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® Guiding Search toward Conflicts
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Search Space

For a given CN P such that:
® nis the number of variables
® d is the greatest domain size
® ¢ is the number of constraints

® r is the greatest constraint arity

What is the complexity of a Generate and Test approach?

Answer: O(d"er), assuming that a constraint check is O(r)



Exponential Growth

Suppose that:
® the complexity is only O(2")

® 10° complete instantiations can be processed any new second

n 2" Processing Time
10 around 10° around 1 nanosecond
20 around 10°  around 1 millisecond
30 around 10° around 1 second
40 around 10  around 16 minutes
50 around 10%® around 11 days
60 around 108 around 32 years

70

around 10?1

around 317 centuries




Search Tree

Most of the time, the search space can be perceived as a search tree.




Pruning the Search Tree

Constraint Inference (Filtering/Propagation) can help us!




Pruning the Search Tree

Finding a solution may become realistic in a reduced search tree.




Constraint Inference Only?

Solving a CN by only employing constraint propagation is very rare. To
find a solution, one has then to explore the search tree with:

® either a complete method: full exploration of the search space

® or an incomplete method: partial exploration of the search space

In any case, it may look like searching a needle in a haystack!




Complete Exploration

Classical approach
® depth-first traversal
® backtracking mecanism

® interleaving of

® decisions
® propagations



Complete Exploration

Classical approach
® depth-first traversal
® backtracking mecanism

® interleaving of

® decisions
® propagations

Remark.
Other strategies exist:

® breadth-first traversal
® limited discrepancy search (LDS)
® large neighborhood search (LNS)
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Search Tree
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Nonbinary ¢-search

Algorithm 1: nonbinary-¢-search(P: CN): Boolean

P < ¢(P)
if P=_1 then
L return false

if Vx € vars(P),|dom(x)| =1 then
| return true

select a variable x of P such that |dom(x)| > 1
foreach value a € dom(x) do

if nonbinary-¢-search(P|x—,) then
L | return true

return false




Nonbinary ¢-search

Algorithm 2: nonbinary-¢-search(P: CN): Boolean

P < ¢(P)
if P=_1 then
L return false

if Vx € vars(P),|dom(x)| =1 then
| return true

select a variable x of P such that |dom(x)| > 1
foreach value a € dom(x) do

if nonbinary-¢-search(P|x—,) then
L | return true

return false

Remark.
¢ denotes the process (level) of filtering under the form of a consistency
to enforce (AC, BC, ...).



[[lustration

For simplicity, we assume that the domains of all variables is
{1,2,...,d}.




[[lustration

For simplicity, we assume that the domains of all variables is
{1,2,...,d}.

Remark.
Note that all taken decisions are positive, i.e., variable assignments.



Binary ¢-search

Algorithm 3: binary-¢-search(P: CN): Boolean

P < ¢(P)
if P=_1 then
L return false

if Vx € vars(P),|dom(x)| =1 then
| return true

select a value (x, a) of P such that |dom(x)| > 1
return binary-¢-search(P|x=,) V binary-¢-search(P|y5)
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Algorithm 4: binary-¢-search(P: CN): Boolean

P < ¢(P)
if P=_1 then
L return false

if Vx € vars(P),|dom(x)| =1 then
| return true

select a value (x, a) of P such that |dom(x)| > 1
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Binary ¢-search

Algorithm 5: binary-¢-search(P: CN): Boolean

P < ¢(P)
if P=_1 then
L return false

if Vx € vars(P),|dom(x)| =1 then
| return true

select a value (x, a) of P such that |dom(x)| > 1
return binary-¢-search(P|x=,) V binary-¢-search(P|y5)

Question: Is there a condition on ¢ ?

Answer: ¢ must at least check covered constraints (also true for
nonbinary ¢-search)



[[lustration




[[lustration

Remark.
Note that first decisions are positive, i.e., variable assignments, and
second decisions are negative, i.e., value refutations.
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At each node 7 of the search tree, there is a subdivision of the current
CN P into a set of reduced CNs whose union is equivalent to P"7. This
guarantees completeness provided that all CNs are explored.
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About Node Expansion

At each node 7 of the search tree, there is a subdivision of the current
CN P into a set of reduced CNs whose union is equivalent to P"7. This
guarantees completeness provided that all CNs are explored.

