Methodology and Tools for Research: Knowledge production

Yannick Prié Polytech Nantes, University of Nantes Master DMKM, 2015-2016

CC BY-SA 4.0

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

- This course "Methodology and Tools for Research: Knowledge production" by <u>Yannick Prié</u> is licensed CC BY-SA 4.0
- This license covers the general organization of the material, the textual content, the figures, etc. <u>except where indicated</u>.
- This license means that you can share and adapt this course, provided you give appropriate credit to the author and distribute your contributions under the same license as the original
 - for more information about this license, see <u>http://creativecommons.org/licenses/by-sa/4.0/</u>
- For any comment on this course, do not hesitate to contact me: <u>yannick.prie@univ-nantes.fr</u> or @yprie

Objectives of this course

- Understand several notions:
 - Knowledge production
 - Validation of claims
 - Peer assessment
 - Scientific disciplines
- And also
 - Ethics in research
 - Science and society

Outline

- Scientific knowledge
- Scientific disciplines
- Studying science
- Science and society

Outline

- Scientific knowledge
- Scientific disciplines
- Studying science
- Science and society

Knowledge (I)

- facts, information, and skills acquired by a person through experience or education; the theoretical or practical understanding of a subject
 - what is known in a particular field or in total; facts and information:
 - (philosophy) true, justified belief; certain understanding, as opposed to opinion.
- 2. awareness or familiarity gained by experience of a fact or situation

(Definition © 2013 Oxford University Press. All rights reserved)

Knowledge (2)

- One of the most important notion of philosophy
 - what is knowledge? what is it about? how is it possible to know something? is knowledge related to truthiness? *etc.*
- Some oppositions
 - implicit / explicit
 - to know how to swim / to know the name of the current president of France
 - informal / formal
 - to know how to order in a restaurant / to know Pythagoras theorem
 - unmethodical / systematic
 - to know that a taxi ride is too expensive / to know the average price for a ride in a particular city

Scientific knowledge production (I)

- Scientific knowledge = claims about reality
 - descriptive knowledge: describe (resp. explain) what happened
 - predictive knowledge: predict what will happen under certain circumstances (causes and effects)
- Empirical research
 - acquire knowledge by observation or experience that support or invalidate claims
- Use of logics and mathematics
 - assert that a reasoning is sound, check the consistency of a model, statistically evaluate experimental results with regards to claims, prove theorems, etc.

Scientific knowledge production (2)

 Scientists are in charge of producing scientific knowledge

Google image first result page, dec 2015, © Google | images © by their owners

Validation of scientific knowledge (1)

- Scientific knowledge is more than mere individual claims
 - it should stand independently of the scientists
 - need for external validation
- Validation is based on "standardized intersubjectivity"
 - intersubjectivity: agreement between several individual on the fact that something is meaningful
 - standardized: there are rules
 - on how to reach this agreement
 - on what can be the subject of the agreement

Validation of scientific knowledge (2)

- Peer validation
 - only peers of a scientist can validate the fact that this scientist has produced valuable knowledge
 - because they also are scientists hence share the rules
- Example of validation checks
 - correction of a proof
 - reproducibility of an experiment
 - soundness of a reasoning
 - originality of the work

0

Accumulation of scientific knowledge (1/2)

- Growth of scientific knowledge never stops
 - The larger the island of knowledge, the longer the shoreline of wonder (Ralph W. Sockman)
- Evolutions
 - incremental growth: one step after another step
 - breakthroughs: rare but happen
 - o (obsolescence: something is proven false, or can be better described)

Accumulation of scientific knowledge (2/2)

