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Recall
CP is about:

@ modeling constrained combinatorial problems under the form of
constraint networks (CSPs / COPs)

® solving such problems by employing inference methods and search
strategies

Classically, we use:
® backtrack search

® while maintaining AC (Arc Consistency) at each node

For enforcing AC, all constraints are sollicited in turn for filtering domains
(principle called constraint propagation).

It is possible to:
® use a generic propagation scheme, like AC3

® or implement specialized filtering algorithms, one for allDifferent,
one for extension, ...



Table Constraints

Classically, for constraints defined in extension, we use ordinary tables
that contain ordinary tuples, as e.g., (a, b, a).

But, many recent developments concern:
e starred (or short) tables, containing the symbol *, as e.g., (a, *, b)

® smart tables, a form of hybridization between intensional and
extensional constraints

® MDDs (Multi-Valued Decision Diagrams)
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Table Constraints

Classically, for constraints defined in extension, we use ordinary tables
that contain ordinary tuples, as e.g., (a, b, a).

But, many recent developments concern:
e starred (or short) tables, containing the symbol *, as e.g., (a, *, b)

® smart tables, a form of hybridization between intensional and
extensional constraints

® MDDs (Multi-Valued Decision Diagrams)

Remark.
These different forms are useful when modeling.

Remark.
We need filtering algorithms for both positive and negative forms
(tables).
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Starred Tables

Introduction of wildcard symbols (*) in tables (Nightingale et al., 2013)

The constraint x = y V y = z can be defined by:

X y z
a a *
b b *
C C *
* a a
* b b
* c c

The global constraint element(/, (x;, %2, ..., xmn), R) can be defined by:
/ X1 X2 ... X, R
1 a a
1 b b
2 a * a
2 b b
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X y z
=y * *
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Smart Tables

Introduction of elementary constraints in tables (Mairy et al., 2015)

The constraint x = y V y = z can be defined by:

X y z
=y * *
* =z *
The global constraint element(/, (x1,x2, ..., xm), R) can be defined by:
/ X1 Xo .. Xm R
1 = X1
2 = X2
m * * e * = Xm




Tables vs MDDs

Multi-valued Decision Diagrams allow us to share prefixes and suffixes.

(x,y,z) € T

T
aaa
aab
abb
baa
bab
bbc
bca
caa

level
|
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Bin Packing

We are given:
® a pool of similar bins (with a specified capacity)

® a set of items, each of them with a specified weight

The problem is:
® to put all items in the available bins

® while minimizing the number of necessary bins
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Data for BinPacking

Data are stored in a JSON file:

{
"nBins":40,
"binCapacity":100,
"itemWeights":[30,31,31,32,34,35,35,40,40,40,41,41,...]
}

The PyCSP3 model given in the next slide requires two auxiliary
functions (not shown here):

® max_items_per_bin()

® occ_of _weights()

Remark.
The operator + defined on dictionaries is a PyCSP3 extension.



Model for BinPacking

from pycsp3 import *

nBins, capacity, weights = data
nItems = len(weights)
maxPerBin = max_items_per_bin ()

# x[i]J[j] is the weight of the jth object put in the ith bin.
x = VarArray(size=[nBins, maxPerBin], dom={0, *weights})

satisfy (
# not exceeding the capacity of each bin
[Sum(x[i]) <= capacity for i in range(nBins)],

# items are stored decreasingly according to their weights
[Decreasing(x[i]) for i in range(nBins)],

# ensuring that each item is stored in a bin
Cardinality(x, occurrences={0: nBins * maxPerBin - nItems}
+ {wgt: occ for (wgt, occ) in occ_of_weights ()})

)

maximize (
# maximizing the number of unused bins
Sum(x[i][0] == 0 for i in range(nBins))




Using Tables or MDDs

Can a pair of constraints defined on similar scopes (from a given /):

Sum(x[i]) <= capacity
Decreasing (x[i])

be translated into :

® 3 table constraint
® or an MDD constraint
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Using Tables or MDDs

Can a pair of constraints defined on similar scopes (from a given /):

Sum(x[i]) <= capacity
Decreasing (x[i])

be translated into :

® 3 table constraint
® or an MDD constraint

Answer: Yes

Example.

