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Abstract
Key determinants for the development of an allergic response to an otherwise ‘harmless’ food protein involve different factors 
like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, 
the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have 
an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape 
plant protein allergenicity, the same analysis was proceeded here for animal allergens.
We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, 
depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits 
of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can 
also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters 
shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future 
biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together 
with data integration model systems will be needed to unravel causal relationships between physicochemical properties and 
the basis of protein allergenicity.
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Abbreviations
2D  Secondary structure
3D  Tertiary structure
4D  Quaternary structure
BAT  Basophil activation test
DBPCFC  Double-blind placebo-controlled food 

challenge
EAST  Enzyme allergosorbent test
ELISA  Enzyme-linked immunosorbent assay
HPP  High-pressure processing
HHP   High-hydrostatic pressure
IgE  Immunoglobulin E
IgG  Immunoglobulin G

OFC  Open food challenge
PEF  Pulsed electric fields
PTM  Post-translational modifications
PUV  Pulsed ultraviolet
RAST  Radioallergosorbent test
RBL  Rat basophilic leukaemia
SPT  Skin prick tests
Th1, Th2  T helper cell type 1 or 2
WHO/IUIS  World Health Organiztion/International 

Union of Immunological Societies

Introduction

Presently, food allergies are a very concrete public health 
problem, reaching near-epidemic proportions in some 
regions of the world. The number of allergic reactions 
requiring medical treatments, and often hospitalisation, has 
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multiplied over the past few years creating an important eco-
nomic burden in several developed countries [1]. Under-
standing the mechanisms underlying this health condition 
is mandatory for better diagnosis and management of food 
allergies. With the increasing number of populations moving 
across the world, the local frequency of certain food aller-
gies might significantly change. Additionally, with globally 
linked market places, the sensitised/allergic individuals are 
currently exposed to very different types of foods.

Food-allergic reactions are caused by the immunorecog-
nition of specific proteins, following the breakdown of 
immunologic and clinical tolerance to an ingested food 
antigen(s). It is important not only to explore the physiologi-
cal mechanisms underlying food allergy but also to evaluate 
the structural properties of food allergens and how they are 
affected by current/novel food processing technologies [2, 
3]. At present, there is an impressive number of publications 
available, exploiting different physicochemical parameters 
of several allergens and thus, providing a local overview of 
their impact on those proteins. However, some questions 
remain to be answered in the broad context: (i) which phys-
icochemical parameters affect mostly the allergenicity of 
food proteins? (ii) do the same parameters fit every allergen, 
independently of its origin? (iii) do homologous proteins 
have the same behaviour towards specific physicochemical 
properties?

Our previous work reviewed those questions for plant 
allergens [4]. Same as for plant allergens, physicochemi-
cal parameters play also a critical role in the allergenicity 
of animal proteins. For this review, we gathered and ana-
lysed available publications reporting evidence about the 
impact of different physicochemical characteristics on the 
allergenicity of animal protein families. Also, we aimed at 
identifying common features among distinct protein families 
of plant and animal origin in the light of the physicochemical 
parameters’ potential to affect protein allergenicity. For this 
purpose, we will first make a general description regarding 
each animal allergen family (biological function, chemi-
cal and structural composition, and clinical relevance) to 
establish their importance within the context of this review. 
Secondly, the collected evidence will be discussed under 
each physicochemical property topic, since the objective of 
this work is to evaluate how each physicochemical param-
eter shapes protein allergenicity across protein families and 
within family members.

Animal Allergen Families

The latest statistical data provided by AllFam database in 
2017 [5, 6] indicates 445 allergenic proteins from animal 
sources, with 94% (n = 421) of them being included in the 
WHO/IUIS (World Health Organization/International Union 

of Immunological Societies) nomenclature database [7]. 
These animal allergens were described on exposure routes 
via ingestion, inhalation and/or contact [5, 6]. Like for plant 
food allergens (n = 436 proteins), animal allergens (n = 410 
molecules) are also distributed by families of proteins 
(n = 71). However, more than 70% of the animal allergenic 
molecules are known food allergens, which are restricted 
to four families of proteins, namely the tropomyosins, the 
EF-hand family (parvalbumins), the ATP-guanido phospho-
transferase (arginine kinases) and the alpha/beta-caseins.