Needs

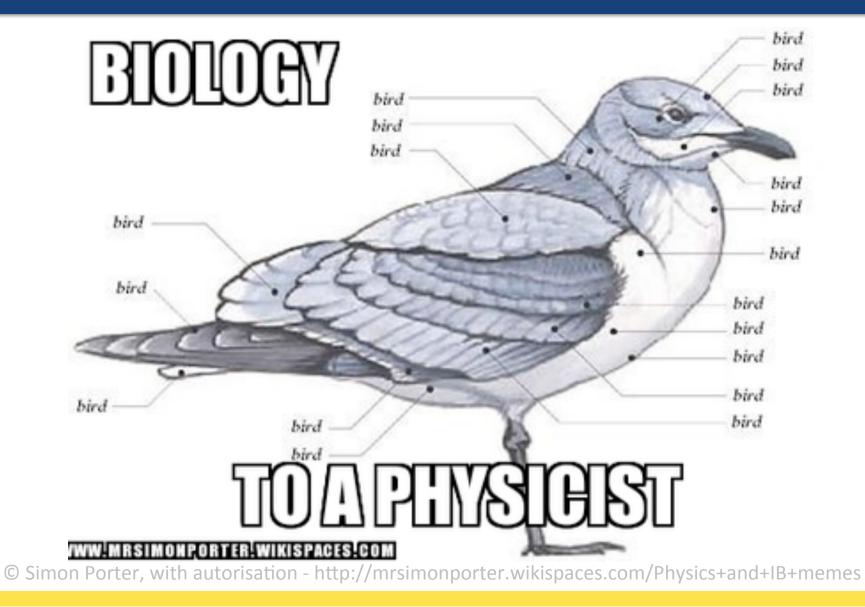
- validation: being able to assess work originality
- creation: being able to to build on others' works
- Growth is based on systematic accumulation of physical supports of scientific knowledge
 - mainly written supports (publications)

Socio-technical organisation for knowledge production

Universities

- provide places of work and discussion
- Publication processes
 - provide scientific knowledge validation workflows
- Publishers
 - provide physical supports, and diffusion through communication means
- Conferences
 - provide means for scientists to meet and discuss
- Libraries
 - support accumulation of physical supports

Scientific ethics


- Scientists are committed to the functioning of science, mainly regarding evaluation
 - accepting peer evaluation
 - honesty for evaluating others' works
 - citing others' works
 - not stealing others' works
 - honesty with one's actual results
 - etc.
- Science would not work without ethics...
 ...but of course it is not as simple

• see later

Outline

- Scientific knowledge
- Scientific disciplines
- Studying science
- Science and society

This is not a bird

Validation and "standardized intersubjectivity"

- All the researchers adhere to a set of general rules
 - peer assessment, ethics, logical reasoning, etc.
- Not all the researchers work on the same domain
 - e.g. sociology, biology, philosophy, computer science
- Not all the researchers agree with each other on
 - means of validations, what is an experiment, what is "good" science, etc.

Distinctions amid Science

- Natural science
 - universal laws, natural objects
- Cultural science
 - contingent laws, cultural objects

Ernst Cassirer is Public Domain

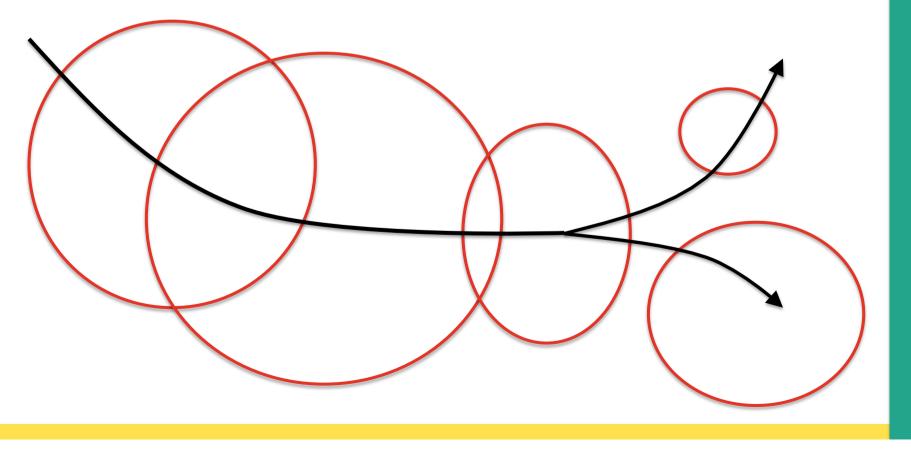
- Hard science vs soft science
 - not only methods, but also perceived *legitimacy* (rigor, mathematics, predictions, experiments)
 - Physics/Chemistry > Biology > Psychology > Social sciences
 - Exercise: where is computer science?

