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a b s t r a c t 

The protection of private information is a crucial issue in data-driven research and business 

contexts. Typically, techniques like anonymisation or (selective) deletion are introduced in 

order to allow data sharing, e. g. in the case of collaborative research endeavours. For use 

with anonymisation techniques, the k -anonymity criterion is one of the most popular, with 

numerous scientific publications on different algorithms and metrics. Anonymisation tech- 

niques often require changing the data and thus necessarily affect the results of machine 

learning models trained on the underlying data. In this work, we conduct a systematic com- 

parison and detailed investigation into the effects of different k -anonymisation algorithms 

on the results of machine learning models. We investigate a set of popular k -anonymisation 

algorithms with different classifiers and evaluate them on different real-world datasets. Our 

systematic evaluation shows that with an increasingly strong k -anonymity constraint, the 

classification performance generally degrades, but to varying degrees and strongly depend- 

ing on the dataset and anonymisation method. Furthermore, Mondrian can be considered 

as the method with the most appealing properties for subsequent classification. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

The amount of human-generated data that is being stored,
processed and analysed is growing exponentially. A signifi-
cant part of these data is by nature personal and sensitive
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information, e. g. names, location data, ethnicity, health con-
dition, political opinions, gender identity or sexual orienta-
tion. Such information is collected in different contexts and
is used by companies as well as research institutions, gov-
ernmental and non-governmental organisations. Data-driven
research and products incorporating machine learning (ML)
methods rely on the (automated) analysis of personal infor-
mation to generate knowledge or provide (personalised) ser-
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ices. Consequently, the use, distribution and publication of 
uch data poses many challenges. The main challenge is to 
nsure the protection of privacy of individuals whose data are 
eing stored and processed while maintaining the usability of 
he data. 

Privacy is considered a fundamental human right and 

s therefore protected to varying degrees by a multitude 
f different national and regional laws. In the European 

nion, the General Data Protection Regulation (GDPR, EU 

016/679) (European Union, 2016) provides a very strict 
nd compulsory framework for the protection of personal 
nd sensitive information. While the “privacy by design”
aradigm (Langheinrich, 2001) stresses the precept of using 
s little sensitive information as possible, many applications 
irectly rely on the collection and processing of personal in- 
ormation. Thus, in order to comply with privacy protection 

egislation (including the GDPR) the anonymisation of sensi- 
ive data is absolutely essential. 

Anonymisation aims at ensuring that data records 
f a person can no longer be unambiguously traced 

ack to this specific person. For this purpose, a vari- 
ty of competing and complementary privacy paradigms 
ave been defined, e. g. k -anonymity (Samarati, 2001) ,
 -diversity (Machanavajjhala et al., 2007) , t- 
loseness (Li et al., 2007) , δ-presence (Nergiz et al., 2007) ,
nd ε-differential privacy (Dwork et al., 2006) . The most 
opular privacy model for protecting privacy in data is k - 
nonymity (Gkoulalas-Divanis et al., 2014) . In order to satisfy 
 -anonymity, it is sufficient to transform the quasi-identifiers 
QIDs), i. e. attributes such as location information, age,
thnicity or gender that could be used (in combination with 

xternal information) to re-identify individuals. This transfor- 
ation must ensure that each record shares the same values 
ith at least k − 1 other records in the dataset. However, even 

he application of this rather simple anonymity paradigm 

istorts the data. This can result in information loss and thus 
ay introduce a bias for ML models. The resulting changes 

o the ML results are difficult to estimate in advance. The 
agnitude of the data distortion and the resulting infor- 
ation loss are decisive for the usability of the underlying 

ata. Keeping the information loss as small as possible is 
rucial, especially for automated analysis by means of ML 
ethods, which aims to derive meaningful patterns from the 

nderlying data. The reduced usability is also a reason why 
e focus primarily on k -anonymity and do not include other 
rivacy paradigms mentioned above such as e. g. ε-differential 
rivacy, which is a competing anonymisation paradigm that is 
ften used in practice but seems unable to provide acceptable 
L utility for values of ε that provide practically relevant 

rotection (Domingo-Ferrer et al., 2021) . 
k -anonymity implies a manipulation of the values 

f QIDs for which several strategies exist (Gkoulalas- 
ivanis et al., 2014) : generalisation (Samarati, 2001) , suppres- 

ion (Samarati, 2001) , microaggregation (Domingo-Ferrer and 

ateo-Sanz, 2002) and bucketisation (Xiao and Tao, 2006) . A 

ariety of algorithms aiming to achieve k -anonymity have 
een proposed (Ciriani et al., 2008) . However, the selection 

f the most suitable anonymisation algorithm is challeng- 
ng in itself and even more so when the aim is to apply 

L on the anonymised data. Previous work introducing 
ovel anonymisation algorithms often neglected the rela- 
ions between anonymisation and ML, which may partly 
e due to the fact that these two methodologies originate 
rom different domains. Thus, the literature is sparse on 

omparison of general-purpose anonymisation approaches 
nvestigating their advantages in the light of ML. One valuable 
ontribution is the systematic comparison carried out by 
yala-Rivera et al. (2014) . The authors addressed the issue 
f information loss for generalisation and suppression algo- 
ithms (although from an information-theoretic perspective 
nd not from the perspective of applied ML). To this end, the 
uthors employed Generalised Information Loss as the metric 
or comparison. Rodríguez-Hoyos et al. (2018) conducted a 
ystematic comparison of anonymisation algorithms which 

mploy microaggregation with respect to their influence on 

L. For this purpose, they used two real-world and two artifi- 
ially generated datasets and investigated exclusively binary 
lassification tasks. Their results showed that microaggrega- 
ion methods have no significant influence on classification 

erformance. However, since no such systematic comparison 

as been conducted for anonymisation methods employing 
eneralisation and suppression, the question arises whether 
 similar or completely contrary result may be observed for 
hese methods. 

The primary aim of this article is to investigate the in- 
uence of general-purpose k -anonymisation algorithms em- 
loying generalisation and suppression on ML results and 

o thereby fill a gap in the current literature. Although 

alle et al. (2017) already presented a preliminary analysis in 

hich they examined the influence of the greedy clustering 
lgorithm SaNGreeA ( Campan and Truta, 2008 ) on the classi- 
cation of the adult dataset (see subsection 4.2 below for in- 
ormation on datasets), this problem requires a more compre- 
ensive analysis. For this purpose, we conduct a systematic 
omparison that extends the scope of evaluations performed 

ntil today. We examine a comprehensive set of parame- 
ers and settings: four general-purpose k -anonymisation algo- 
ithms (e. g. Mondrian (LeFevre et al., 2006a) and Optimal Lat- 
ice Anonymization (El Emam et al., 2009) ), different privacy 
equirements (i. e. different values for k and different suppres- 
ion values) as well as four real-life datasets. Through exper- 
mental evaluation of common evaluation metrics (i. e. clas- 
ification accuracy, precision, recall and F 1 score), we demon- 
trate how strong the effects of anonymisation are on the fi- 
al ML results and which anonymisation algorithms are most 
uitable for the subsequent ML task. 

The main results from our systematic comparison show 

hat: 

• With an increasingly strong k -anonymity constraint, clas- 
sification performance generally degrades (with the de- 
gree of degradation strongly dependent on dataset and 

anonymisation method). 
• For some datasets, even for very large k of up to 100 (which

is far higher than the values used in practice nowadays),
the performance loss remains within acceptable limits. 

• Mondrian provides a better basis for subsequent classifi- 
cation than other anonymisation algorithms investigated,
i. e. Optimal Lattice Anonymization, Top-Down Greedy 
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2 https://arx.deidentifier.org/ . 
3 https://github.com/fhstp/k-AnonML . 
Anonymisation and k -NN Clustering-Based Anonymisa-
tion. 

The article is organised as follows: “Related Work” reviews
similar previous work in the literature, “Methodology” de-
scribes the anonymisation and ML techniques investigated in
our study, and “Study Design”presents the experimental setup
and the datasets used. In “Experimental Results”, we present
and discuss the results obtained, before concluding the article
with our main findings and presenting several possibilities for
expanding our work in the conclusion. 

2. Related work 

The theoretical study of the effects of k -anonymisation and
related privacy models on data quality has mostly been fo-
cused on the analysis of information metrics of the data itself.
Fung et al. (2010) give a comprehensive overview of privacy
models, anonymisation algorithms and information metrics;
despite its publication date (2010), this article continues to be
one of the most extensive surveys on the topic. 

Relatively few studies comparable to our methodology (i. e.
focusing on how anonymisation affects ML performance) have
been published so far. Existing studies have mostly focused on
the development of novel and more efficient anonymisation
algorithms (in contrast to our open-ended approach). Three
prominent examples are the following: 

• Fung et al. (2007) proposed a novel anonymisation algo-
rithm called Top-Down Refinement , which is based on in-
formation metrics (an improvement over their prior algo-
rithm Top-Down Specialisation (Fung et al., 2005) ). The pro-
posed algorithm is examined in terms of classification er-
ror obtained on three datasets. In addition to the adult
dataset, which is also used in our experiments, the authors
consider two smaller datasets (with 653 and 1000 entries,
respectively). The algorithm is compared to only one com-
peting anonymisation method. 

• Li et al. (2011) based their algorithm Information-Based
Anonymisation for Classification Given k (IACk) on normalised
mutual information as a metric. IACk outperforms Info-
Gain Mondrian (LeFevre et al., 2006b) (another utility-aware
anonymisation algorithm) in terms of classification per-
formance using several different classifiers on the adult
dataset. 

• Last et al. (2014) proposed an algorithm called Non-
Homogeneous Generalisation with Sensitive Value Distribution
(NSVDist), which is based on an information loss met-
ric. The authors perform a relatively broad comparison on
eight datasets and four different classifiers and compare
their proposed NSVDist method with three other anonymi-
sation methods: Mondrian, Privacy-Aware Information
Sharing (PAIS) (Mohammed et al., 2009) and Sequential
Anonymization (SeqA) (Goldberger and Tassa, 2009) . In
contrast to their approach, we perform a comparative anal-
ysis of several well-established anonymisation methods
and conduct a more in-depth investigation into the effects
of generalisation and suppression on ML performance. 
Further examples drawing a limited comparison include
Han et al. (2017) (who also base their analysis – in which
they compare their algorithm to IACk – on the adult
dataset), and Silva et al. (2017) (who use their own dataset
of public transport data from Curitiba, Brazil, to perform
a vertical analysis of performance across different lev-
els of anonymisation using the ARX Data Anonymization
Tool 2 ). 