Branching is the fact of subdividing nodes of the search tree.

Remark.
Other forms of branching, different from:

® non-binary branching
® binary branching
introduced earlier can be considered, as for example,
¢ (binary) domain splitting
where two branches labelled with x < k and x > k are generated.



Look-ahead and Look-back Schemes

Depending on the chosen level of filtering corresponding to ¢, we obtain
different look-ahead algorithms. Classical algorithms are:

e BT
® FC (Forward Checking)
® MAC (Maintaining Arc Consistency)



Look-ahead and Look-back Schemes

Depending on the chosen level of filtering corresponding to ¢, we obtain
different look-ahead algorithms. Classical algorithms are:

e BT
® FC (Forward Checking)
® MAC (Maintaining Arc Consistency)

Remark.
There exist look-back schemes that allo us to perform intelligent
backtracking:

e CBJ (Conflict-directed backjumping)
e DBT (Dynamic Backtracking)



BT

BT is a nonbinary ¢-search where at each node ¢ simply checks that all
constraints covered by the current instantiation are satisfied.

Definition
Let / be an instantiation and ¢ be a constraint. ¢ is covered by [ iff
sep(c) C vars(1).



BT

BT is a nonbinary ¢-search where at each node ¢ simply checks that all
constraints covered by the current instantiation are satisfied.

Definition
Let / be an instantiation and ¢ be a constraint. ¢ is covered by [ iff
sep(c) C vars(1).

Example.

Let | = {x =1,y = 3,z = 2} be an instantiation. we have:
® the constraint x + z = y is covered and satisfied by /
® the constraint w = x is not covered by /
® the constraint x > y is covered but not satisfied by /
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FC

FC (Forward Checking) is a nonbinary ¢-search where at each node ¢
enforces arc consistency only on constraints that are almost covered by
the current instantiation.

Definition
Let / be an instantiation and ¢ be a constraint. ¢ is almost covered by /
iff |scp(c) \ vars(l)] = 1.
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FC

FC (Forward Checking) is a nonbinary ¢-search where at each node ¢
enforces arc consistency only on constraints that are almost covered by
the current instantiation.

Definition
Let / be an instantiation and ¢ be a constraint. ¢ is almost covered by /
iff |scp(c) \ vars(l)] = 1.

Example.
Let / = {x =1,y = 3,z = 2} be an instantiation. we have:
® the constraint x + z = y + w is almost covered by /

® the constraint w = t is neither covered nor almost covered by /

Remark.
FC enforces a partial form of Arc Consistency.
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MAC

MAC is a binary search enforcing (maintaining) Arc Consistency at each
node of the search tree.

In the following algorithm,

® we introduce / that represents a stack with the successive positive
decisions that are taken along the current branch
® we write AC(P, S) for enforcing arc consistency, with @ initialized
with S. Note that:
® S is vars(P) initially, to guarantee AC at the root of the search tree
® S is the variable x involved in the last taken decision during search
® we record information about value removals at each level |/| of the
search tree.

Remark.

We consider here that the level in the search tree corresponds to the
number of taken positive decisions (consequently ignoring negative
decisions in this regard).

N
NS



MAC=Binary-AC-search
Algorithm 6: MAC(P: CN)

consistent < AC(P, vars(P)) // AC initially enforced
if —consistent then

| return

I+ 0 // | represents the current instantiation

finished <— false
while —finished do
select a value (x, a) of P such that x ¢ vars(/)