Instance BinPacking-sw100-00
® 18 tables with 2,747,755 tuples
® 18 MDDs with 1,554 nodes

By the way, what is the interest?
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Recall: Table Constraints

Often, a constraint extension is called a table constraint, especially
when it is non-binary.

A table constraint is then simply a constraint defined in extension. And is
is said to be:

® positive if allowed tuples are given

® negative if forbidden tuples are given

Remark.
We turn to specific algorithms for efficiency reasons.



Algorithms for Table Constraints

Many schemes/algorithms proposed in the literature:

AC-valid (Bessiere & Régin, 1997)

AC-allowed (Bessiere & Régin, 1997)
AC-valid+allowed (Lecoutre & Szymanek, 2006)
NextIn Indexing (Lhomme & Régin, 2005)
NextDiff Indexing (Gent et al., 2007)

Tries (Gent et al., 2007)

Compressed Tables (Katsirelos & Walsh, 2007)
MDDs (Cheng & Yap, 2010)

STR1 (Ullmann, 2007)

STR2 (Lecoutre, 2008)

STR3 (Lecoutre et al., 2012)

AC5-TCOpt (Mairy et al., 2012)

AC4R and MDD4R (Perez & Régin, 2014)

CT (Demeulenaere et al., 2016)



Classical Schemes

Basic Schemes:
® AC-allowed: iterating over the list of allowed tuples
e AC-valid: iterating over the list of valid tuples
® AC-valid+allowed: visiting both lists



Classical Schemes

Basic Schemes:
® AC-allowed: iterating over the list of allowed tuples
e AC-valid: iterating over the list of valid tuples
® AC-valid+allowed: visiting both lists

There exist r-ary positive table constraints such that, for some current
domains of variables,

e applying AC-allowed is O(2"~1).
® applying AC-valid is O(2"71).
® applying AC-valid-+allowed is O(r?)



Simple Tabular Reduction (STR)

The previous schemes proceed gradually: a support is sought for each
value in turn: (x, a), (x, b), (x,c), ...

Other (more recent) schemes proceed globally: AC is enforced by
traversing (once) the structure of the constraint. For example :

e STR

e MDDc

Constraint filtering/propagation aims at pruning the search space. STR
(Simple Tabular Reduction) prunes both:

® the tables

® and the domains
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Simple Tabular Reduction

Simple Tabular Reduction (STR)
e principle: dynamically maintaining tables (only keeping supports)
o efficiency obtained by using a sparse set data structure

Versions of STR:
® STR(1) (Ullmann, 2007)
® STR2 (Lecoutre, 2008)
® STR3 (Lecoutre et al., 2012)

Complexity:
L1X9T3 ... Tp T1To2T3 ... Ty
1 1

(a) STR1 (b) STR2



Data Structures

For each constraint ¢, we just need a few structures:
® table[c] the current table containing the current supports of c. It
can be advantageously implemented by a sparse set (shown later).

e for each variable x, gacValues|x] is the set containing the values in
the domain of x that are (generalized) arc-consistent on c.



Algorithm 1: STR(c: Constraint)

foreach variable x € scp(c) do
| gacValues[x] « 0

foreach tuple T € table[c] do
if isValid(c,7) then
foreach variable x € scp(c) do
if 7[x] ¢ gacValues|x] then
L | add 7[x] to gacValues[x]

else
| removeTuple(c,)

// domains are now updated
foreach variable x € scp(c) do
| dom(x) « gacValues[x]




[llustration of STR

table[cyy.]
T

a,a,c)
a,b,a
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b.b,c
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[llustration of STR

table[cyy.]
T

a,a,c)
a,b,a
a,c,b
b,a,a
b.b,c
c,a,b
C,C,C)
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[llustration of STR

ey

table[cyy.] ?) ﬁ

Ty z ¢ ¢
a,a,c)
a,b,a

gacValues[z| =

a,c,b gacValues[y] =
b,a,a Val _
bbe gacValues|z] =
c,a,b

C,C,C)
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[llustration of STR

table[cyy.]
T

a,a,c) \/
a,b,a
a,c,b
b,a,a
b.b,c
c,a,b
C,C,C)

gacValues[z| = {a}
gacValues[y] = {a}
gacValues[z] = {c}

21
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[llustration of STR

table[cyy.] ﬁ ﬁ

gacValues[z] = {a, c}
gacValuesly] = {a, c}
gacValues[z] = {b, c}

21



Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z

(a,a,a)
(a,a,b)
(a,b,b)
(b,a,a)
(b,a,b)
(b,b,c)
(b,c,a)
(c,a,a)
(c,b,a)
(c,c,a)

limit[cgy,]

current table

OOV UNPE W=

OOV UNPE W=
Bleblo el

|
—
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Updating after (y, b) being removed
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Ty z
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|
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Updating after (y, b) being removed
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Updating after (y, b) being removed
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Updating after (y, b) being removed
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Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z