Tropomyosins

Tropomyosins are present in all eukaryotic cells, except for 
plants. They are composed of a variety of actin-binding proteins 
with the main function of actin cytoskeleton regulation, which 
is of major relevance for both muscle and non-muscle cells 
[8]. Structurally, tropomyosins have an average length of 
approximately 284 residues, corresponding to coiled-coil homo- 
or hetero-dimers that form a polymer along the length of actin 
(Table 1). They consist of two parallel α-helices with two sets 
of seven alternating actin-binding sites, 34–38 kDa, being only 
functional as dimers [9]. Tropomyosins are important contractile 
proteins that are highly conserved in both vertebrates and 
invertebrates but only considered as allergens in invertebrates 
[10, 11], representing up to 1% of their muscle mass [12, 
13]. One exception of this allergenicity rule seems to be fish 
tropomyosins [14–16].

Tropomyosin family ranks the first position in terms of the 
total number of allergens (n = 64) identified in animals [5, 6], 
with 25 of those being registered in the WHO/IUIS allergen 
nomenclature database [7] as food allergens, mainly belonging 
to crustaceans (crab, prawn, lobster), molluscs (oyster, snail, 
abalone, squid), fish (tilapia, catfish, salmon) and fish nema-
todes (worms). Interestingly, shrimp allergic individuals clini-
cally cross-react with a novel tropomyosin from mealworm, the 
larvae of a beetle (Tenebrio molitor), evidencing that tropomyo-
sin is one of the cross-reacting allergens [17]. In the invertebrate 
family, tropomyosins are considered as panallergens (universal 
proteins responsible for IgE cross-reactivity to a large quantity 
of related and unrelated allergenic sources) [10, 11, 18], as well 
as major allergens in several species.

Tropomyosins are the third most prevalent cause of food-
induced anaphylaxis [19], but they are also important respiratory 
allergens from crustaceans, arthropods, house dust mites and 
helminths [20]. Among the priority foods, the eliciting doses 
(EDs) associated with the consumption/contact of these spe-
cies (e.g. crustaceans) are in general high as compared to strong 
food allergens such as peanuts, namely 26.2 and 280 mg of pro-
tein for ED01 and ED05, respectively, or up to 2.5 g for ED10 
(for comparison ED10 peanut 2.8 mg protein) [21–23]. Most 
of the allergic reactions are related to major allergen tropomyo-
sin. Therefore, a small dose of the tropomyosins is sufficient to 
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trigger severe and systemic clinical symptoms that may include 
immediate cutaneous reactions, oral allergy syndrome (OAS), 
digestive symptoms, anaphylaxis and asthma [24].

Parvalbumins

Parvalbumins are calcium-binding proteins, belonging to 
the second largest family of animal food allergens (n = 46) 
[5, 6]. These proteins have evolved into two distinct evolu-
tionary lineages, being classified as α- and β-parvalbumins. 
Although presenting similar conformational structures, 
α- and β-parvalbumins differ in their isoelectric points 
(pI) (α-parvalbumin: pI ≥ 5; β-parvalbumin: pI ≤ 4.5) and 
molecular weights, as well as in their primary structures, 
affinities for  Ca2+- and  Mg2+-binding, cell-type-specific 
expression and physiologic functions [25, 26].

Parvalbumins are sarcoplasmic muscle IgE-binding 
proteins, small in length (approximately 109 amino acids 
and 10–12  kDa), acidic pI (3.9–5.5) and  Ca2+-binding 
(Table 1) [27, 28]. They are relevant contractile proteins, 
representing 1–3% of muscle mass in invertebrates or fish, 
respectively [13, 29]. Structurally, parvalbumins belong 
to the EF-hand family [30], characterised by the presence 
of three typical helix-loop-helix domains, organised in a 
globular tri-dimensional conformation (Table 1). Two of 
these domains (CD and EF domains) are capable of binding 
divalent metal ions  (Ca2+ or  Mg2+), while the third one (AB 
domain) forms a cap that covers the hydrophobic surface of 
the functional domain pair [31].