Scientific disciplines (1)

- Community of researchers, characterised by
 - a common object (research domain): e.g. life, law, matter, information, etc.
 - the associated scientific practices : community of practice
 - commons means of validation, methods, ways of apprehending the world, etc.
 - the associated body of knowledge
 - corpus of scientific material

Scientific disciplines (2)

- Belonging to a discipline:
 - agreeing to its object, methods, limits of body of knowledge
 - participating to the growth of that body of knowledge
- Hence being recognized as a peer by the others members of the community


« a sociologist is a guy who is considered a sociologist by sociologists »

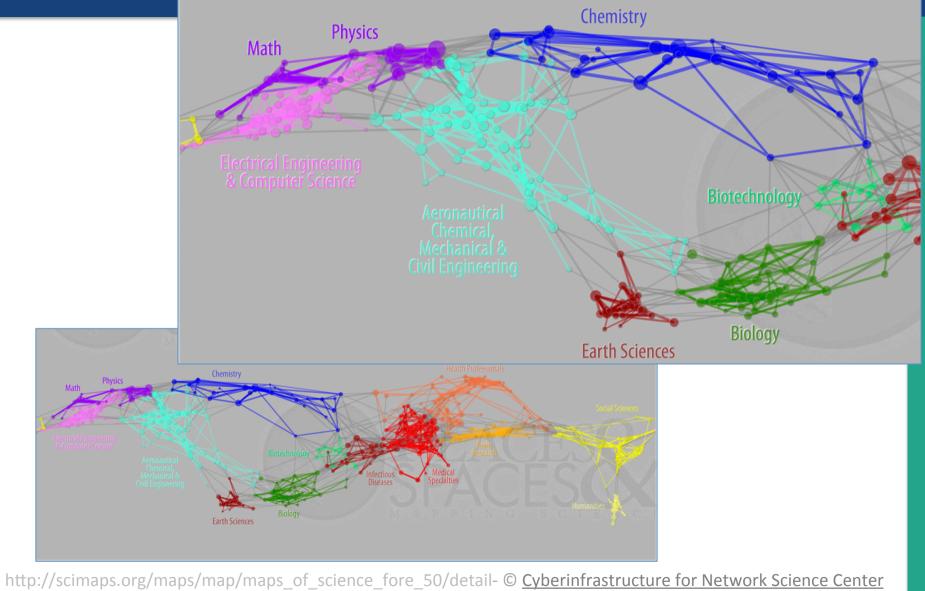
Sub-disciplines

- Scientists from the same discipline are supposed to be able to talk to each other
 - but disciplines are huge with several thousands of researchers, all hyper-specialised
- There are many sub-disciplines
 - Chemistry (wk): Analytical chemistry, Biochemistry, Inorganic chemistry, Materials chemistry, Neurochemistry, Nuclear chemistry, Organic chemistry, Physical chemistry, Theoretical chemistry
 - Computer science: networking, HCI, Language theory, Pattern recognition, Databases, Image processing...
- Not mentioning sub-sub-disciplines !

Evolution of disciplines

- Scientific knowledge evolve...
- ... so do disciplines

Frontiers of disciplines


- The frontiers of disciplines are always challenged
- Quite comfortable to be at the core of the discipline
 - quite stable
 - full agreement with the values of the community
- Not so comfortable to be at the edge ______
 - more rapid evolution
 - more criticisable

[pluri-| inter-| trans-]disciplinary practices (1)

- Pluri-disciplinarity (or multi): several disciplines within a same team to build something in common
 - variety of approaches, innovation
- Inter-disciplinarily: using approaches from another discipline, enhancing one's method with others'
 - synthesis of approaches
- Trans-disciplinarily: building a common approach, with belongs neither to a discipline nor to the other
 - common object, common approach

Difficulty Reward?