(a,a,a)
(a,a,b)
(a,b,b)
(b,a,a)
(b,a,b)
(b,b,c)
(b,c,a)
(c,a,a)
(c,b,a)
(c,c,a)

limit[cyy.]

current table

SOOI WN B W —
W[l E-H
SOOI WN R W —

—
—



Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z

(a,a,a)
(a,a,b)
(a,bb) X
(b,a,a)
(b,a,b)
(b,b,c)
(b,c,a)
(c,a,a)
(c,b,a)
(c,c,a) \/

limit[cyy.]

current table
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Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z
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Updating after (y, b) being removed

limit[cyy.]

position|cyy,]

—

OOV UNPE W=

[hele o~ ]

current table

table[cyy.]

—

OOV NP W=

Ty Z

(a,a,a)
(a,a,b)
(a,b,b)
(b,a,a)
(b,a,b)
(b,b,c)
(b,c,a)
(c,a,a)
(c,b,a)
(c,c,a)

Q.X
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Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z
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(b,a,b)
(b,b,c)
(b,c,a)
(c,a,a)
(c,b,a)
(c,c,a)

limit[cgy,]

current table
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Updating after (y, b) being removed

limit[cyy.]

position|cyy,]
1 [1]

2 [ 2]

3 [10]

4 4] |2
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8 L8 °
9

"

table[cyy.]

—

OOV NP W=

Ty Z
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Updating after (y, b) being removed

limit[cgy,]

position|cyy,]
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2 |12
3 |10}
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Updating after (y, b) being removed

position|cyy,] table[cyy.]
Ty z

(a,a,a)
(a,a,b)
(a,bb) X
(b,a,a)
(b,a,b)
(b,b,c) X
(b,c,a)
(c,a,a)
(c,b,a) X

(c,c,a)

limit[cgy,]

current table

te[spelot[E] ]

OOV UNPE W=
OOV NP W=

—
—
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Successful Techniques for Table Constraints

Over the last decade, many developments for enforcing AC on extensional
constraints. Among successful techniques, we find:
® bitwise operations that allow performing parallel operations on bit
vectors,
® residual supports (residues) that store the last found supports of
each value,
® tabular reduction, which is a technique that dynamically maintains
the tables of supports,

® resetting operations that saves substantial computing efforts in some
particular situations.

N



Reversible Sparse Bit-sets

For example, for a set initially containing 82 elements, we build an array
with p = [82/64] = 2 words:

words: 11111111111111111111111111111111 1111111111111111111111111111111
11111111111111111100000000000000 0000000000000000000000000000000
index: 01

limit : 1
If we suppose that the 66 first elements are removed, we obtain:

words: 00000000000000000000000000000000 0000000000000000000000000000000
00111111111111111100000000000000 0000000000000000000000000000000
index: 10

limit: O

The class invariant for reversible sparse bit-sets is:
® index is a permutation of [0,...,p — 1], and
® yords[index][/]] # 0% < i < limit, Vi€ 0.p—1



Reversible Sparse Bit-sets

Algorithm 2: Class RSparseBitSet

words: array of rlong
index: array of int

limit: rint

mask: array of long

Method isEmpty(): Boolean
Method clearMask()
Method reverseMask()

Method addToMask(m: array of long)
foreach i/ from 0 to 1imit do
pos <« index]/]
L mask[pos] < mask[pos] | m[pos]

Method intersectWithMask()

// words.length = p
// index.length

]
el

// mask.length

1]
o]

// bitwise OR

26



Initialization of (x,y,z) € T
Consider (x,y,z) € T, where dom(x) = {a, b}, dom(y) = {a, b,d},

dom(z) = {a, b,c}. We build static arrays supports:

w N = O

~N o g s

T

aaa
aab
abc
baa
ach
abb
bab
bba
bbb

® The tuple (a, c, b) is initially invalid because ¢ ¢ dom(y), and thus
will not be indexed.

currTable
supports|x, |
supports|x, b]
supportsl|y, a]
supportsl|y, b]
supportsly, d]
supports|z, a]
supports|z, b]
supports|z, c]

OO O OOl o

OO O OOl -

OO O H O ol N

OO O O KFOFw

ORI OO OO~

O OO O ROl v

OO O O ROl Fo

Ol OO R ol o

® Value d will be removed from dom(y) given that it is not supported

by any tuple.