Parvalbumin is the main fish allergen sharing similar 
biochemical and immunochemical characteristics across 
fish species consumed in different parts of the world [28, 
32–34]. Most fish allergies are triggered by parvalbumins 
[24, 35] with allergenic homologs being expressed in fish at 
variable levels [29]. Cartilaginous fishes (e.g. rays), mainly 
consisting of α-parvalbumins, are tolerated by most bone-
fish (β-parvalbumins) allergic patients, due to their low 
allergenic capacity [36]. α-Parvalbumins are generally not 
considered allergenic because of their proximity to human 
homologs [30]. However, this dogma has been challenged 
with α-parvalbumins being identified as food allergens in 
frog (Ran e 1), chicken (Gal d 8) and crocodile (Cro p 2) 
meats [7, 37–40].

Gad c 1 was the first β-parvalbumin identified as a fish 
allergen in Baltic cod, being functionally related to the 
regulation of calcium switching in muscular-skeletal cells 
[41–43]. Since then, several allergenic β-parvalbumins (Clu 
h 1, Cten i 1, Cyp c 1, Gad c 1, Gad m 1, Lat c 1, Lep w 1, 
Onc m 1, Pan h 1, Ras k 1, Sal s 1, Sar sa 1, Sco s 1, Seb m 
1, Thu a 1 and Xip g 1) have been identified mainly in fish 
species (Atlantic herring, grass carp, common carp, Baltic 
codfish, Atlantic codfish, barramundi, turbot fish, trout, cat-
fish, Indian mackerel, salmon, pilchard, Atlantic mackerel, 

Table 1  Data on the composition and structure of proteins from the 
most important animal allergen families
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redfish, tuna and swordfish, respectively), although two have 
been found in frog (Ran e 2) and crocodile (Cro p 1) [7].

Most fish species express two or more β-parvalbumin 
isoallergens that diverge in their amino acid sequences (e.g. 
salmon β1- and β2-parvalbumins share 64% of protein iden-
tity). Patients might have IgE-repertoires for all allergens or 
isoallergens [28, 44]. Also, dimeric and polymeric forms 
of parvalbumin with high molecular weight (aggregates of 
approximately 24 and 48 kDa) have been reported to show 
IgE-reactivity [45, 46]. Due to their capacity to sensitise 
through the gastrointestinal tract, β-parvalbumins are clas-
sified as a class I or complete food allergens [47]. How-
ever, upon handing and food processing, they can induce 
sensitisation by inhalation (occupational allergy) [48, 49]; 
thus, they are both food and respiratory allergens. Common 
clinical symptoms triggered by β-parvalbumins range from 
mild (oral allergy syndrome) to severe (angioedema, asthma, 
anaphylaxis) in fish-allergic individuals [24].

Arginine Kinases

The arginine kinases belong to the ATP guanido phospho-
transferases (also known as phosphagen kinases), which 
consists of a conserved family of functionally and structur-
ally related enzymes that can reversibly catalyse the trans-
fer of a phosphate between ATP and different phosphagens. 
Arginine kinases catalyse the phosphorylation of L-arginine 
residues [50] in crustaceans, which is a crucial reaction to 
the mechanism of cellular energy homeostasis [51].

Biochemically, these proteins have a molecular mass of 
40–45 kDa with two polypeptides of 355–357 amino acids 
organised in an asymmetric monomeric structure (Table 1) 
[52]. The experimental determination of the crystal structure 
of natural arginine kinase evidences a fold with an α-helical 
N-terminal domain (composed by five α-helices) and an 
α-β C-terminal domain (containing seven α-helices and 
eight β-sheets). Moreover, different arginine kinases from 
distinct phyla/subphyla/classes (crustaceans, molluscs and 
arachnids) present high sequence identity, linear epitope 
similarity, as well as conservation of spatial structure in the 
conformational epitope regions, thus confirming the reason 
for the frequent cross-reactivity of these allergenic proteins 
among species [52].