I.push(x, a)
dom(x).reduceTo(a, |1]) // x is assigned the value a at level |/|
consistent < AC(P, {x}) // AC maintained after positive decisions
if consistent A |I| = n then
print(1) // A solution has been found and is printed
L consistent < false // Inserted to keep searching for solutions

while —consistent A | # () do

(x,a) « 1.pop()

foreach variable y € vars(P) \ vars(l) do
| dom(y).restoreAt(|1])

dom(x).remove(a, |1) // a is removed from dom(x) at level |/|
if dom(x) = 0 then

| consistent < false
else

L consistent <— AC(P, {x}) // AC maintained after negative decisions

if —consistent then
L finished < true
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Experiment with Ace

Try:
java -jar ACE-21-01.jar Queens-0010.xml -r_c=max -varh=Dom -s=all

where:
® —s=all means that we look for all solutions

® -r_c=max means that the restart cutoff is the maximal value (so
there is no restart)

® -varh=Dom means that we use the variable ordering heuristic
min-dom



Experiment with Ace

Try:
java -jar ACE-21-01.jar Queens-0010.xml -r_c=max -varh=Dom -s=all

where:
® —s=all means that we look for all solutions

® -r_c=max means that the restart cutoff is the maximal value (so
there is no restart)

® -varh=Dom means that we use the variable ordering heuristic
min-dom

Comparing BT/FC/MAC :
® BT: add -p=BT
® FC: add -p=FC
® MAC: default value (this is equivalent to add -p=GAC)



Backtracking Information

BT, FC and MAC are backtracking algorithms. And when backtracking,
we have to:

® restore domains

® possibly restore constraints (for example, the structure /ast used
with AC2001 or the dynamic tables used in STR)



Backtracking Information

BT, FC and MAC are backtracking algorithms. And when backtracking,
we have to:

® restore domains

® possibly restore constraints (for example, the structure /ast used
with AC2001 or the dynamic tables used in STR)

Two classical solutions exist:
® Copying
® All structures that must be backtracked are copied at each level.
The copy is performed before taking the next decision.
® We have to be careful about the memory!
® On backtrack: use the copy recorded at the right level.

® Trailing:
® Only modifications to structures are recorded.
® On backtrack: undo recorded modifications.



Intelligent Backtracking: CBJ

BT, FC and MAC basically performs chronological backtracking, whereas
CBJ performs intelligent backtracking.
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Intelligent Backtracking: CBJ

BT, FC and MAC basically performs chronological backtracking, whereas
CBJ performs intelligent backtracking.

For simplicity, we consider binary constraints only, and we consider that ¢
simply checks covered constraints (as in BT).

The method works as follows:
@ Whenever a new assignment y = b is performed, and happens to be
incompatible with a previously assigned value (x, a), we record a
nogood —(x = a Ay = b), which can also be written as

XxX=a—y#b
with x = a being the explanation of y # b. We note:
expl(y # b) = {x = a}.
® Whenever a domain wipeout occurs (for a variable y), we can
deduce a new nogood:
/\bedom’”f‘(y)exp/(y # b)
©® Checking inferred nogoods permit to backtrack more than
chronological backtracking.
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Search-guiding Heuristics

Important:

® The order in which variables are assigned by a backtracking search
algorithm has been recognized as a key issue for a long time.

® Using different search ordering heuristics to solve a CSP instance
can lead to drastically different results in terms of efficiency.

® Simply introducing some form of randomization to a given search
ordering heuristic may exhibit a large variability in performance.
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Search-guiding Heuristics

Important:

® The order in which variables are assigned by a backtracking search
algorithm has been recognized as a key issue for a long time.

® Using different search ordering heuristics to solve a CSP instance
can lead to drastically different results in terms of efficiency.

® Simply introducing some form of randomization to a given search
ordering heuristic may exhibit a large variability in performance.

Goal of such heuristics: to minimize the size of the search trees

Typically, when conducting a backtrack search, we sollicit:
® 3 variable ordering heuristic to select the next variable x to be
assigned
® a value ordering heuristic to select the value a to assign to x

30



Search-guiding Heuristics

General rules to adopt for efficieny:

@ It is better to assign first the variables that belong to the hard parts
of the problem. Fail-first principle:

“To succed, try first where you are most likely to fail”

® To find quickly a solution, it is better to assign first the value that

most likely belongs to a solution (Succeed-first or Promise principle).