Inan et al. (2009) follow a different approach than the
previously mentioned work. Instead of anonymising existing
datasets and fine-tuning either the anonymisation algorithms
or the ML models to improve the results on the anonymised
data, they devise a method of performing calculations (for
k -NN and SVM classifiers) on (already) anonymised data by
considering them as “uncertain” data and employing stochas-
tic arguments (i. e. working with expected values) for down-
stream tasks such as classification. 

Even for the methodology of comparing anonymisation
algorithms using information metrics, the existing litera-
ture contains only small-scale studies comparing relatively
few algorithms (to name a few, Ayala-Rivera et al. (2014) ,
Ghinita et al. (2007) , LeFevre et al. (2006a) , Xu et al. (2006) ); and
even with that restriction, comparing results between these
studies turns out to be quite difficult, due to varying method-
ologies and lack of publicly available implementations and
annotated datasets (e. g. including definitions of QIDs and
generalisation hierarchies). In this article, we provide a more
comprehensive study on different anonymisation and ML ap-
proaches as well as different datasets. For reproducibility we
make our implementations, datasets, annotations, QIDs, and
generalisation hierarchies publicly available 3 to stimulate fur-
ther research on this topic. 

3. Methodology 

In the following sections we describe the approaches investi-
gated and compared in our study. The approaches include the
anonymisation and ML techniques described below. 

3.1. Anonymisation algorithms and information metrics 

In order to ensure a reasonable amount of comparability, all
algorithms included in this study use the common princi-
ple of generalisation . This method consists of replacing val-
ues of an attribute with a more generalised value; this is
usually achieved by utilising either so-called domain gen-
eralisation hierarchies (DGH) or value generalisation hierarchies
(VGH) (Samarati, 2001) . A DGH describes the relationship be-
tween domains and consists of an attribute domain, all possi-
ble values of an attribute, as well as the related, more gener-
alised domains; for instance, the domain of a postal code at-
tribute might be {3500, 3506, 3104, 3105} , which can
be generalised to {350 ∗, 310 ∗} . A VGH contains additional

https://arx.deidentifier.org/
https://github.com/fhstp/k-AnonML


4 c o m p u t e r s  &  s e c u r i t y  1 1 1  ( 2 0 2 1 )  1 0 2 4 8 8  

Fig. 1 – Value generalisation hierarchy for postal codes. 
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nformation about generalisation steps for individual attribute 
alues; VGH are often visualised as tree structures to illustrate 
he relationship between values in a specific domain and ac- 
ording values in more generalised domains. An examplary 
GH for the aforementioned postal code values is shown in 

ig. 1 . 
Generalisation algorithms can be divided into two differ- 

nt types (Ayala-Rivera et al., 2014) : global (also called full- 
omain generalisation ) and local algorithms. Global generalisation 
pplies the same generalisation step to each attribute with the 
ccording value. In our example, the postal code attribute in 

very data record containing 3500 is generalised to 350 ∗. In 

ontrast to this approach, local generalisation allows the gener- 
lisation of only some attributes with the same value, while 
ther attributes with this value remain unchanged, which en- 
bles a more fine-grained processing of the data to achieve 
 -anonymity with less data distortion. 

Global generalisation algorithms can be further distin- 
uished into single-dimensional and multi-dimensional algo- 
ithms. The former applies the generalisation to each attribute 
ndependently, whereas the latter considers a group of at- 
ributes jointly to find a suitable generalisation of the data. 

The concept of generalisation can be supplemented by ad- 
itionally applying suppression (Sweeney, 2002) , which adds a 
ew maximal element to the VDH (though this is sometimes 
mitted if there already is a unique maximal element corre- 
ponding to “all information removed”). This element is typi- 
ally represented by replacing values entirely by asterisks (e. g.
500 → **** ), which means that all information is withheld.
uppression can be applied either to the entire data record 

i. e. record suppression ) or only to specific attributes of a record 

also known as cell suppression ). 
In our investigation, we focus on anonymisation algo- 

ithms employing either just generalisation or both general- 
sation and suppression, cf. Fung et al. (2010), section 3, espe- 
ially subsection 3.1 . We base our analysis on a selection of 
nonymisation algorithms chosen to represent a diverse set 
f methodical characteristics. In particular, our choice of algo- 
ithms contains both optimal and heuristic methods as well as 
epresentatives of several common generalisation strategies 
full-domain generalisation, cell generalisation and multidi- 

ensional generalisation). Additionally, we compare generar- 
lisation and suppression with microaggregation to provide a 
ore comprehensive picture. 
.1.1. Optimal Lattice Anonymization 

ptimal Lattice Anonymization (OLA) (El Emam et al., 2009) is 
n optimal k -anonymity algorithm with record suppression 

hich works by searching for an optimal node inside a lat- 
ice of possible generalisation steps. The lattice is a combina- 
ion of the different VGHs of the underlying data and is organ- 
sed into levels based on the combined generalisation level of 
he distinct attributes. Paths in the lattice (from the bottom to 
he top) correspond to generalisation strategies. The first step 

f the algorithm lies in performing a binary search for each 

uch generalisation strategy in order to find all k -anonymous 
odes (for some fixed k ) utilising predictive tagging. Predic- 

ive tagging is used to reduce how often the algorithm has 
o check whether a node satisfies k -anonymity; this makes 
se of the facts that nodes above a k -anonymous node are k -
nonymous and nodes below a non- k -anonymous node are 
ot k -anonymous. The binary search algorithm is performed 

y iterating over nodes starting in the median height of the 
attice and checking whether the node is k -anonymous as well 
s which extent of suppression is required. Depending on the 
esult, the nodes above or below are accordingly tagged as ful- 
lling or violating k -anonymity, as well. The untagged half is 
hen separated into a sublattice and the steps are repeated.
his search process reveals the k -anonymity of a significant 
ortion of nodes without requiring explicit calculations for 
ll of them. The second step is to remove elements from the 
et of k -anonymous nodes such that only level-minimal (also 
alled k -minimal) nodes within a generalisation strategy re- 
ain. Finally, all k -minimal nodes are compared based on the 

iscernibility metric (DM) (or other suitable metrics) and the 
ode with the smallest information loss is chosen as the op- 

imal solution. OLA uses a modified version of the original 
M (Bayardo and Agrawal, 2005) which assigns a penalty to 
ach tuple based on either how many indistinguishable tuples 
re contained in the anonymised table or whether the tuple is 
uppressed. 

.1.2. Mondrian 

ondrian (LeFevre et al., 2006a) is a greedy approximation al- 
orithm for achieving k -anonymity by partitioning the domain 

pace into multidimensional regions. For this study, we ex- 
ended an open-source implementation of the algorithm 

4 to 
4 https://github.com/qiyuangong/Basic _ Mondrian . 

https://github.com/qiyuangong/Basic_Mondrian
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allow for its joint application with ML methods. Our exten-
sion includes the option to leave non-QID attributes and the
target variable non-anonymised as well as the ability to han-
dle float numbers in datasets. In addition, we ported the code
to Python 3 and removed unused functions and files. Since
Mondrian is designed to work top-down, it uses the highest
generalisation of the QIDs as a starting point and recursively
specialises into partitions by applying multidimensional cuts
until no further cuts are available. Each iteration of the algo-
rithm needs to choose a dimension (attribute) on which to per-
form the cut. The general-purpose approach is to use the di-
mension with the widest range of values. Afterwards, the split
value is determined by using median partitioning, and the cut
is performed according to the split value. Mondrian can be
used for strict partitioning (utilising global generalisation) as
well as for relaxed partitioning (applying local generalisation).
While the original Mondrian algorithm is already able to han-
dle categorical attributes by assuming a total order of values
(as for numerical attributes), LeFevre et al. also defined an ex-
tended version which utilises value generalisation hierarchies
instead (LeFevre et al., 2006b) . 

3.1.3. Top-Down Greedy Anonymisation 

Xu et al. (2006) proposed a simple heuristic local generalisa-
tion method based on a top-down greedy (TDG) approach for
anonymisation. For this study, we extended an open-source
implementation of this algorithm.5 We performed the same
implementation enhancements as we did for Mondrian. The
algorithm takes a table containing the data as input and re-
cursively partitions it into equivalence classes which are more
and more local. For this purpose, binary partitioning in com-
bination with a heuristic is used to bisect the data in each it-
eration. The normalised certainty penalty (NCP) metric plays
a central role; NCP incorporates both the information loss
caused by anonymisation as well as the importance of the at-
tributes. Furthermore, NCP measures the uncertainty of the
attribute values of the generalised record, comparing them
with the original ones’ and weighting them accordingly. The
data records causing the highest NCP when put into the same
equivalence class represent the starting point for the two
equivalence classes: The initial tuples for each equivalence
class are found by randomly picking a tuple u and calculating
the NCP with every other tuple v ; the tuple v ∗ with the highest
NCP is then used as the starting point for another iteration, in
which the NCP with all other tuples is calculated again. This
process is repeated until the resulting NCP does not change
substantially anymore, thus fixing two tuples as the basis for
the bisection. The other data records of the table are then as-
signed to one of the two equivalence classes by minimising
the NCP. After the partitioning is complete, all equivalence
classes containing less than k elements are postprocessed to
achieve k -anonymity. For each such equivalence class G , the
following two steps are applied: The first step lies in search-
ing, within all equivalence classes of size at least 2 k − | G | ,6 for
the subset G s of tuples of size k−| G | with the lowest N C P(G ∪ G s ) .
5 https://github.com/qiyuangong/Top _ Down _ Greedy _ 
Anonymization . 

6 This condition is necessary to ensure that after removing the 
subset G s from such an equivalence class H of size at least 2 k −| G | , 

 

The increase of the penalty as a result of merging G with the
according nearest neighbour equivalence class is calculated,
as well, and compared to the former penalty measure. The so-
lution resulting in a lower overall penalty is applied; the whole
process is then repeated until all equivalence classes have at
least size k . 