Arginine kinases have been described as allergens, not 
only in seafood (Pen m 2, Cra c 2, Lit v 2) [53–55] but also 
in cockroaches (Per a 9) [56] and mites (Der p 20) [57]. So 
far, eleven arginine kinases have been identified as allergenic 
proteins, with 6 of them being classified as food allergens 
(Bomb m 1, Cra c 2, Lit v 2, Pen m 2, Pro c 2 and Scy p 2 
in silk moth, North Sea shrimp, white shrimp, black tiger 
shrimp, crayfish and mud crab, respectively) [7] and rep-
resenting the third most relevant family of animal proteins 
[5, 6]. Arginine kinases are classified as minor allergens, 

but clinically relevant ones, since sensitisation to these 
allergens seems to be independent of tropomyosins, with 
allergic patients experiencing systemic symptoms or even 
anaphylaxis [58].

Caseins

In terms of animal food allergens, caseins rank the fourth 
position in the list of protein families inducing allergic reac-
tions by ingestion [5, 6]. Caseins are a group of proteins 
belonging to a large family of secretory calcium-binding 
phosphoproteins, present in milk coagulum. As one of the 
most abundant proteins in milk (80% of the total protein 
fraction), caseins are also considered as major allergens 
responsible for the development of mild to severe allergic 
reactions in sensitised individuals [24, 59].

The casein fraction (also known as Bos d 8) consists of 
four allergenic proteins, Bos d 9 (αS1-casein), Bos d 10 
(αS2-casein), Bos d 11 (β-casein) and Bos d 12 (κ-casein), 
all classified as important cow’s milk allergens [7], and three 
γ-caseins deriving from the hydrolysis of Bos d 11, which 
are considered not allergenic [60]. Caseins present primary 
structures with 190–224 residues and small molecular size 
(20–30  kDa) (Table  1). In the coagulum, caseins form 
ordered aggregates termed micelles, with a central hydro-
phobic core (calcium-sensitive Bos d 9, Bos d 10 and Bos d 
11) and a peripheral hydrophilic layer (Bos d 12) containing 
major sites of phosphorylation mostly represented by phos-
phoserine residues [61]. Caseins have a non-compact, flex-
ible and greatly hydrated structure, with a high hydrophobic 
surface due to the lack of a tertiary structure (Table 1).

The content and proportion of the four main casein 
fractions in milk vary according to the animal species. 
Sheep’s milk contains the highest concentration of caseins 
(4.18 g/100 g), followed by buffalo’s milk. Almost half of 
this amount is present in cow’s, goat’s and camel’s milk. 
Human milk contains a low quantity of caseins (0.32 to 
0.42 g/100 g), like mare’s and donkey’s milk [62]. Human 
milk is rich in Bos d 11, but it does not contain Bos d 9, 
which is very abundant in cow’s and buffalo’s milk, repre-
senting one of the most allergenic proteins in the milk of 
these species [63, 64]. Bos d 9 is known to be the sensitis-
ing agent in about 60% of patients with cow’s milk allergy. 
Goat’s milk seems to be less allergenic than cow’s milk due 
to a lower contribution of Bos d 9 in the elicitation of the 
adverse immunological reactions [62]. In the same way, 
camel’s milk shows a high proportion of Bos d 11 and low 
proportion of Bos d 9 and Bos d 10 as in human milk [60, 
65], so camel’s milk is often suggested as alternative source 
of nutrients for cow’s milk allergic individuals [66]. Thus, 
these differences in the abundance of each casein, as well 
as the distinct degree of protein homology [67, 68], are 
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intrinsically related to their allergenic potential in different 
mammalian species.

Miscellaneous Protein Families

Miscellaneous families are defined as families containing 
only one or two important allergens, while most proteins are 
non-allergenic. This section describes some protein families 
containing important animal allergens.