Algorithm CT (for enforcing AC)

@ updating (reducing) the current table

@ filtering variable domains

Example.

Hypothesis: x # a

1. updateTable() invalidates tuples supporting (x, a)

currTable/
supports|x, a|
currTable®’t

2. filterDomains() removes (z, ¢

supports[x, b] N currTable
supports[y, a] N currTable
supports|y, b] N currTable
supports(z, a] N currTable
supports|z, b] N currTable
supports|z, c] N currTable

1(1|1|1|1|1]1]1

111|101 ]0|0]O

o|o|j0j1|0[1]1]|1

)

currTable | O | O 0 1 0 1 1 1
o|jojoj1|0j1]1]1
ojo0joj1j0j1]0]|O0
o|o0ojo|jo0o|lO0OjO0O]1]|1
ojojof1|]O0|O|1]0O
o|o0ojo|joO0|l0O0Oj1T]0]1
oOo|0|O0|O0O|O0O|O]O]|O




Methods enforceAC() and updateTable()

Method enforceAC()
updateTable()

if currTable.isEmpty() then
| return Backtrack

| filterDomains()

Method updateTable()
foreach variable x € scp(c) do
if |A] # 0 then
currTable.clearMask()
foreach value a € A, do
L currTable.add ToMask(supports|x, a])

currTable.reverseMask()
currTable.intersectWithMask()
if currTable.isEmpty() then

| break




Method filterDomains ()

Method filterDomains()
foreach variable x € scp(c) do
foreach value a € dom(x) do
index + residues]x, 4]
if currTable.words[index] & supports(x, a)[index]
then
index < currTable.intersectIindex(supports|x, a])
if index # —1 then
| residues|x, a] < index
else
L dom(x) < dom(x) \ {a}

— 064




Performance

Speedup of CT compared to other algorithms.

Speedup STR2 GAC4 GAC4R MDD4R AC5-TC  Best2
average 9.11 15.59 11.37 10.38 50.40 3.77
min 0.76 0.92 1.13 0.13 1.05 0.13
max 88.58 173.24  208.52 50.84 1850 15.99
std 10.64 19.67 18.57 9.46 134.13 2.87
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Take-Away Message concerning Table Constraints

Efficient filtering algorithms for extensional constraints:

AC3Pt+™ for binary constraints
CT for non-binary constraints with large tables

STR2 or STR3 for non-binary constraints with tables of moderate
sizes

MDD for constraints that can be highly compressed

Many developments still to do about:

filtering negative table constraints with * and refutations
extending the scope of smart constraints
automatic generation of smart constraints

automatic compilation of subsets of constraints into table/smart
constraints



Outline

@ Local Consistencies
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Nogood

Definition
A nogood for a CN P is an instantiation of a subset of variables of P
that cannot be extended to a solution.
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Nogood

Definition
A nogood for a CN P is an instantiation of a subset of variables of P
that cannot be extended to a solution.

Definition
A (local) consistency is a property defined on CNs. Typically, it reveals
some nogoods.
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Nogood

Definition
A nogood for a CN P is an instantiation of a subset of variables of P
that cannot be extended to a solution.

Definition
A (local) consistency is a property defined on CNs. Typically, it reveals
some nogoods.

Remark.

Recording nogoods identified by consistencies usually permits to improve
the process of exploring the search space, especially when the nogoods
are of size 1 (i.e., inconsistent values).



Example.