3.1.4. k -NN Clustering-Based Anonymisation 

Another approach for grouping data records such that the
anonymised records satisfy k -anonymity is clustering , which
aims at partitioning records into equivalence classes of sim-
ilar records (Lin and Wei, 2008) . For this study, we extended
an open-source implementation of a k -nearest neighbour
clustering-based (CB) algorithm.7 We performed the same im-
plementation enhancements as we did for Mondrian. The
iterative clustering procedure works similar to other k -NN
clustering-based anonymisation approaches (Aggarwal and
Philip, 2004) . During each iteration, a record is randomly
picked out of the dataset and the closest k − 1 other records
are determined via a distance function. Those records (as
well as the chosen record) are assigned to one equivalence
class and removed from the original dataset. This process
is repeated until either all records have been processed or
less than k records remain; these remaining records are as-
signed to the nearest equivalence class. The algorithm we use
employs VGHs for generalisation and the NCP (as described
in subsection 3.1.3 ) as the distance function. The distance
is computed using the generalisation of the corresponding
records or clusters. 

3.2. Machine learning algorithms 

For the present study, we investigated popular supervised ML
methods, including Support Vector Machines (SVM), k -Nearest
Neighbour ( k -NN), Random Forests (RF) and Extreme Gradient
Boosting (XGBoost). Since our motivation is to investigate the
interplay of ML and anonymisation algorithms, we have cho-
sen to eschew deep learning models and concentrate on tra-
ditional ML approaches which provide at least a modicum of
transparency. 

SVMs are popular supervised ML methods used for classifi-
cation and regression. SVMs are effective and robust for high-
dimensional input data (in many cases even if the number of
features is greater than the number of samples). They are also
versatile and flexible, as many kernel functions (e. g. linear,
polynomial, radial basis function) can be specified as decision
functions, thus allowing high adaptability to the input data. In
contrast to more complex kernels, linear kernels are charac-
terised by significantly shorter runtimes and little overfitting
while still yielding comparatively good results. SVMs are sen-
sitive to hyperparameters, e. g. the cost parameter C in the case
of the linear kernel. 

k - NN is a simple and intuitive instance-based algorithm
that does not require any actual model training process. To
determine the class for a given test sample, a majority deci-
sion is made based on the class membership of a given num-
the resulting smaller equivalence class H \G s is still of size at least 
k . 

7 https://github.com/qiyuangong/Clustering _ based _ K _ Anon . 

https://github.com/qiyuangong/Top_Down_Greedy_Anonymization
https://github.com/qiyuangong/Clustering_based_K_Anon
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8 https://www.kaggle.com/uciml/adult- census- income . 
er of nearest neighbours from the training data. To deter- 
ine which neighbours are closest, a similarity metric (e. g.

uclidean distance) is used. For a sufficiently large dataset,
reat results can be obtained, but with unbalanced data the 
lgorithm encounters difficulties. The method is very sensi- 
ive to the number of neighbours used to determine the class 
f a tested instance. 

RFs (Breiman, 2001) are robust supervised ML methods 
ased on an ensemble of simple decision trees. Individual de- 
ision trees are relatively inflexible and not robust because 
ven small changes in the data can cause the generated de- 
ision trees to look very different. Building RFs involves first 
enerating simple decision trees from different subsamples 
f the data and then combining the results (e. g. by averag- 

ng their probabilistic predictions) into a relatively robust joint 
odel. RFs are sensitive to the number of decision trees em- 

loyed, i. e. a sufficient number of decision trees is necessary 
o obtain robust predictions. 

XGBoost (Chen and Guestrin, 2016) is a highly optimised 

nd efficient variant of Gradient Boosting (Friedman, 2001) .
imilar to RFs, Gradient Boosting combines a set of decision 

rees to provide robust predictions. The difference lies in the 
eneration of decision trees: RFs generate independent deci- 
ion trees on random subsets of data and then combine their 
esults, whereas Gradient Boosting learns the trees iteratively 
nd also learns from existing trees. 

. Study design 

e apply the following approach for our comparison: First, we 
mplement the general-purpose anonymisation algorithms 
efined in the literature and described above or use exist- 

ng implementations thereof. Next, we apply them to a selec- 
ion of datasets and finally, we evaluate the influence of these 
lgorithms on the performance of the classification meth- 
ds described above. We use all combinations of anonymisa- 
ion algorithms, ML methods and datasets to obtain the most 
omplete picture possible of the dependencies between these 
omponents and to provide the basis for an objective compar- 
son. 

.1. Experimental setup 

re-processing and baselines The first step includes the pre- 
rocessing of the data, i. e. defining the generalisation hier- 
rchies and performing one-hot encoding of categorical QIDs.
n our experiments, we use only QIDs and the target variable 
hile removing all other attributes to ensure that additional 

ttributes that may be highly correlated with the target vari- 
ble do not bias the results. For numerical QIDs we opted to 
se the mean value of the generalised interval to maintain k - 
nonymity. The data is randomly split into training (70%) and 

est (30%) sets. To establish the baselines, each of the investi- 
ated classifiers is initialised and then trained on the training 
et. The trained model is used to predict the target variable on 

he test set. Thereby, a non-anonymised baseline is calculated 

or the classification model. Additionally, we determined the 
ero-rule baseline (ZRB) as the lower baseline in our study by 
valuating a naive classifier which always predicts the most 
requent class in the test set. We fixed the hyperparameters 
or each classifier across all experiments: For the linear SVM 

 = 1 , for k -NN the number of neighbours k is set to 10, and
or RF and XGBoost the number of individual decision trees is 
et to 300 and 100, respectively. 

Anonymisation After establishing the baselines, the respec- 
ive datasets are anonymised according to the chosen pa- 
ameters (i. e. the used algorithm and the value of k ). The
nonymised data are then split (with the same training/test 
plit used in the non-anonymised setting) and used to train 

he model and predict the target variable as before. This is re- 
eated for different anonymisation algorithms and parame- 
ers (multiple values of k and degrees of suppression allowed).

Performance measurement In the final step, the evaluation 

s conducted by comparing four performance measures, i. e.
lassification accuracy ( Acc ), precision ( Prec ), recall ( Rec ), and
 1 score, defined in terms of number of true positives ( T P), true
egatives ( T N), false positives ( F P) and false negatives ( F N) as

ollows: 

Acc = 

T P + T N 

T P + T N + F P + F N 

Prec = 

T P 
T P + F P 

Rec = 

T P 
T P + F N 

F 1 = 2 
Prec · Rec 
Prec + Rec 

Fig. 2 provides an overview of our overall setup: 

1. Every experiment consists of a dataset (and a respective 
classification task) and an ML method, which is applied to 
the anonymised data. 

2. Each dataset is anonymised with different k - 
anonymisation algorithms using a multitude of values 
for k ( k = 2 , . . . , 100 ), resulting in multiple anonymised
versions of the original dataset. 

3. The ML methods are applied to each of these newly gener- 
ated datasets and the results are compared to the results 
obtained by each ML method on the non-anonymised data.

For our experiments, we implemented a simple and easy- 
o-use environment within the software framework Python 

.7 (Python Software Foundation, USA). The datasets are 
tored in csv format and can easily be imported. Experiments 
an be executed directly from the command line. The config- 
ration of the entire evaluation procedure is stored in a main 

xperiment file. The addition of new datasets and algorithms 
nly requires editing the main script and adding the neces- 
ary files in the folder structure. The entire code is available 
t github.com/fhstp/k-AnonML and shall provide a common 

asis for extensions by other researchers. 

.2. Datasets 

n the experiments, four real-world datasets are used: 
adult : The Adult Dataset 8 (also known as Census In- 

ome Dataset ) contains 45,222 entries derived from the 1994 
nited States census database. Following the usual param- 
ters for this use case, we use the attributes sex , age ,

https://github.com/fhstp/k-AnonML
https://www.kaggle.com/uciml/adult-census-income
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Fig. 2 – Overview of the experimental setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

race , marital-status , education , native-country ,
workclass , and occupation as QIDs and salary-class
as the binary target variable (with two categories, < = 50K
and > 50K ). The generalisation hierarchies employed are as
in Prasser et al. (2014) . We use the predefined training and test
split provided with the dataset for our experiments. 

cahousing : The California Housing Prices Dataset 9 

contains 20,640 entries. We choose the attributes
housing_median_age , median_house_value , and
median_income as well as the coordinates ( longitude and
latitude ) as QIDs (as these seem most relevant concerning
privacy) and ocean_proximity as the target variable. Three
target values ( NEAR BAY , ISLAND and NEAR OCEAN ) were
merged (giving a new, larger NEAR OCEAN class) to account
for the imbalance in the data, leading to three classes < 1H
OCEAN , INLAND , and NEAR OCEAN . Data samples with miss-
ing values were removed. The generalisation hierarchies are
visible in Figures A.16 to A.20 in the supplementary material. 

cmc : The Contraceptive Method Choice Dataset 10 contains
1473 entries. The dataset is a subset of the 1987 Na-
tional Indonesia Contraceptive Prevalence Survey 11 , which
contains demographic and socioeconomic characteristics of
nonpregnant women as well as the type of contraception
they used. We select three attributes ( wife_age , wife_edu ,
num_children ) as QIDs and contraceptive_method as
the target variable (with three possible values: no_use ,
short-term and long-term ). Our choice of QID is consis-
tent with Last et al. (2014) . The generalisation hierarchies
9 https://www.kaggle.com/camnugent/ 
california- housing- prices . 
10 https://archive.ics.uci.edu/ml/datasets/Contraceptive+ 

Method+Choice . 
11 https://microdata.worldbank.org/index.php/catalog/1398/ 

study-description . 

 

 

 

 

 

are visible in Figures A.21 to A.23 in the supplementary
material. 

mgm : The Mammographic Mass Dataset 12 ( Elter et al., 2007 )
contains 830 entries with data from mammography analy-
ses using the Breast Imaging-Reporting and Data System (BI-
RADS), patient age and ground truth, i. e. whether the tis-
sue lesions are malignant or benign. We use all attributes
( age , shape , bi_rads_assessment , margin and density )
as QIDs and severity as the target variable (with two pos-
sible values: benign and malignant ). Again, we employ the
same QIDs as in Last et al. (2014) to ensure comparability of re-
sults. The generalisation hierarchies are visible in Figures A.24
to A.28 in the supplementary material. 