Serum Albumins

The serum albumins comprise a group of multifunctional 
proteins produced in the liver and secreted as a non-
glycosylated protein into the plasma, presenting highly 
conserved sequential and conformational structures [69, 70]. 
Serum albumins are abundant in the plasma of mammalian 
and avian species, displaying biological functions that 
include the transport of different molecules (water, 
cations–Ca2+/Na+/K+, fatty acids, hormones, bilirubin and 
drugs) and the regulation of the colloid osmotic pressure 
in blood [6, 24]. They are relatively large molecules with 
a molecular weight of 60–69 kDa and immature primary 
sequences of 607–608 amino acids (Table 1), being present 
in dander, skin, saliva, milk and meat of different animal 
species. Structurally, serum albumins present a very flexible 
α-helical conformation (to accommodate different ligands) 
composed of three domains and stabilised by several 
disulphide bridges [24, 70].

So far, different serum albumins have been registered in 
the WHO/IUIS allergen database, although only three are 
classified as food allergens, namely Bos d 6 (bovine serum 
albumin (BSA)), Gal d 5 (chicken serum albumin (CSA)) 
and Sus s 1 (pig serum albumin (PSA)) [7].

Bos d 6 is the serum albumin identified in cow’s 
milk and meat, sharing high sequence identity (75.6%) 
and similarity (85.5%) with human serum albumin [24, 
69]. Mature Bos d 6 has 583 amino acids folded in an 
α-helical structure composed of three structurally similar 
domains (I, II and III) organised in a heart-shaped mol-
ecule and stabilised by 17 disulphide bonds. Bos d 6 con-
formation is known to change to accommodate ligands, 
being able to coordinate the binding of three  Ca2+, all of 
them located at domain I [70].

Bos d 6 is classified as a minor respiratory allergen, being 
associated with cases of occupational asthma and rhinitis, 
and inducing mild to moderate clinical symptoms, such as 
rhinorrhoea, nasal itching, nasal obstruction and chest dis-
comfort [24, 71–73]. Besides, Bos d 6 acts as an important 
food allergen, being responsible for triggering mild to severe 
allergic reactions (including anaphylaxis), especially in the 
case of consumption of unprocessed cow’s milk or meat. 
Bos d 6 belongs to the whey fraction and represents 1% of 

total milk protein. More than 90% of meat-allergic patients 
are also allergic to cow’s milk, due to the fact of being sensi-
tised to Bos d 6, suggesting that this protein might be a good 
diagnostic marker for cow’s meat and milk allergies [24, 74]. 
Additionally, Bos d 6 has several biotechnological applica-
tions, such as vaccines and culture medium of spermatozoids 
for artificial insemination, which poses new health risks for 
the allergic individuals [73].

Sus s 1 is the serum albumin identified in pork’s meat; 
it has a smaller molecular weight (60 kDa) than the rest 
of serum albumin family of proteins, but it presents high 
sequence identity with Bos d 6 (69.7%) and with human 
serum albumin (72.0%) [69]. This allergen is the cause of 
the pork-cat syndrome, due to its high cross-reactivity with 
cat dander allergen (Fel d 2). Patients sensitised to Fel d 2 
are at risk of developing mild to severe allergic reactions, 
including anaphylaxis, angioedema, rhinitis, urticaria and 
itching eczema, when consuming food products containing 
pork meat [75, 76].

Gal d 5 (also called α‐livetin) is the serum albumin in 
chicken (including egg yolk, serum, meat and feathers), pre-
senting 69 kDa and a mature primary sequence of 592 amino 
acids. Gal d 5 exhibits less sequence identity (46.1%) and 
similarity (61.1%) with human serum albumin [7, 69] com-
pared to other serum albumins, particularly with mammalian 
ones. Gal d 5 is classified as a respiratory allergen causing 
asthma, conjunctivitis and rhinitis associated symptoms, and 
as a food allergen (bird-egg syndrome) capable of triggering 
OAS, angioedema and anaphylaxis [77].