® The initial variable/value choices are particularly important.
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Search-guiding Heuristics

General rules to adopt for efficieny:

@ It is better to assign first the variables that belong to the hard parts
of the problem. Fail-first principle:

“To succed, try first where you are most likely to fail”

® To find quickly a solution, it is better to assign first the value that

most likely belongs to a solution (Succeed-first or Promise principle).

® The initial variable/value choices are particularly important.

Remark.
Depending on the context, the second rule may not be so important.

31
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Basically, a variable ordering heuristic associates a score (real value) with
every variable. Then, we can choose between:

® min: selecting the variable with the lowest score

® max: selecting the variable with the highest score
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Variable Ordering Heuristics

Basically, a variable ordering heuristic associates a score (real value) with
every variable. Then, we can choose between:

® min: selecting the variable with the lowest score

® max: selecting the variable with the highest score

Example.
® min-dom, simply denoted by dom most of the time, is the heuristic
that selects the variable with the smallest current domain.

® max-deg, simply denoted by deg most of the time, is the heuristic
that selects the variable with the highest degree.

In case of several variables with best equal scores, we need a tie-breaker.
For example, brelaz is dom+deg.



Categories of Variable Ordering Heuristics

Static variable ordering heuristics precomputes ordering before search.
® Jexico

® deg and ddeg (Ullmann, 1976; Dechter & Meiri, 1989)
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Categories of Variable Ordering Heuristics

Static variable ordering heuristics precomputes ordering before search.
® Jexico

® deg and ddeg (Ullmann, 1976; Dechter & Meiri, 1989)

Dynamic variable ordering heuristics performs a computation at each
node using the current state.

® dom (Haralick & Elliott, 1980)
e dom/ddeg (Bessiere & Régin, 1996)
® brelaz (Brelaz, 1979; Smith, 1999)
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Categories of Variable Ordering Heuristics

Static variable ordering heuristics precomputes ordering before search.

® [exico

® deg and ddeg (Ullmann, 1976; Dechter & Meiri, 1989)

Dynamic variable ordering heuristics performs a computation at each
node using the current state.

® dom (Haralick & Elliott, 1980)
e dom/ddeg (Bessiere & Régin, 1996)
® brelaz (Brelaz, 1979; Smith, 1999)

Adaptive variable ordering heuristics performs a computation at each
node using the current state and the history (of explored nodes).

® wdeg, dom/wdeg (Boussemart et al., 2004)
® impact (Refalo, 2004)
e activity (Michel & Hentenryck, 2012)

33



[[lustration

Compare the (binary) search trees built by FC on the instance 3-queens
while using:

® the heuristic min-dom, with lexico as tie-breaker

® the anti-heuristic max-dom, with lexico as tie-breaker
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Value Ordering Heuristics

Classical heuristics:

lexico
random
min-conflicts

max-conflicts



Value Ordering Heuristics

Classical heuristics:
® Jexico
® random
® min-conflicts

® max-conflicts

For a value (x, a), the conflict count of (x,a) on a CN P is an integer,
denoted by cc(x, a), computed as follows:

ZcEctrs(P):xEscp(c) {7 € Myesep(cydom(y) \ rel(c) | 7[x] = a}|



[[lustration

The variable w involved in three binary constraints. We have:
® cc(w,a)=1+2+1=4
® cc(w,b)=0+2+1=3
® cc(w,c)=14+14+0=2

The order given by min-conflicts for w is then ¢, b and a.
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® Guiding Search toward Conflicts
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A search-guiding heuristic is said to be adaptive when the selection it
performs at a given node of the search tree depends on the current state
of the problem instance as well as on the past states encountered so far.
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Adaptive Heuristics

A search-guiding heuristic is said to be adaptive when the selection it
performs at a given node of the search tree depends on the current state
of the problem instance as well as on the past states encountered so far.