5. Experimental results 

The classification results in terms of F 1 scores are presented
in Fig. 3 (for classification accuracy, precision, and recall re-
fer to Figure A.1, Figure A.2 and Figure A.3 in the supplemen-
tary material). Each row represents one of the four classifiers
examined and each column corresponds to one of the four
datasets. Each subfigure contains the results obtained with
the four investigated anonymisation algorithms, each with as-
cending k values ( k ∈ { 2 , . . . , 100 } ). The dotted lines in Fig. 3 rep-
resent the zero-rule baseline and the dashed lines represent
the non-anonymised baseline, i. e. the classification perfor-
mance achievable on non-anonymised data. 

In general, we can observe that OLA produces the most
atypical results compared to the other algorithms. The perfor-
mance curves for OLA show large jumps over different k val-
ues and a highly oscillating behaviour, e. g. for k -NN and SVM
in combination with the adult dataset, and even performance
12 https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass . 

https://www.kaggle.com/camnugent/california-housing-prices
https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
https://microdata.worldbank.org/index.php/catalog/1398/study-description
https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
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Fig. 3 – Overview of the performance in terms of F 1 scores for all four datasets, all four classifiers and all anonymisation 

methods for k ranging from 2 to 100. 
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alues reaching the ZRB, e. g. for OLA and XGBoost with the 
dult dataset as well as Mondrian and OLA with k -NN and the 
gm dataset. The results for OLA were obtained with a sup- 
ression level of 3% and the gweight metric. A detailed analy- 
is of the OLA algorithm and the influence of suppression and 

ifferent k values on ML results is given in subsection 5.3 . 
The results of Mondrian, TDG and CB show more consis- 

ent trends. Clearer differences between these three methods 
an be observed for the cahousing and mgm datasets. In gen- 
ral, the results for Mondrian seem to be less noisy (oscillat- 
ng) than those obtained for TDG and CB. For more details on 

he behaviour of TDG and CB refer to subsection 5.5 . 
We can observe different shapes of performance curves in 

he experiments, with the curves either falling or remaining 
lmost at a constant level. For some ranges of k , an increase in 

lassification performance for increasing k values can be ob- 
erved, e. g. for k -NN and the cahousing dataset anonymised 

ith TDG and CB. For smaller k values, these algorithms lead 

o much weaker results compared to Mondrian. As k increases 
p to k = 20 , the performances of TDG and CB increase, but 
hereafter they decrease as expected. This is remarkable as 
e would expect that with increasing k , the classification ac- 

uracy would in general degrade. This seems not to be the case 
n all situations and may be a dataset-dependent effect. Since 
t occurs only in isolated cases, we would consider these re- 
ults rather as outliers. We assume that the improvements 
n classification performance may occur in cases where the 
eneralisation hierarchy generated by the anonymisation al- 
orithm correlates well with the class structure in the dataset 
nd thus helps the classifier to partition the classes more 
asily. 

Nearly constant curves can be observed for Mondrian, TDG 

nd CB with the adult dataset. For all other scenarios, de- 
reasing curves can be observed (which is generally the ex- 
t  
ected behaviour as k increases). In the following sections we 
iscuss and analyse in more detail our observations for the 
ifferent experiment configurations. 

.1. Observations on individual datasets 

n the following, we describe the observations made in our ex- 
eriments for the individual datasets (across classifiers and 

nonymisation methods) and identify common patterns. We 
onsider other perspectives (e. g. for individual classifiers) fur- 
her below. 

The results for the adult dataset are consistent among 
ll classifiers. All anonymisation algorithms, with the excep- 
ion of OLA, behave similarly – as k increases, their perfor- 

ance decreases slightly. Mondrian exhibits the most robust 
ehaviour, especially at larger values of k , where the best 
erformances are achieved. The only outlier in anonymisa- 
ion methods is OLA, which shows strong fluctuations in the 
esulting classification performances consistently across all 
lassifiers. The performance curves are relatively volatile for k 
alues below 46. For k -NN and SVM, a significant drop occurs 
t k = 65 and k = 61 , respectively, whereas for the tree-based
lassifiers this drop emerges much later at k = 85 (for XGBoost 
ven reaching the ZRB). The underlying cause of this signifi- 
ant decrease in performance is presented in subsection 5.3 .
or the tree-based classifiers, the volatility in the performance 
urve (up to k = 46 ) is much smaller than for k -NN and SVM;
oreover, the results obtained with the tree-based classifiers 

re more accurate and comparable with other anonymisation 

lgorithms (excluding the previously mentioned results above 
 = 85 ). 

For the cahousing dataset, Mondrian shows consistent 
esults across all classifiers, with a moderate decrease up 

o k = 79 , followed by an abrupt drop of up to 17% (see
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subsection 5.4 for a more detailed analysis). The performance
of the OLA algorithm shows a similar behaviour, but the drop
already occurs for much smaller k (for RF, k -NN and XGBoost
at k = 12 and for SVM at k = 6 ). Therefore, OLA generally
performs very badly for this dataset. For tree-based ML mod-
els, the results with TDG and CB are robust as k increases.
They decrease almost monotonously without large or abrupt
changes. The results for SVM are generally much worse than
those of the other classifiers; moreover, TDG and CB perform
much worse than Mondrian (up to k = 80 , after which they
perform similarly). 

For cmc , the individual performance curves obtained with
the different anonymisation algorithms have similar progres-
sions across the classifiers. Similarly to the other datasets,
TDG and CB show more fluctuations with varying k than
OLA and Mondrian. The results obtained with the OLA-
anonymised data deviate less from the results of the other
algorithms, with the exception of smaller k values, for which
the loss of information introduced by OLA seems to be slightly
higher than for the other anonymisation algorithms with the
same k . 

The results for the mgm dataset show a relatively consis-
tent performance across all classifiers. The anonymisation al-
gorithms all start with very high F 1 score values, with Mon-
drian, TDG and CB moderately decreasing in performance up
to k = 59 , after which Mondrian exhibits a severe performance
loss (even reaching the ZRB for k -NN). For OLA, we observe a
rapid drop of 18%–47% (depending on the classifier) between
the k values 8 to 26. Thereafter, OLA performs comparably to
the other algorithms up to k = 59 . From k = 59 , Mondrian
and OLA have a 18%–58% performance loss. Classification re-
sults obtained for TDG and CB show strongly increased fluc-
tuation from k = 59 upwards. Detailed analyses of these be-
haviours are presented in subsection 5.3, subsection 5.4 and
subsection 5.5 . 

5.2. Observations on individual classifiers 

The comparison of the classifiers with respect to performance
reveals that the tree-based classifiers, i. e. RF and XGBoost,
perform considerably better over the different datasets. In
some experiments, this is already clearly evident from the
absolute F 1 score, in others from the robustness of the re-
sults across the different k values. The better performance
of RF and XGBoost is particularly evident for the cahousing
dataset in both settings, i. e. both using non-anonymised and
anonymised data. One explanation could be that the two tree-
based classifiers handle the generalisation (i. e. successively
removing information by eliminating significant digits) of the
two QIDs longitude and latitude more efficiently. For the
cahousing dataset, the linear SVM fails completely for the
anonymised data (even the curve for Mondrian is clearly in-
ferior to the other classifiers) and k -NN performs significantly
worse compared to the tree-based classifiers especially for
smaller k values. 

For the mgm dataset, k -NN exhibits strong performance
variations, which are most evident for OLA and Mondrian.
However, for CB and TDG the fluctuations also increase con-
siderably for larger k values. One explanation for the weak per-
formance of k -NN in various experiments may be the choice
of the hyperparameter k (i. e. the number of neighbours), since
the algorithm is very sensitive to this data-dependent param-
eter. 

5.3. Robustness considerations for OLA 

In our experiments, we observe strong performance vari-
ations (fluctuations as well as abrupt changes) in ML ex-
periments when OLA is employed for anonymisation. OLA
seems to be highly dependent on the choice of generali-
sation hierarchies for the QIDs of a given dataset and the
synergy (or lack thereof) of the hierarchy with the chosen
information loss metric. When the VGHs and metric are
not well aligned, results can be highly erratic and exhibit a
large degree of seemingly random fluctuation, due to OLA
frequently switching the chosen node in the VGH lattice.
This is particularly evident for the adult and mgm datasets,
where results seem especially unstable, while the cahousing
and cmc datasets show less of this behaviour, i. e. a more
monotonous progression with increasing k . Using the adult
dataset as an example, we examine this behaviour and the
effects of the suppression level and four metrics commonly
used for OLA: precision ( prec ) (Sweeney, 2002) , generalisation
weight ( gweight ) (Samarati, 2001) , average equivalence class
size ( aecs ) (LeFevre et al., 2006a) and discernability metric
( dm ) (Bayardo and Agrawal, 2005) . 

As Fig. 4 shows, the investigated behaviour does not strictly
depend on the choice of the suppression level. Our results in-
dicate that allowing higher percentages of suppressed entries
gives OLA more freedom to switch nodes more often. Allow-
ing any suppression (as opposed to none) seems to give rise to
an increase in fluctuation. For some combinations of metric
and classifier (e. g. dm and RF), allowing up to 9% suppression
causes an evident increase in fluctuation compared to the sce-
nario with only up to 3% suppression. Note that this does not
necessarily mean that “more suppression” and “more fluctu-
ation” correlate in general. 

Our experiments indicate that the choice of metric is im-
portant and can have a significant effect on classification re-
sults. However, the effect of the employed metric and the iden-
tification of an optimal metric largely depend on the specific
dataset and use case. Thus, we cannot derive a general recom-
mendation for a specific metric. Experimental results obtained
on the adult dataset (see Fig. 4 ) show a clear benefit in using
gweight across the classifiers RF, XGBoost and SVM. The metric
aecs performs better in conjunction with k -NN. 

Finally, we investigate in more detail the individual ef-
fects of generalisation and suppression as well as their com-
bined effects on classification performance. For this inves-
tigation, we consider the example of OLA with the gweight
metric, applied to the adult dataset with a suppression of
up to 3%. 