Glycoside Hydrolase Family 22

The glycoside hydroxylases encompass a large group of 
enzymes that catalyse the hydrolysis of a glycosidic bond 
between two or more carbohydrates, or between a carbohy-
drate and a non-carbohydrate moiety [78], which are divided 
into families and some families into clans. Two important 
food allergens belong to the glycoside hydrolase family 22, 
namely the Gal d 4 (lysozyme C) from hen’s egg and the Bos 
d 4 (α-lactalbumin) from cow’s milk.

Gal d 4 is expressed in the egg white (tissue-specific), 
representing about 3.4% of the total protein fraction [79]. 
It hydrolyses specific polysaccharides within bacteria cell 
walls, thus functioning as a bacteriolytic enzyme [80]. The 
mature protein of 129 amino acids in a single polypeptide 
chain is composed of two domains, one mostly formed by 
antiparallel β-sheets and one by α-helices. It has a mono-
meric conformation of approximately 14 kDa (four disul-
phide bonds with no free thiol groups) (Table 1) [80–82], 
with a theoretical pI of 9.3. Gal d 4 has been recently 
reported as presenting two potential N-glycosylation sites, 
 N39 and  N44, both localised at a nonconsensus sequon [83, 
84]. Gal d 4 is classified as an important allergen, which 
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can cause allergic sensitisation via inhalation, being asso-
ciated with Baker’s asthma [85]. Clinical symptoms, such 
as angioedema and urticaria, have also been reported for 
egg-allergic patients, upon consumption of raw or minimally 
processed egg white [86]. Gal d 4 shares 35 to 40% of the 
sequence identity with Bos d 4, as well as the positions of 
the four disulphide bonds [87].

Bos d 4 intervenes in milk production (regulatory subunit 
of lactose synthetase), being classified as a monomeric glob-
ular calcium-binding metalloprotein with 123 amino acids 
and 14 kDa (Table 1), and reported as having 3 genetic vari-
ants [88]. It possesses a high-affinity binding site for calcium 
and four disulphide bridges, which helps to stabilise its sec-
ondary (2D) structure. Bos d 4 has a compact and spherical 
conformation, with two structural domains: a large α-helical 
domain at the N-terminal and a short β-sheet domain at the 
C-terminal, flanking the calcium-binding loop [89]. Bos d 
4 exhibits high sequence homology with α-lactalbumins of 
several species, including humans [90], and it has been iden-
tified as a major allergen in cow’s milk, being commonly 
responsible for eliciting respiratory, cutaneous and gastro-
intestinal symptoms, and often anaphylaxis in milk-allergic 
individuals [24, 91].

Transferrins

Transferrins are sulphur-rich iron-binding glycoproteins that 
function in vivo to control the level of free iron [92, 93]. 
These proteins are accountable for the transport of iron, both 
from sites of absorption and heme degradation to those of 
storage and utilisation. Members of this family include hen’s 
egg white Gal d 3 (ovotransferrin or conalbumin) or and 
cow’s milk Bos d LF (lactotransferrin or lactoferrin).

Gal d 3 represents 12% of egg white protein fraction, 
and it has a primary structure of 686 residues with 78 kDa 
and a pI of 6.0 (Table 1). Gal d 3 binds two  Fe3+ (one per 
each lobe) in tandem with two bicarbonate anions [94]. It 
has thirty cysteine residues, all involved in disulphide bonds 
(n = 15), nine and six of them located at the C-terminal or 
the N-terminal lobes, respectively. Structurally, Gal d 3 is 
a glycoprotein with a compact and asymmetric monomeric 
conformation [83, 95, 96]. Besides regulating iron transport, 
this protein is also known to exhibit antibacterial activity 
in their iron-free form [79, 93]. Gal d 3 is classified as a 
minor allergen, with clinical symptoms being mostly asso-
ciated with urticaria and angioedema. Egg allergic patients 
sensitised to Gal d 3 are at higher risk of suffering from an 
adverse immunological response when consuming raw or 
slightly processed eggs [24, 97].