In other words, some information concerning the sub-tree already
explored is taken into account by an adaptive heuristic to perform its
selection. It implements then a kind of learning, as for example:

® wdeg: constraint weighting

® mpacts and activity: memorization of search space reductions

® Jc (last conflicts): memorization of the last failed assignments //
used in conjunction with a variable heuristic

Our focus is on wdeg and Ic, which aim at guiding search towards
conflicts.



Constraint Weighting

The principle is the following:

® a weight is associated with each constraint,

® everytime a conflict occurs while filtering a constraint ¢, the weight
associated with c is incremented.

® the weigth of a variable is the sum of the weigths of all its involving
constraints.



Constraint Weighting

The principle is the following:

® a weight is associated with each constraint,

® everytime a conflict occurs while filtering a constraint ¢, the weight
associated with c is incremented.

® the weigth of a variable is the sum of the weigths of all its involving
constraints.

The interest is that this heuristic is adaptive, with the expectation to
focus on the hard part(s) of the instance.



Implementation

Algorithm 7: constraintPropagationOn(P: CN): Boolean

Q <+ ctrs(P)

while Q # () do

pick and delete ¢ from Q

Xevt < c.filter() // Xen denotes the set of variables with

reduced domains (after filtering by means of c)
if Ix € Xevt such that dom(x) = () then
weight|[c] < weight[c] + 1
L return false // global inconsistency detected

foreach ¢’ € ctrs(P) such that ¢’ # ¢ and Xe,: Nscp(c’) # 0 do
L add ¢’ to Q

return true
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Experimental Results
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Pairwise comparison (CPU time) of heuristics when used by MAC to
solve the instances from XCSP constraint solver competition.



Last-conflict based Reasoning

The principle is the following: everytime a conflict occurs, the last

assigned variable is selected in priority as long as no consistent value is
found for it.

It looks like a lazy identification of nogoods.



Implementation

Algorithm 8: binary-¢-search!(P: ¢-consistent CN): Boolean
if P= 1 then
| return false

if Vx € vars(P),|dom(x)| =1 then
| return true

if priority # null then
‘ X <— priority
else
| x < variableOrderingHeuristic.select Variable()
a < valueOrderingHeuristic.selectValueFor(x)
if (P|x=2) = L then
‘ priority < x
else
L priority < null

return binary-¢-searchtC (p(P|x=,)) \V binary-¢-searcht (¢(P|xa))




[[lustration

testing-set = {x;}
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Figure: The compatibility graph of a constraint network involving a clique of

constraints of difference and a clique of entailed constraints.
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Figure: Search tree built by MAC (68 explored nodes).



Example

priority = x1

priority = x4

Figure: Search tree built by MAC-LC; (21 explored nodes).



Generalization

testing-set — {z;}

testing-set = {x;, z;}

52



Bessiere, C., & Régin, J. 1996.
MAC and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems.
Pages 61-75 of: Proceedings of CP’96.

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. 2004.
Boosting systematic search by weighting constraints.
Pages 146—150 of: Proceedings of ECAI'04.

Brelaz, D. 1979.
New methods to color the vertices of a graph.
Communications of the ACM, 22, 251-256.

Dechter, R., & Meiri, I. 1989.
Experimental evaluation of preprocessing techniques in constraint
satisfaction problems.
Pages 271-277 of: Proceedings of IJCAI'89.

Haralick, R.M., & Elliott, G.L. 1980.
Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14, 263-313.

53



Michel, L., & Hentenryck, P. Van. 2012.
Activity-Based Search for Black-Box Constraint Programming
Solvers.
Pages 228-243 of: Proceedings of CPAIOR’12.

Refalo, P. 2004.
Impact-based search strategies for constraint programming.
Pages 557-571 of: Proceedings of CP’'04.

Smith, B.M. 1999.
The Brelaz heuristic and optimal static orderings.
Pages 405—418 of: Proceedings of CP'99.

Ullmann, J.R. 1976.
An algorithm for subgraph isomorphism.
Journal of the ACM, 23(1), 31-42.

54



	Backtracking Search
	Search Ordering Heuristics
	Guiding Search toward Conflicts
	References