Mapping science

clence_fore_so/detail- @ <u>Cybernmastruc</u>

[pluri-| inter-| trans-]disciplinary practices (2)

- It is difficult
 - not getting (publishable) results easily
 - understanding another discipline (objects, methods, body of work)
- Some qualities are needed
 - deep respect of the point of view of the other
 - confidence that an agreement will eventually be reached
 - patience and hard work to be able to build that agreement
- But it is rewarding
 - revolutionary ideas often come from inter- or transdisciplinary work
 - new disciplines emerge from trans-disciplinary work
 - e.g. bio-informatics

Outline

- Scientific knowledge
- Scientific disciplines
- Studying science
- Science and society

Taking science as the object of science

- Epistemology
 - Epistēmē: science, knowledge Logos: discourse
 - *Meaning 1:* Theory of knowledge
 - Meaning 2: Philosophy of science
 - Study of how knowledge is produced, in general or considering particular disciplines
 - Thomas Kühn: notion of paradigm
- Sociology of science
 - Studying science as a social activity

Science and writing

- For creating knowledge
 - Husserl's Origin of geometry:
 - no geometry, no mathematics possible without writing
 - need for "externalising ideas" so as to be able to consider them, verify reasoning, etc.
- For evaluating knowledge
 - only externalised written scientific knowledge can be evaluated
- For spreading knowledge
 - written scientific knowledge can circulate

Edmund Husserl is Public Domain

Science and Janus

- Latour Laboratory Life:
 The Construction of Scientific Facts:
 - Scientific activity has two faces like Janus

Bruno Latour in Gothenburg by Jerzy Kociatkiewicz is <u>CC BY SA 2.0</u>

Day to day laboratory life: humans, multiple goals, various experiments, strange phenomena, luck, etc.

External presentation of scientific work:

unique direction (from hypothesis to validation to conclusion), non-importance of scientists, etc.

Janus coin is Public Domain

 See for instance recent (jan 2013) twitter hashtag #overlyhonestmethods

Science and scientists

- Scientific activity involves lots of sub-activities not directly related to scientific production
 - management, getting funds, etc.
- Researchers are humans too
 - they have strategies of power
 - for science / for career (hopefully connected :-)
 - they can cheat

0

· certainly a minority

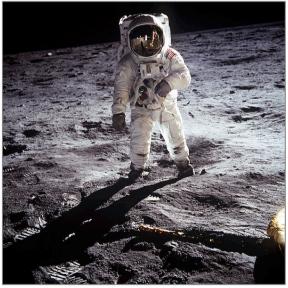
Outline

- Scientific knowledge
- Scientific disciplines
- Studying science
- Science and society

Peer validation \neq market or society "validation"

- Internal to science
 - new knowledge is acquired, the world changes because we think it differently
 - new concepts: e.g. ecology
 - *new* objects: e.g. quasars
 - criteria = actual knowledge production
- External to science
 - knowledge discovery has consequences on society
 - new technical tools and industrial development
 - new ways of thinking society
 - criteria = impact on society, "usefulness"

Science and society (1)


- Scientists are appointed by society to produce scientific knowledge, they need support for
 - doing research
 - accumulating knowledge
- Social organisations are devoted to providing such support
 - universities, laboratories
 - libraries
 - funding bodies
 - scientific publishers
 - •
- Most are publicly funded

Scientist Looking Thorugh Microscope by anonymous is Public Domain

Science and society (2)

- Society is conscious that research is very important for its development
 - put not always for the sake of knowledge creation...
- Utilitarian view on science
 - produce wealth!
 - we need growth
 - produce prestige!
 - big equipment, Nobels
 - produce ROI!
 - funding only "useful" research
 - meet my timescale!
 - few years vs several decades (long term research)
 - produce certainty!
- sometimes contradictory with what science is

Astronaut Buzz Aldrin on the moon by NASA is Public Domain

Scientist (2013)

 Scientists are in charge of producing scientific knowledge

Google image first result page, oct 2013, © Google | images © by their owners

Google image first result page, oct 2012, © Google | images © by their owners