intermediate level, using JSON instead of XML is possible but has

[^1]: Remak
 XCSP ${ }^{3}$-core contains popular constraints over integer variables, classified