Bos d LF is composed by a single polypeptide chain of 
approximately 690 residues with a molecular weight of 
80 kDa, folded into two globular lobes, each of them hav-
ing high-affinity iron-binding sites, connected by a 3-turn 

helix (Table 1). It has an asymmetric monomeric confor-
mation, but it can exist in polymeric structures (tetramers) 
[24], which is analogous among mammal species (65–100% 
of sequence identity). Lactoferrins from ruminant species, 
like cow, buffalo, goat or sheep, share more than 90% of 
sequence identity, forming a particularly closely related clus-
ter [98]. Bos d LF can be distinguished from other members 
of the transferrin family by its greater pI (8.0–9.0) and its 
higher iron-binding affinity [93, 98, 99]. Although, being 
present at very low concentrations in cow’s milk, as well as 
in the milk of other species (< 1%), Bos d LF is considered 
to be an important allergen (41% of IgE-response, in co-
sensitisation with major cow’s milk allergens) [100].

Lipocalins

Lipocalins represent a cluster of diverse proteins with bio-
logical functions focused, not only on the transport of small 
hydrophobic molecules (retinol, odorants, lipids and phero-
mones) [101] but also in the regulation of several immuno-
logical, metabolic and developmental processes [102], that 
participate in the immune response mechanisms, enzymatic 
activity, tissue development and allergic reaction initia-
tion [103]. Lipocalins are small extracellular proteins with 
150–250 residues and 17–25 kDa (Table 1) [104, 105]. They 
can be N- and/or O-glycosylated [103], and it is predicted 
that they can be phosphorylated by regulation processes 
[106].

Sequence identity among lipocalins is generally low (20 
to 30%, although it may reach higher values) [103, 105, 107, 
108], but they share a common 3D structure made of a well-
conserved eight-stranded anti-parallel β-barrel (accommo-
dating a ligand-binding pocket) and an α-helix [109, 110]. 
The ligand-binding pocket has a central location where small 
molecules, such as lipids, steroids, hormones, bilins and reti-
noids can bind [103, 111]. The β-barrel structure is stabilised 
by two disulphide bonds and depending on the pH, it can 
form monomers, dimers or higher-order oligomers [112, 
113]. Presently, several animal lipocalins have been identi-
fied as allergenic proteins (n = 25), nineteen of those being 
registered in the WHO/IUIS allergen database [5–7]. Bla g 
4 (cockroach), Mus m 1 (mouse urine), Rat n 1 (rat), Can f 
1 and Can f 2 (dog), Equ c 1 and Equ c 2 (horse) and Bos d 
2 (cow) are some examples of allergenic lipocalins. These 
proteins are highly abundant in epithelial mucosa and skin, 
especially in body fluids and secretions [112], being widely 
spread in indoor environments as aeroallergens [109, 111].

Among this family, only Bos d 5 (cow´s milk 
β-lactoglobulin) was classified as a food allergen, although 
very recently (dated May 2020) [7], Bos d 2 has also received 
the same classification. Bos d 5 is a major whey protein and 
a major allergen, corresponding to 10% of the total protein 
content of cow’s milk and participates in several molecular 
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transport processes [59]. Clinical symptoms induced by IgE-
binding to Bos d 5 are quite similar to the ones triggered 
by Bos d 4, which involve cutaneous, gastrointestinal and 
respiratory manifestations (or even anaphylaxis) [91]. Addi-
tionally, Bos d 5 is reported as a potential molecular marker 
for persistent cow’s milk allergy in adults [114].

Ovomucoids

Kazal-type serine protease inhibitors are a family of pro-
teins (MEROPS inhibitor family I1, clan IA) [115] with 
main biological functions associated with the inhibition of 
several serine proteases, which includes avian ovomucoid, 
pancreatic secretory trypsin inhibitor, acrosin inhibitor and 
elastase inhibitor [116, 117]. Included in this family, the Gal 
d 1 (ovomucoid) functions as a trypsin inhibitor and it has 
been identified as an important allergen in hen’s egg white. 
Representing almost 11% of its protein fraction, Gal d 1 
primary sequence has 186 residues (containing 20–25% of 
carbohydrate moieties), a pI of 4.1 and a molecular weight 
of 28 kDa (Table 1). Structurally, this protein comprises 
three independent domains (I–III), each of them behaving 
like a native globular protein, which are linked by intra-
domain disulphide bonds. Each domain is homologous to 
pancreatic secretory trypsin inhibitor (Kazal) and presents 
an actual or putative reactive site for inhibition of serine 
proteinases [118].