® Nogood of size 1

{x=a)
meaning
(x = a)

® Nogood of size 2
{x=a,y = b}
meaning
—“(x=aAy=0>b)
® Nogood of size 3
{x=a,y=bz=v}

meaning
“(x=aAy=bAz=¢c)



Consistency

A domain-filtering consistency allows us to identify inconsistent values
(nogoods of size 1). For example:

¢ Arc Consistency (AC)
® Path Inverse Consistency (PIC)
® Singleton Arc Consistency (SAC)

36



Consistency

A domain-filtering consistency allows us to identify inconsistent values
(nogoods of size 1). For example:

¢ Arc Consistency (AC)
® Path Inverse Consistency (PIC)
® Singleton Arc Consistency (SAC)

Some consistencies allows us to identify inconsistent pairs of values
(nogoods of size 2). For example:

® Path Consistency (PC)
® Dual Consistency (DC)

® Conservative variants of PC and DC
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Consistency

A domain-filtering consistency allows us to identify inconsistent values
(nogoods of size 1). For example:

¢ Arc Consistency (AC)
® Path Inverse Consistency (PIC)
® Singleton Arc Consistency (SAC)

Some consistencies allows us to identify inconsistent pairs of values
(nogoods of size 2). For example:

® Path Consistency (PC)
® Dual Consistency (DC)

® Conservative variants of PC and DC

A relation-filtering consistency allows us to identify inconsistent tuples
(nogoods of size r) in constraint relations. For example:

® Pairwise Consistency (PWC)
® k-wise Consistency

36



Domain-filtering Consistency

To define a domain-filtering consistency ¢, it is sufficient to give the
conditions under which a value (x, a) is considered as ¢-inconsistent.



Domain-filtering Consistency

To define a domain-filtering consistency ¢, it is sufficient to give the
conditions under which a value (x, a) is considered as ¢-inconsistent.

Then, we can adopt the following definitions:
Definition
Let ¢ be a domain-filtering consistency.

® A constraint ¢ is ¢-consistent iff any value of ¢ is ¢-consistent, i.e.
Vx € scp(c),Va € dom(x), (x, a) is ¢-consistent.

® A constraint network P is ¢-consistent iff any value of P is
¢-consistent, i.e. Vx € vars(P),Va € dom(x), (x, a) is ¢-consistent.



Recall: AC

Definition (Arc Consistency)

® A value (x, a) of a constraint network P is AC iff for every constraint
¢ of P involving x, there exists a support of (x, a) on c.

Hence, we can say that:

e A constraint ¢ is AC iff Vx € scp(c),Va € dom(x), (x,a) is AC
(equivalently, there exists a support of (x, a) on c).

® A constraint network P is AC iff every constraint of P is AC.
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Recall: AC

Definition (Arc Consistency)

® A value (x, a) of a constraint network P is AC iff for every constraint
¢ of P involving x, there exists a support of (x, a) on c.

Hence, we can say that:

e A constraint ¢ is AC iff Vx € scp(c),Va € dom(x), (x,a) is AC
(equivalently, there exists a support of (x, a) on c).

® A constraint network P is AC iff every constraint of P is AC.

Remark.
Note how we usually simply write AC, instead of AC-consistent.
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SAC

Definition (Singleton Arc Consistency)

e A value (x, a) of a constraint network P is SAC iff AC(P|x=a) # L.
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SAC

Definition (Singleton Arc Consistency)

® A value (x, a) of a constraint network P is SAC iff AC(P|x=2) # L.

Remark.
SAC is stronger than AC
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SAC

Definition (Singleton Arc Consistency)
® A value (x, a) of a constraint network P is SAC iff AC(P|x=2) # L.

Remark.
SAC is stronger than AC

Of course, it is possible to generalize the principle of checking one step in
advance if a given local consistency holds as follows:

Definition (Singleton ¢-consistency)

® A value (x, a) of a constraint network P is singleton ¢-consistent,
with ¢ being a consistency, iff ¢(P|x=a) # L.
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SAC Algorithms

Algorithm Time Space Author(s)

SAC-1 O(en?d*) O(ed) (Debruyne & Bessiere, 1997)
SAC-2 O(en?d*) O(n*d?) (Bartak & Erben, 2004)
SAC-Opt | O(end?®) O(end?) (Bessiere & Debruyne, 2004)
SAC-SDS | O(end*) O(n?d?) (Bessiere & Debruyne, 2005)
SAC-3 O(bed?) O(ed) (Lecoutre & Cardon, 2005)
SAC-3+ | O(bed?) | O(bmaxnd + ed) | (Lecoutre & Cardon, 2005)




A binary CN to be made SAC




The singleton check for (w,0).