To better understand the investigated dataset, we calculate
Spearman’s rank correlation coefficients between the target
variable and the features (categorical features were one-hot
encoded). The correlation matrix is presented in the supple-
mentary material (Figure A.5). A moderately positive correla-
tion ( r s = 0 . 45 ) exists for the category married-civ-spouse
of the marital-status feature. Moreover, for the fea-
tures sex ( r s = 0 . 22 ) and age ( r s = 0 . 27 ), the category
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Fig. 4 – Overview of more detailed classification results for OLA applied on the adult dataset to further investigate the 
unstable classification results. Results are shown for different metrics ( prec, gweight, aecs and dm ) and different suppression 

levels: 0% (no suppression), 3%, 6% and 9%. 

Fig. 5 – Analysis of the combined effects of generalisation and suppression for OLA (with the gweight metric), RF as classifier 
and the adult dataset. Each coloured bar corresponds to a feature (e. g. occupation ) and its height to the generalisation 

level (in the generalisation hierarchy). The blue curve represents the number of suppressed records and the red curve the 
F 1 score obtained for various k values. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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xec-managerial ( r s = 0 . 21 ) of the occupation fea- 
ure and the category never-married ( r s = −0 . 32 ) of the
arital-status feature a weak correlation can be ob- 
erved. 

Fig. 5 shows the generalisation levels for the individual fea- 
ures in the dataset for k values ranging from 2 to 100. The 
ed line shows the achieved F 1 score and the blue line the 
uppression level (number of records suppressed). The high- 
st drop in the F 1 score coincides with the complete general- 
sation of the marital-status feature at k = 85 . This is in 

ccordance with the correlation analysis (moderate correla- 
ion with the target variable) showing that marital-status 
s essential for classification. We further observe an effect of 
he generalisation level of the education feature; the com- 
lete generalisation of this feature (in the ranges starting at 
 = 20 , k = 39 and k = 61 ) causes a significant drop in perfor-
ance. Even though the correlation of the education feature 

nd the target variable is negligible (the highest correlation 

xists for the categories bachelors ( r s = 0 . 18 ) and masters
 r s = 0 . 17 )), the model can still exploit the information in this
eature. 

While our results show increasing F 1 score fluctuation for 
LA when suppression is applied (as depicted in Fig. 4 for RF 
nd gweight ), the number of suppressed records, however, does 
ot directly influence the F 1 score. This is particularly notice- 
ble between k = 62 and k = 84 in Fig. 5 , where the number
f suppressed records increases while the F 1 score remains 
onstant. The reason for this is the node selection process of 
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Fig. 6 – Number of equivalence classes, their respective homogeneity and the F 1 score for the RF classifier on the cahousing 

dataset. For k = 78 , the number of equivalence classes with low homogeneity is large (above 100). For k = 79 , this number 
abruptly decreases to 68. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OLA: Increasing the number of suppressed records allows OLA
to keep using a node with a lower generalisation level for a
longer run of subsequent k . 

In contrast, OLA without suppression applies stronger gen-
eralisation from the beginning and, therefore, selects nodes
more consistently over consecutive k values (with fewer node
changes). This behaviour results in less fluctuation of the
F 1 score, as for instance apparent in Fig. 4 for RF and gweight .
While the use of suppression leads to stronger fluctuation
of the OLA results, the magnitude of the individual drops is
lower on average when compared to OLA without suppres-
sion. Overall, we cannot settle the question whether suppres-
sion is good or bad in general; suppression and generalisa-
tion complement each other and their joint effect depends
on the precise nature of their interaction in the specific use
case. 

5.4. Robustness considerations for Mondrian 

Fig. 3 shows that the F 1 scores obtained in the classification
experiments with Mondrian as the anonymisation algorithm
remain fairly stable for most values of k , i. e. almost no fluctu-
ations and in most cases only a slight performance loss with
increasing k . There is, however, also some deviating behaviour
of F 1 score progression where the score abruptly drops, which
deserves a closer investigation. In order to find the reason for
these drops, we further analysed the results of Mondrian for
the two datasets cahousing and mgm where these abrupt per-
formance drops mostly occur. 

The biggest drop of the F 1 score for the cahousing dataset
can be observed from k = 78 to k = 79 (across all clas-
sifiers). This seems to be caused by a rather large informa-
tion loss due to switching from the penultimate generalisa-
tion step to the complete generalisation of the latitude fea-
ture for every equivalence class. As a consequence, the num-
ber of equivalence classes is reduced from 143 to 85 and the
homogeneity within each equivalence class decreases, as de-
picted in Fig. 6 . “Homogeneity” here refers to the distribution
of predicted classes in the equivalence classes: Higher homo-
geneity means that the equivalence classes contain mostly
samples of one predicted class each, which makes it easier
for the classifier to model the data; low homogeneity means
that many samples from different predicted classes share
the same equivalence class, making classification difficult (or
even impossible) and thus leading to a decrease in overall per-
formance. 

For the mgm dataset, the worst declines in classification
performance occur at the step from k = 58 to k = 59 as well
as at k = 62 and k = 72 . The number of equivalence classes
and their respective homogeneity for each of those k values is
shown in Fig. 7 . 

The iteration k = 58 results in 5 distinct equivalence classes
and a fairly high homogeneity for each of the equivalence
classes. The number of equivalence classes for the subsequent
iteration k = 59 increases to 7, while the homogeneity of the
equivalence classes decreases (the bars shift to the left). This
is caused by the weaker generalisation of the age attribute,
while at the same time losing all information for the shape
attribute due to its complete generalisation. The reason for
the drop at k = 62 lies in the reduction of equivalence classes
from 7 to only 3, which results in a generalisation of the equiv-
alence classes that differs only in the age attribute. Iteration
k = 72 shows a similar result, with only 2 distinct equivalence
classes remaining. This especially degrades the performance
of k -NN, which has a very local view and not enough flexibility
to compensate for this strong data reduction. The other clas-
sifiers are not affected by this generalisation step. 

Overall, we can conclude that stronger generalisation can
degrade classification performance but does not necessarily
have to. The actual loss in classification performance depends
on (at least) the modelling capabilities of the classifier and the
correlation of the generalised features with the target variable
for the classification task: The stronger the correlation with
the target variable, the higher the chance that generalisation
will degrade the classification performance. 

5.5. Strong fluctuations for TDG and CB 

As depicted in Fig. 3 , the calculated F 1 scores of the anonymi-
sation algorithms TDG and CB fluctuate strongly. This result is
quite contrary to the scores of Mondrian, for which the values
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Fig. 7 – Number of equivalence classes, their respective homogeneity and the F 1 score of the k -NN classifier on the mgm 

dataset. The transition from k = 58 to k = 59 shows a performance loss caused by less homogeneous equivalence classes. 
The subsequent transitions to k = 62 and k = 72 show a performance loss primarily caused by the reduction of the number 
of equivalence classes. 
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n most configurations are more stable and the performance 
egrades monotonically with increasing k . 

Since TDG and CB utilise a random function in order to pick 
andom initial data records (as described in subsection 3.1.3 as 
ell as subsection 3.1.4 ), we examined whether the observed 

uctuation occurs due to this randomness in the algorithms.
o that end, we recomputed the results for these algorithms 
ith fixed random seeds. Although the F 1 score results for 

he individual iterations of k differ from the previous re- 
ults, the fluctuations are similarly strong in terms of mag- 
itude and frequency. Therefore, we conclude that the ran- 
om factor has either no or only minor influence on the 
uctuation. 

Further analysis showed that the fluctuation might result 
rom the nature of the algorithms. Both TDG and CB (while 
orking differently in detail) generate equivalence classes 
ased on just the data records, while the other anonymisation 

lgorithms in our study generate equivalence classes based 

n additional (structural) information such as the domain 

pace of attributes and assign data records to the equivalence 
lasses accordingly. For both TDG and CB, the minimum size 
f the equivalence classes increases with k and data records 
f equivalence classes with size less than k are merged with 

ther equivalence classes. Since the size of the equivalence 
lass increases with increasing k , the initial data records cho- 
en for each equivalence class are different for each choice of 
 (even when the algorithm utilises a fixed random seed). Fig. 8 
llustrates an example for the iterations k = 3 and k = 4 as well
s a dataset size of 10. In this example, the CB algorithm for
 = 3 may choose the data record at position 5 of the remain-
ng dataset (without the records inside the first equivalence 
lass), which was retrieved by the random function with a 
xed seed, as the starting point for building the second equiv- 
lence class and assign the 2 nearest records to that equiv- 
lence class in order to fulfil the k -anonymity requirement.
n contrast, for the iteration k = 4 the algorithm might place 
n additional data record into the first equivalence class, and 

his record could have been at a position lower than the record 

hosen for the second equivalence class during the iteration 

 = 3 . Therefore, the data record at position 5 is now a differ-
nt one compared to the previous iteration. This other record 

s now used as the starting point for the second equivalence 
lass, and the nearest members for this record most likely dif- 
er as well, resulting in a potentially vastly different equiva- 
ence class. Therefore, the members of the equivalence classes 

ay change for each iteration despite choosing a fixed seed.
s a result, the generalised equivalence classes can change 
ubstantially even when comparing consecutive iterations 
f k . 

In addition to the fluctuation patterns discussed above, we 
bserve that most strong drops of the F 1 score occur in cases 
here a large proportion of equivalence classes are subject 

o the same generalisation, especially in case of the strongest 
ossible generalisation. For instance, such a drop is evident in 
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Fig. 8 – Abstract functioning of equivalence class building of TDG and CB for k = 3 and k = 4 utilising a fixed random seed. 
The algorithm chooses an initial data record for an equivalence class, illustrated as a box with shaded background, at a 
specific position yielded by a random function and puts other records into the equivalence class by algorithm-specific 
means in order to fulfil the k -anonymity requirement. Although the positions yielded by the random function remain the 
same for different iterations of k , the data record at this position can be different. Since for k = 4, the record at position 2 is 
already put into equivalence class 1 (in contrast to the iteration k = 3 , where the equivalence class is just { 5 , 6 , 8 } ), the initial 
record at position 5 for equivalence class 2 is different for the two iterations, resulting in vastly different equivalence classes 
overall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 from k = 84 to k = 85 for TDG in conjunction with the
k -NN classifier applied to the mgm dataset. 

5.6. Importance of dataset preparation 

Proper data anonymisation requires adequate preparation of
the data. The related data transforms can have strong ef-
fects on the modelling abilities of the classifiers and the clas-
sification performance. In the following, we present the in-
sights gained regarding data preparation. During data prepa-
ration, categorical attributes (e. g. sex or native-country )
are commonly converted into sparse binary numerical arrays
using one-hot encoding. Numerical values (e. g. age ) are usu-
ally generalised by replacing them with increasingly wide in-
tervals. In our first experiments, we overlooked the fact that
such intervals were not directly interpretable as numerical
values themselves, since they were naively represented as
strings (e. g. “[1–5]”) and then converted using one-hot en-
coding. Thus, the generalisation of even just one data record
was sufficient to lead to one-hot encoding the whole attribute.
This resulted in an interesting effect during classification: We
obtained low classification performance for small k , which
improved with increasing k (see Fig. 9 ). We assume that this
counter-intuitive behaviour stems from the extraordinarily
high dimension of the one-hot encoded numerical attributes
(curse of dimensionality) preventing robust modelling by the
classifiers, as well as the fact that the classifiers could not
make use of the numeric nature of the attributes in question.
With increasing k , more and more numerical values were gen-
eralised, leading to a reduced number of different intervals,
which improved the modelling capabilities of the classifiers.
Learning from these preliminary experiments, we decided to
replace the one-hot encoded interval strings (i. e. categorical
data) in the anonymised data with their averages (i. e. nu-
merical data) before providing the data to the ML classifiers.
Thereby, the dimensionality is reduced and the numeric na-
ture of the attributes preserved, allowing the algorithms to ap-
propriately model the data. 

Overall, this serves to point to the (somewhat obvious) fact
that preserving the numericality of numeric attributes is key
to effective classification. While this might indicate that using
microaggregation, which is by design more suited for numeric
values (Domingo-Ferrer and Torra, 2005) , should generally be
preferred for numeric attributes, see the next section for our
experimental findings on this issue. 
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Fig. 9 – Example of classification results for RF on a randomly selected validation subset (of the training set) of the adult 
dataset where a naive one-hot encoding is used for numerical attributes that are generalised, leading to suboptimal results. 
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.7. Comparison of generalisation and suppression with 

icroaggregation 

 comparison of our results with those of the systematic 
tudy conducted by Rodríguez-Hoyos et al. (2018) may pro- 
ide insight into whether the two families of anonymisation 

lgorithms exhibit similar behaviour in terms of ML perfor- 
ance. However, a direct comparison is impossible – neither 

re their algorithms available nor do they give sufficient in- 
ormation in their paper regarding the chosen hyperparam- 
ters for the utilised ML models. To allow for at least a par- 
ial comparison, we performed experiments with our investi- 
ated generalisation and suppression algorithms on the adult 
ataset with the same selection of QIDs they used, i. e. sex ,
ge , marital-status , education-num , capital-gain 
nd hours-per-week . Please note that a direct comparison 

f performance is not possible, due to different implemen- 
ations of the utilised bagging classifier as well as different 
nitialisation and hyperparameters of the model. However, we 
an contrast performance trends. 

To additionally provide a direct comparison between a 
icroaggregation method and our results, we use the pub- 

icly available library μ-ANT 

13 (Sánchez et al., 2020) . Similar 
o the metholodgy of Rodríguez-Hoyos et al. (2018) , this li- 
rary provides a microaggregation method using a variant 
f the Maximum Distance to Average Vector (MDAV) algo- 
ithm (Hundepool et al., 2003) , a standard microaggregation 

lgorithm. This algorithm first creates clusters with at least k 
imilar records; then values of QIDs are replaced with clus- 
er averages to achieve k -anonymity. For numerical values 
his approach is straightforward, but for categorical values 
t is more complicated. The μ-ANT library implements an 

dditional similarity measure based on the semantic mean- 
ng of categorical QIDs. The semantic information is defined 
13 https://github.com/CrisesUrv/microaggregation-based _ 
nonymization _ tool . 

a
k

sing the Web Ontology Language (OWL). For our experi- 
ents, we use the OWL ontologies provided in the library for 

he adult dataset. In contrast to this approach, Rodríguez- 
oyos et al. (2018) numerised the categorical QIDs before 
nonymisation. As a sanity check, we also numerised the cat- 
gorical QIDs using μ-ANT and obtained relatively similar re- 
ults to the ontology-based approach. 

Fig. 10 shows (1) the results of the generalisation and sup- 
ression algorithms, i. e. Mondrian, OLA, TDG and CB, (2) the 
icroaggregation results obtained with μ-ANT (yellow line) 

nd (3) the microaggregation results reported in the study 
f Rodríguez-Hoyos et al. (2018) (green markers). Note that 
odríguez-Hoyos et al. (2018) do not provide sufficient infor- 
ation about the settings and parameters of the ML experi- 
ents performed. Consequently, while we have done our best 

o replicate their settings to compute the results presented in 

ig. 10 , the results of the green curve are nevertheless not di-
ectly comparable with the other curves. 

The baseline for the non-anonymised data in the study of 
odríguez-Hoyos et al. (2018) (84.63%) and our configuration 

84.26%) are relatively similar. The generalisation methods 
how similar behaviour to the results in Fig. 3 , with Mondrian 

erforming most robustly, TDG and CB showing fairly volatile 
ehaviour but generally maintaining their performance, and 

LA showing large fluctuations in the resulting classification 

erformance. For smaller k , Mondrian shows similar perfor- 
ance values as the other generalisation algorithms and in- 

reases slightly up to k = 29 , after which it remains rel- 
tively constant. Such behaviour is not observed in the re- 
ults of Rodríguez-Hoyos et al. (2018) , where the performance 
tarts relatively close to the non-anonymised baseline and de- 
reases steadily. Comparing Mondrian and μ-ANT (with the 
ame configuration), we see two completely contrasting be- 
aviours, with μ-ANT showing a slightly worse result at k = 2 
nd then exhibiting a rapid decline over the first 20 values of 
 to finally settle near the zero-rule baseline. 

https://github.com/CrisesUrv/microaggregation-based_anonymization_tool
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Fig. 10 – Comparison of the classification performance on the adult dataset between generalisation and suppression 

algorithms (i. e. Mondrian, OLA, TDG, and CB), the microaggregation method from μ-ANT (yellow line) and microaggregation 

results reported by Rodríguez-Hoyos et al. (2018) (green line; the markers indicate the values evaluated and explicitly 

reported in Rodríguez-Hoyos et al. (2018) , while the curve is interpolated). The results are presented in terms of 
classification accuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our results show inconsistent behaviour for the two mi-
croaggregation approaches. This motivates the development
of a test bed in which all anonymisation algorithms and tech-
niques (i. e. generalisation and suppression as well as mi-
croaggregation and others) can be studied in detail using the
exact same settings. 

5.8. Remarks on the interplay of anonymisation and 

machine learning 

We finally want to make some concluding remarks on the in-
terplay between anonymisation and ML techniques that orig-
inate from our study. We have shown that anonymisation and
ML techniques are highly dependent on each other. Both try
to solve very different and partly contradictory goals, com-
plicating their combination. Anonymisation techniques may
remove information from a dataset which is important for
solving a classification task and may thus degrade the classi-
fication performance. Different classifiers show different de-
grees of sensitive behaviour to such information loss intro-
duced by e. g. generalisation or suppression of values. Conse-
quently, to achieve a good overall performance, both processes
need to be optimised jointly. A central question in this con-
text is thus how to achieve an appropriate degree of anonymi-
sation (e. g. a certain level of k -anonymity) and at the same
time minimise the information loss for the given classification
task. 

Our study has revealed certain patterns in the behaviour
of anonymisation techniques which may be suitable start-
ing points for further improvements to foster the compat-
ibility of anonymisation and classification techniques. One
such observed pattern is the strong fluctuation of classifica-
tion performance obtained on data anonymised by CB and
TDG for different k . Such behaviour is not desirable from the
perspective of ML, because it means that the overall perfor-
mance strongly depends on the selection of one particular
system parameter, in this case k . A high sensitivity for one
system parameter is in general undesired since it impedes
the reliability of the overall system performance as well as
the targeted optimisation thereof. One potential improvement
to mitigate this issue would be to define the initial records
of all equivalence classes before assigning other records to
the equivalence classes. With this change, the equivalence
class creation would happen at the start of the anonymisa-
tion process. In practice, increasing k by 1 would thus mean
that all initial values remain the same and a new initial value
is added for the new equivalence class. The records in an
equivalence class would still remain different for consecutive
k ; however, the distance of the records to the initial records
should vary less. This would reduce the fluctuations in ob-
tained classification performance and lead to more stable
results. 

A second observation from our study is that the selection
of features for generalisation plays a critical role for the clas-
sification performance that is achievable. The generalisation
of features which are strongly correlated to the target vari-
able of the classification task can strongly degrade the perfor-
mance. For many datasets there are different ways (i. e. dif-
ferent generalisation steps) to achieve the same degree of k -
anonymity. In such situations, the generalisation that changes
the strongly correlated features least should be chosen. This
argument suggests a combined optimisation of anonymisa-
tion and ML methods (i. e. choosing the optimal anonymisaton
algorithm based on ML task performance instead of abstract
metrics), which to us seems like a particularly promising fu-
ture research direction. 

6. Conclusion 

We have presented an in-depth study into the effects of data
anonymisation on classification performance. A special fo-
cus was put on anonymisation methods which build upon
the principles of generalisation and suppression, since this
represented a gap in the literature so far. For our evalua-
tion, we have selected a set of four popular anonymisation
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echniques using generalisation and suppression as well as 
our heterogeneous classification methods. To reduce the bias 
nd influence of dataset choice on our study, we have se- 
ected four different datasets on which all experiments were 
erformed. 

We compared the achievable classification performance 
n top of the differently anonymised data and investigated 

he individual behaviour of the anonymisation methods (e. g.
brupt performance degradation and fluctuations). We in- 
estigated the internal workings of the anonymisation tech- 
iques to explain our observations. 