The singleton check for (w, 1).

Figure: Singleton Check AC(P|w=1)




Using Algorithm SAC-1

Pass 1 /,@—7&-1__‘5 ?Acqﬁ_y_%(}_
. = -

[ — [} — \ o
Il Il vl I (T
3 3 | 8 ’ ,' =)
AC AQ) AC AC /
3 1 ;/)/ ’ 3 1 ;,), -7 1

Pass 2/

o ™ o
Il I Il
3 3 8

Figure: Singleton checks performed by SAC-1
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Exploiting Incrementality of AC Algorithms

1

x
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The complexity of enforcing AC on a
node is O(ed?).

The complexity of
enforcing AC on a
branch is O(ed?).
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Using Algorithm SAC-Opt and SAC-SDS

w#1 AC
e < V70
s - - - _ ‘\\\
/7 ~
, r# 1™~ S.
o — A =) — oo ™
I I )| [ I vl I
3 E] ;8 8 8 /‘ > N
AC AC) 7 AC AC AC , AC
v 1 v LO LQ
— < //
N S~ /#,’
8 S~ R4
@ -~
QS(LC F QS(I.I: U {(w’ 0)}
Pwn Pw1 P’w2 PZU Pll Py() PZz

Sub-problems

Figure: Singleton checks performed by SAC-Opt and SAC-SDS



Using Algorithm SAC-3+

Qsac never updated

2=0 N y=1/\r=0 "\ w=0
)
\

2=2 \y=2N\r=2 N w=2
)
©®

Figure: Branches built by SAC3+



PIC and MaxRPC

Definition
An instantiation / of a subset of variables of a CN P is locally consistent
iff each constraint of P covered by / is satisfied by /.



PIC and MaxRPC

Definition
An instantiation / of a subset of variables of a CN P is locally consistent
iff each constraint of P covered by / is satisfied by /.

Definition (Path Inverse Consistency)

® A value (x, a) of a constraint network P is PIC iff for any set {y, z}
of two variables of P, with x # y and x # z, there exists b € dom(y)
and ¢ € dom(z) such that {(x, a), (v, b),(z, c)} is locally consistent.



PIC and MaxRPC

Definition
An instantiation / of a subset of variables of a CN P is locally consistent
iff each constraint of P covered by / is satisfied by /.

Definition (Path Inverse Consistency)

® A value (x, a) of a constraint network P is PIC iff for any set {y, z}
of two variables of P, with x # y and x # z, there exists b € dom(y)
and ¢ € dom(z) such that {(x, a), (v, b),(z, c)} is locally consistent.

Definition (Max-restricted Path Consistency)

® A value (x, a) of a constraint network P is MaxRPC iff for any binary
constraint c,, of P involving x and another variable y, there exists a
locally consistent instantiation {(x, a), (v, b)} such that for any
other variable z of P, there exists a value ¢ € dom(z) guaranteeing
that {(x, a),(z,c)} and {(y, b),(z,c)} are both locally consistent.



Figure: A constraint network with three binary constraints. Each value is
arc-consistent but no one is path inverse consistent.



Figure: A constraint network with six binary constraints. Each value is path
inverse consistent but (x, a) is not max restricted path consistent.



Y

Figure: A constraint network with four binary constraints. Each value is max
restricted path consistent but no one is singleton arc consistent.



Relationships between Domain-filtering Consistencies

sPC

i

SAC NIC

e

MaxRPC
¢
means
i ¢ is strictly stronger than

PIC
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Path Consistency

Definition
® A constraint network P is PC iff for every locally consistent
instantiation {(x, a), (y, b)} on P, there exists a value c in the

domain of any third variable z of P such that {(x, a),(z,¢)} and
{(y, b),(z,c)} are both locally consistent.



Path Consistency

Definition
® A constraint network P is PC iff for every locally consistent
instantiation {(x, a), (y, b)} on P, there exists a value c in the

domain of any third variable z of P such that {(x, a),(z,¢)} and
{(y, b),(z,c)} are both locally consistent.

Definition
Strong Path Consistency (sPC) is Arc Consistency together with Path
Consistency.



Path Consistency

Definition
® A constraint network P is PC iff for every locally consistent
instantiation {(x, a), (y, b)} on P, there exists a value c in the

domain of any third variable z of P such that {(x, a),(z,¢)} and
{(y, b),(z,c)} are both locally consistent.