Our results show that – as we would expect – with an in- 
reasingly strong k -anonymity constraint, the classification 

erformance generally degrades. The amount of degradation 

s, however, strongly dependent on dataset and anonymisa- 
ion method. Furthermore, we show that some anonymisa- 
ion strategies provide a better basis for downstream classi- 
cation than others. While TDG and CB show strongly varying 
erformance for different k (which originates from the heuris- 
ic they use to build equivalence classes), making it difficult to 
stimate the achievable classification performance in general,
ondrian shows more robust behaviour. Furthermore, in most 

lassification experiments data anonymised by Mondrian out- 
erforms that obtained by OLA (or provides at least the same 

evel of performance). Thus, Mondrian can be considered the 
ethod with the most appealing properties for subsequent 

lassification experiments. Moreover, our investigation of OLA 

hows that many typical data precision metrics (in particular 
hose based on counting generalisation levels) can be mislead- 
ng when trying to estimate the actual impact of anonymisa- 
ion on the quality of the anonymised data, e. g. a doubling 
f the measured data loss in the metric does not necessarily 
ave a strong impact on the ML results. 

Mondrian is the only anonymisation method for which 

e can easily compare the results with existing literature.
ompared to Last et al. (2014) , similar classification perfor- 
ance can be observed for the cmc and mgm datasets. For 

he adult dataset, the differences are much larger, as Mon- 
rian performs significantly worse in their study. This might 
e due to differences in the data preparation processes (see 
ubsection 5.6 ). 

We have shown that there exists a strong dependency be- 
ween generalisation and the achievable classification perfor- 

ance especially when the generalised features are strongly 
orrelated with the target variable to be predicted during clas- 
ification. For suppression, the interpretation is more difficult.
e could not find a clear dependency of allowed suppression 

evels and classification performance. Allowing a certain de- 
ree of suppression seems to be advisable, as it allows for more 
exibility during the anonymisation step and may reduce fluc- 
uations introduced by generalisation. 

Overall, we observe that even for very large k of up to 100 
which is far higher than the values used in practice nowa- 
ays), the performance losses remain within acceptable lim- 

ts. This is of course dataset-dependent, e. g. the adult dataset 
xhibits almost no decrease (when using RF and Mondrian) 
nd for cmc with SVM, the loss is only around 7%. For the 
atasets cahousing and mgm the loss is somewhat larger (ap- 
roximately 13%). 
Our investigation represents a first starting point for fur- 
her analysis of the effects of anonymisation strategies on 

ownstream classification (and potentially other ML) tasks.
o foster further research in this direction (e. g. using larger 
nd more diverse datasets, more classifiers and additional 
nonymisation techniques), we make all of our our code and 

esources publicly available, including datasets, method im- 
lementations, evaluation code and metadata (such as the 
mployed QIDs and VGHs). More concrete open topics and fu- 
ure research directions are detailed in the following to stim- 
late further research in this direction. 

Future work There are several possibilities for expand- 
ng our work. First, the utilised datasets (as listed in 

ubsection 4.2 ) could be extended by additional large-scale 
eal-world datasets. As only relatively few larger datasets 
suitable for applying k -anonymity algorithms) are publicly 
vailable, most research in this area is based on the same 
atasets; including additional datasets with other character- 

stics and distributions seems highly desirable. While we al- 
eady applied our algorithms and analyses on four distinct 
atasets, acquiring additional datasets (potentially including 
ynthetic datasets) to gain further insight regarding the ob- 
ervations described in Section 5 would greatly enhance our 
ork and help identify data-independent behaviour. 

Another possibility for improvement is the inclusion of 
ore k -anonymity algorithms. In order to cover more dis- 

inct approaches to achieve k -anonymity, we would in the 
uture like to include algorithms utilising subtree gener- 
lisation, such as Top-Down Specialization (Fung et al.,
005, 2007) or k -Optimize (Bayardo and Agrawal, 2005) . Fur- 
hermore, a systematic comparison of the effects of dif- 
erent anonymisation strategies (including microaggrega- 
ion and bucketisation in addition to generalisation and 

uppression) would be extremely desirable. In particular,
s indicated by Rodriguez-Hoyos et al. (2019) , the MDAV 

lgorithm (Hundepool et al., 2003) (based on multivari- 
te fixed-size microaggregation (Domingo-Ferrer and Mateo- 
anz, 2002) ) might have less impact on classification results.
lthough we could not confirm this advantage of microag- 
regation in our preliminary experiments using the μ-ANT 

ibrary, which implements a variant of MDAV, future experi- 
ents should consider other variants of the MDAV algorithm 

nd investigate this question in further detail. 
During our research we found that, unfortunately, both 

he implemented algorithms and the results (and sometimes 
ven the underlying data) are in many cases either not ac- 
essible at all or at least not easily accessible. We hope that 
ur findings as well as providing our source code and data 
ight lay the groundwork for further projects and help pro- 
ote open science approaches, in general. Our source code 

nd the utilised datasets are publicly available at github.com/ 
hstp/k-AnonML . 
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https://github.com/fhstp/k-AnonML


c o m p u t e r s  &  s e c u r i t y  1 1 1  ( 2 0 2 1 )  1 0 2 4 8 8  17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRediT authorship contribution statement 

Djordje Slijep ̌cevi ́c: Methodology, Software, Validation, In-
vestigation, Data curation, Writing – original draft, Writing
– review & editing, Visualization, Supervision. Maximilian
Henzl: Methodology, Software, Validation, Investigation, Data
curation, Writing – original draft, Writing – review & editing,
Visualization. Lukas Daniel Klausner: Methodology, Software,
Writing – original draft, Writing – review & editing, Supervi-
sion. Tobias Dam: Methodology, Software, Validation, Inves-
tigation, Writing – original draft, Writing – review & editing,
Visualization. Peter Kieseberg: Conceptualization, Methodol-
ogy, Writing – original draft, Writing – review & editing, Super-
vision, Project administration, Funding acquisition. Matthias
Zeppelzauer: Conceptualization, Methodology, Writing – orig-
inal draft, Writing – review & editing, Supervision, Project ad-
ministration, Funding acquisition. 

Acknowledgements 

This research was funded by the Austrian Research Promotion
Agency (FFG) through COIN project 866880 “Big Data Analyt-
ics”. The financial support by the Austrian Research Promo-
tion Agency and the Federal Ministry for Digital and Economic
Affairs is gratefully acknowledged. 

Supplementary material 

Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.cose.2021.102488 .

R E F E R E N C E S  

Aggarwal CC , Philip SY . A condensation approach to privacy 
preserving data mining. In: Proceedings for the 9th 

International Conference on Extending Database Technology. 
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg; 2004. 
p. 183–99 .

Ayala-Rivera V , McDonagh P , Cerqueus T , Murphy L . A systematic 
comparison and evaluation of k -anonymization algorithms 
for practitioners. Trans. Data Privacy 2014;7(3):337–70 .

Bayardo RJ , Agrawal R . Data privacy through optimal 
k -anonymization. In: Proceedings of the 21st International 
Conference on Data Engineering. Washington, DC, United 
States: IEEE Computer Society; 2005. p. 217–28 .

Breiman L . Random forests. Mach. Learn. 2001;45(1):5–32 .
Campan A , Truta TM . Data and structural k -anonymity in social 

networks. In: Proceedings of the Second International 
Workshop on Privacy, Security, and Trust in KDD. 
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg; 2008. 
p. 33–54 .

Chen T , Guestrin C . XGBoost: A scalable tree boosting system. In: 
Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. New 

York, NY, United States: ACM; 2016. p. 785–94 .
Ciriani V , De Capitani di Vimercati S , Foresti S , Samarati P . 

k -Anonymous data mining: A survey. In: Advances in 

Database Systems, Vol 34. Boston, MA, United States: Springer 
Publishing; 2008. p. 105–36 .
Domingo-Ferrer J , Mateo-Sanz JM . Practical data-oriented 
microaggregation for statistical disclosure control. IEEE Trans. 
Knowl. Data Eng. 2002;14(1):189–201 .

Domingo-Ferrer J , Sánchez D , Blanco-Justicia A . The limits of 
differential privacy (and its misuse in data release and 

machine learning). Commun. ACM 2021;64(7):33–5 .
Domingo-Ferrer J , Torra V . Ordinal, continuous and 

heterogeneous k -Anonymity through microaggregation. Data 
Min. Knowl. Discov. 2005;11(2):195–212 .

Dwork C , McSherry F , Nissim K , Smith A . Calibrating noise to 
sensitivity in private data analysis. In: Theory of Cryptography
– Third Theory of Cryptography Conference. Berlin/Heidelberg,
Germany: Springer Berlin Heidelberg; 2006. p. 265–84 .

El Emam K , Dankar FK , Issa R , Jonker E , Amyot D , Cogo E ,
Corriveau J-P , Walker M , Chowdhury S , Vaillancourt R ,
Roffey T , Bottomley J . A globally optimal k -anonymity method 

for the de-Identification of health data. J. Am. Med. Inform. 
Assoc. 2009;16(5):670–82 .

Elter M , Schulz-Wendtland R , Wittenberg T . The prediction of 
breast cancer biopsy outcomes using two CAD approaches 
that both emphasize an intelligible decision process. Med. 
Phys. 2007;34(11):4164–72 .

European Union . Regulation (EU) 2016/679 of the European 

Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of 
personal data and on the free movement of such data, and 

repealing Directive 95/46/EC (General Data Protection 

Regulation).. OJ 2016;L 119(4. 5. 2016):1–88 .
Friedman JH . Greedy function approximation: A gradient 

boosting machine. Ann. Stat. 2001;29(5):1189–232 .
Fung BCM , Wang K , Chen R , Yu PS . Privacy-preserving data 

publishing: A survey of recent developments. ACM Comput. 
Surv. 2010;42(4) .

Fung BCM , Wang K , Yu PS . Top-Down Specialization for 
information and privacy preservation. In: Proceedings of the 
21st International Conference on Data Engineering. 
Washington, DC, United States: IEEE Computer Society; 2005. 
p. 205–16 .

Fung BCM , Wang K , Yu PS . Anonymizing classification data for 
privacy preservation. IEEE Trans. Knowl. Data Eng. 
2007;19(5):711–25 .

Ghinita G , Karras P , Kalnis P , Mamoulis N . Fast data 
anonymization with low information loss. In: Proceedings of 
the 33rd International Conference on Very Large Data Bases. 
Los Angeles, CA, United States: VLDB Endowment; 2007. 
p. 758–69 .

Gkoulalas-Divanis A , Loukides G , Sun J . Publishing data from 

electronic health records while preserving privacy: A survey 
of algorithms. J. Biomed. Inform. 2014;50:4–19 .