Definition
Strong Path Consistency (sPC) is Arc Consistency together with Path
Consistency.

Remark.
Enforcing AC on a PC constraint network guarantees sPC.



Dual Consistency

Definition

® A pair of values {(x, a), (y, b)} on a constraint network P is DC iff
(v, b) € AC(P|x=a) and (x,a) € AC(P|y=s).



Dual Consistency

Definition
® A pair of values {(x, a), (y, b)} on a constraint network P is DC iff
(v, b) € AC(P|x=a) and (x,a) € AC(P|y=s).

® A constraint network P is DC iff every pair of values {(x, a), (v, b)}
on P is DC-consistent.



Dual Consistency

Definition
® A pair of values {(x, a), (y, b)} on a constraint network P is DC iff
(v, b) € AC(P|x=a) and (x,a) € AC(P|y=s).

® A constraint network P is DC iff every pair of values {(x, a), (v, b)}
on P is DC-consistent.

Remark.
CDC (Conservative DC) is DC restricted on existing binary constraints.



Properties

Proposition

® DC is strictly stronger than PC
® On binary CNs, DC is equivalent to PC

Proposition

For any constraint network P, we have:
® ACo DC(P) =sDC(P)
® ACo CDC(P) =sCDC(P)

s¢is ¢ + AC



A sCDC (Strong Conservative Dual Consistency) Algorithm

Algorithm 3: sCDC

P+ AC(P) // AC is initially enforced
finished < false
repeat
finished < true
foreach x € vars(P) do
if revise-sCDC(x) then

L P+ AC(P) // AC is maintained

finished < false

until finished




A sCDC (Strong Conservative Dual Consistency) Algorithm

Algorithm 4: revise-sCDC(var x: variable): Boolean

modified < false
foreach value a € dom(x) do

if P/ = 1 then
remove a from dom(x)
modified « true
else
foreach constraint c,, € ctrs(P) do
foreach value b € dom(y) do
if b ¢ dom” (y) then
remove (a, b) from rel(cy,)
L modified < true

return modified

P’ < AC(P|x=a) // Singleton check on (x,a)

// SAC-inconsistent

// CDC-inconsistent







Example
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Relationships between 2-order Consistencies (binary CNs)

25AC ¢« s2SAC —— > sC25AC

-
-

C2SAC ---- 3C=DC=PC «—— $3C=sDC=sPC

\ -
-
-

CDC ——— sCDC=SAC+CDC —s SAC

PPC ¢—— sPPC MaxRPC
C3C «— sCPC=sC3C AC=2C
CPC

—> strictly stronger -- - incomparable = equivalent



Relationships between 2-order Consistencies (non-binary)

2SAC «— s2S5AC

C2SAC ----3C----- DC «—— sDC —— SAC+CDC

C---- PPC «—sPPC GAC

CPC «—— sCPC

— strictly stronger - - - incomparable = equivalent
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PWC

Definition (Pairwise Consistency)

® A tuple allowed by a constraint c is pairwise-consistent with respect
to a constraint ¢’ # c iff it can be extended over scp(c’) into an
instantiation that satisfies ¢’.

® A constraint network P is pairwise-consistent iff any tuple allowed by
a constraint ¢ of P is pairwise-consistent with respect to any
constraint ¢’ # ¢ of P.

Definition (k-wise Consistency)

® A tuple allowed by a constraint ¢ is k-wise-consistent with respect
to a set C of k — 1 constraints iff it can be extended over
Ucrecsep(c’) into an instantiation that satisfies any constraint in C.

® A constraint network P is k-wise-consistent iff any tuple allowed by
a constraint ¢ of P is k-wise-consistent with respect to any set C of
k — 1 constraints of P.
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Example

rel(Cpay) rel(Cayz) rel(cw:)
w Ty Ty z w z
a,a,b a,a,a) a,b
a, ba a a, b, b b, a
b,a,a b,b,a
b,b,b) b,b,b) 4\
pairwise-inconsistent 3-wise inconsistent

Figure: Three “intersecting” constraints. The tuple (a, b, a) in rel(cuxy) is not
pairwise-consistent since it cannot be extended to c,,. The tuple (b, b, b) in
rel(cyz) is not 3-wise consistent since it cannot be extended to the two other
constraints.
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