Goldberger J , Tassa T . Efficient anonymizations with enhanced 
utility. In: Proceedings of the 9th International Conference on 

Data Mining. Washington, DC, United States: IEEE Computer 
Society; 2009. p. 106–13 .

Han J , Yu J , Lu J , Peng H , Wu J . An anonymization method to 
improve data utility for classification. In: Proceedings for the 
9th International Symposium on Cyberspace Safety and 

Security. Berlin/Heidelberg, Germany: Springer Berlin 

Heidelberg; 2017. p. 57–71 .
Hundepool, A., van de Wetering, A., Ramaswamy, R., Franconi, L., 

Capobianchi, A., de Wolf, P.-P., Domingo, J., Torra, V., Brand, R., 
Giessing, S., 2003. μ-argus version 3.2 user’s manual. Statistics 
Netherlands. 
https://research.cbs.nl/casc/deliv/manual3.2.pdf.

Inan A , Kantarcioglu M , Bertino E . Using anonymized data for 
classification. In: Proceedings of the 25th International 
Conference on Data Engineering. Washington, DC, United 
States: IEEE Computer Society; 2009. p. 429–40 .

Langheinrich M . Privacy by design — Principles of privacy-aware 
ubiquitous systems. In: Third International Conference on 

https://doi.org/10.13039/501100004955
https://doi.org/10.1016/j.cose.2021.102488
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0023
https://research.cbs.nl/casc/deliv/manual3.2.pdf
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0026


18 c o m p u t e r s  &  s e c u r i t y  1 1 1  ( 2 0 2 1 )  1 0 2 4 8 8  

L

L

L

L

L

L

M

M

M

N

P
 

R

R

S

S

S

S

X

X

D  

d
(
f
p
c
i
i
p

M
i
e
I
d
a

L
w
n
(
a
f
M
g
e
t

T
s  

H  

P
s
r
a

P
n
S
(
i
c

Ubiquitous Computing. Berlin/Heidelberg, Germany: Springer 
Berlin Heidelberg; 2001. p. 273–91 .

ast M , Tassa T , Zhmudyak A , Shmueli E . Improving accuracy of 
classification models induced from anonymized datasets. Inf. 
Sci. 2014;256:138–61 .

eFevre K , DeWitt DJ , Ramakrishnan R . Mondrian 

multidimensional k -anonymity. Proceedings of the 22nd 

International Conference on Data Engineering. Washington, 
DC, United States: IEEE Computer Society, 2006 .

eFevre K , DeWitt DJ , Ramakrishnan R . Workload-aware 
anonymization. In: Proceedings of the 12th ACM SIGKDD 

International Conference on Knowledge Discovery and Data 
Mining. New York, NY, United States: ACM; 2006. p. 277–86 .

i J , Liu J , Baig M , Wong RC-W . Information based data 
anonymization for classification utility. Data Knowl. Eng. 
2011;70(12):1030–45 .

i N , Li T , Venkatasubramanian S . t-Closeness: Privacy beyond 

k -anonymity and � -diversity. In: Proceedings of the 23rd 

International Conference on Data Engineering. Washington, 
DC, United States: IEEE Computer Society; 2007. p. 106–15 .

in J-L , Wei M-C . An efficient clustering method for 
k -anonymization. In: Proceedings of the 1st International 
Workshop on Privacy and Anonymity in Information Society. 
New York, NY, United States: ACM; 2008. p. 46–50 .

achanavajjhala A , Kifer D , Gehrke J , Venkitasubramaniam M . 
� -Diversity: Privacy beyond k -anonymity. ACM Trans. Knowl. 
Discov. Data 2007;1(1) .

alle B , Kieseberg P , Holzinger A . DO NOT DISTURB? Classifier 
behavior on perturbed datasets. In: Proceedings for the 1st 
International Cross Domain Conference for Machine Learning 
and Knowledge Extraction. Berlin/Heidelberg, Germany: 
Springer Berlin Heidelberg; 2017. p. 155–73 .

ohammed N , Fung BCM , Hung PCK , Lee C-k . Anonymizing 
healthcare data: A case study on the blood transfusion 

service. In: Proceedings of the 15th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. New 

York, NY, United States: ACM; 2009. p. 1285–94 .
ergiz ME , Atzori M , Clifton C . Hiding the presence of individuals 

from shared databases. In: Proceedings of the 2007 ACM 

SIGMOD International Conference on Management of Data. 
New York, NY, United States: ACM; 2007. p. 665–76 .

rasser F , Kohlmayer F , Kuhn KA . A benchmark of 
globally-optimal anonymization methods for biomedical data.
In: Proceedings of the 27th International Symposium on 

Computer-Based Medical Systems. Washington, DC, United 
States: IEEE Computer Society; 2014. p. 66–71 .

odríguez-Hoyos A , Estrada-Jiménez J , Rebollo-Monedero D ,
Parra-Arnau J , Forné J . Does k -anonymous microaggregation 

affect machine-learned macrotrends? IEEE Access 
2018;6:28258–77 .

odriguez-Hoyos A, Estrada-Jiménez J, Rebollo-Monedero D, 
Forné J, Parra-Arnau J, Urquiza-Aguiar L. Assessing the price in 

data utility of k -anonymous microaggregation. Submitted 

2019 . Preprints: ∼201907.0260 
amarati P . Protecting respondents’ identities in microdata 

release. IEEE Trans. Knowl. Data Eng. 2001;13(6):1010–27 .
ánchez D , Martínez S , Domingo-Ferrer J , Soria-Comas J , Batet M . 

μ-ANT: Semantic microaggregation-based anonymization 

tool. Bioinformatics 2020;36(5):1652–3 .
ilva HdO , Basso T , Moraes RLdO . Privacy and data mining: 

Evaluating the impact of data anonymization on classification 
algorithms. In: Proceedings of the 13th European Dependable 
Computing Conference. Washington, DC, United States: IEEE 
Computer Society; 2017. p. 111–16 .

weeney L . Achieving k -anonymity privacy protection using 
generalization and suppression. Int. J. Uncertain. Fuzziness 
Knowl.-Based Syst. 2002;10(5):571–88 .

iao X , Tao Y . Anatomy: Simple and effective privacy 
preservation. In: Proceedings of the 32nd International 
Conference on Very Large Data Bases. Los Angeles, CA, United 
States: VLDB Endowment; 2006. p. 139–50 .

u J , Wang W , Pei J , Wang X , Shi B , Fu AW-C . Utility-based 
anonymization using local recoding. In: Proceedings of the 
12th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. New York, NY, United States: 
ACM; 2006. p. 785–90 .

jordje Slijep ̌cevi ́c is a researcher at the Institute of Creative Me-
ia/Technologies at the St. Pölten University of Applied Sciences 

Austria). He holds a Master of Sciences in computer engineering 
rom TU Wien (Austria), where he is currently enrolled in the PhD 

rogram, and is involved in several interdisciplinary projects. His 
urrent main research area is the development of machine learn- 
ng methods in the field of human gait analysis; further research 

nterests include time-series analysis, computer vision and ex- 
lainable artificial intelligence. 

aximilian Henzl is currently completing his Master’s degree in 

nformation security at the St. Pölten University of Applied Sci- 
nces (Austria), where he also works as a student assistant at the 
nstitute of IT Security Research, focusing on privacy research and 

evelopment. His latest projects revolve around network security 
nd blockchain technology for databases and filesystems. 

ukas Daniel Klausner is a mathematician and computer scientist 
orking in security, privacy, data science and science and tech- 
ology studies at the St. Pölten University of Applied Sciences 

Austria). He graduated sub auspiciis from TU Wien (Austria) with 

 PhD in mathematics. Together with Paola Lopez, he recently 
ounded the Working Group on Trans- and Interdisciplinarity in 

athematics (AK MatriX). His current interests include critical al- 
orithm and data studies, ethics and bias in algorithms, math- 
matical foundations of ML/AI and the interplay of society and 

echnology. 

obias Dam is a researcher at the Institute of IT Security Re- 
earch, specialising in privacy, network security and web security.
e holds a Master’s degree in information security from the St.
ölten University of Applied Sciences (Austria) and was the lead 

oftware and security engineer for the usable privacy project up- 
ibox as well as the developer of MiningHunter, a framework for 
nalysing cryptojacking. 

eter Kieseberg heads the Josef Ressel Center for Blockchain Tech- 
ologies and Security Management as well as the Institute of IT 

ecurity Research at the St. Pölten University of Applied Sciences 
Austria). His research interests mainly focus on issues surround- 
ng privacy and data protection in data-driven environments, in- 
luding blockchain-based approaches. Before focusing on aca- 

http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0038
https://www.preprints.org/manuscript/201907.0260/v1
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00312-6/sbref0045


c o m p u t e r s  &  s e c u r i t y  1 1 1  ( 2 0 2 1 )  1 0 2 4 8 8  19 

 

 

 

 

 

 

 

demic research in security, he studied mathematics at TU Wien
(Austria) and worked as a consultant in the telecommunication
industry. 

Matthias Zeppelzauer is a senior researcher at the Institute of Cre-
ative Media/Technologies at the St. Pölten University of Applied
Sciences (Austria) and head of the Media Computing Research
Group. He received his PhD and habilitation in computer science
from TU Wien (Austria). His research focuses on multimedia infor-
mation retrieval, computer vision and machine learning. 


	-Anonymity in practice: How generalisation and suppression affect machine learning classifiers
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Anonymisation algorithms and information metrics
	3.1.1 Optimal Lattice Anonymization
	3.1.2 Mondrian
	3.1.3 Top-Down Greedy Anonymisation
	3.1.4 -NN Clustering-Based Anonymisation

	3.2 Machine learning algorithms

	4 Study design
	4.1 Experimental setup
	4.2 Datasets

	5 Experimental results
	5.1 Observations on individual datasets
	5.2 Observations on individual classifiers
	5.3 Robustness considerations for OLA
	5.4 Robustness considerations for Mondrian
	5.5 Strong fluctuations for TDG and CB
	5.6 Importance of dataset preparation
	5.7 Comparison of generalisation and suppression with microaggregation
	5.8 Remarks on the interplay of anonymisation and machine learning

	6 Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material

	Reference