Gal d 1 has nine asparagine residues with covalently 
attached glycan groups (nine glycosylation sites), mainly 
encompassing the oligosaccharides N‐acetylglucosamine, 
mannose, galactose and N‐acetylneuramic acid [83, 119]. 
However, the carbohydrate chain attached to the third 
domain of Gal d 1 seems to perform a critical role in its 
IgE-binding capacity [119, 120]. High IgE levels to Gal d 1 
seems to be well correlated with persistent hen’s egg allergy 
[121], suggesting that this protein might be a good molecular 
marker for egg allergy prediction [122]. Allergic patients 
sensitised to Gal d 1 are at risk of suffering adverse immuno-
logical responses towards all forms of hen’s egg (raw, slight 
or highly processed egg white), exhibiting clinical symptoms 
like atopic eczema, urticaria or vomiting [24].

Serpins

Serpins compose a superfamily of proteins with related, but 
functionally diverse structures, belonging to the MEROPS 
inhibitor family I4, clan ID [115]. Serpins are widespread 
among nature, except in fungi [117, 123] and they play bio-
logical roles mainly related to protease inhibitory activity 
and control of proteolytic cascades. Other non-inhibitory 
functions have also been attributed to serpins, namely 
hormone transporters, molecular chaperones and tumour 
suppressors [124]. Serpins are relatively large molecules, 

presenting primary structures ranging from 330 to 500 
residues.

So far, Gal d 2 (ovalbumin) is the only food allergen iden-
tified within this family [5–7], whose biological function is 
non-inhibitory (main role as storage protein). Gal d 2 is com-
posed of 386 residues, with a molecular weight of 44 kDa 
and a pI of 4.5 (Table 1) [79, 123, 125]. It is glycosylated at 
residue Asn292, with a second potential glycosylation site at 
residue Asn311, and N-linked glycans consisting of hybrid-
type and high-mannose-type oligosaccharides [125, 126]. 
Gal d 2 polypeptide chain is involved in a defined secondary 
structure, with three β-sheets (A to C) and nine α-helices (A 
to H and helix R) [127]. Its structural conformation corre-
sponds to a cyclic homodimer (Table 1), suggesting a qua-
ternary organisation.

Gal d 2 is a major protein component of hen’s egg white 
(almost 54%), but it is considered as a minor allergen. Aller-
gic individuals (most often children of small age, < 3 years) 
sensitised to Gal d 2 are at risk of experiencing allergic reac-
tions upon consumption of raw or slightly processed egg 
white, exhibiting clinical manifestations, such as atopic der-
matitis [128]. An additional risk factor concerns the use of 
Gal d 2 in vaccine formulations, which can lead to severe 
and systemic allergic reactions (anaphylaxis) in hen’s egg-
allergic patients within minutes upon administration of Gal 
d 2-containing vaccines [121].

Physicochemical Properties Affecting 
Allergenicity

An extensive literature search was performed to evaluate 
the impact of different physicochemical characteristics on 
the allergenicity of proteins from distinct families of animal 
allergens. Accordingly, the list of parameters includes sev-
eral PTM, which are most commonly associated with aller-
gens, namely glycosylation, phosphorylation, acetylation 
and hydroxylation. The structural integrity and the organi-
sational level of allergens, their stability towards heat, pres-
sure, light (radiation), mechanical and chemical activities 
resulting from different food processing methods (Fig. 1), 
as well as their behaviour towards glycation and aggregation 
phenomena were also assessed. In addition, ligand binding, 
potential food component interactions (with lipids), resist-
ance to gastrointestinal digestion and the ability to cross the 
epithelial barrier in altered states (e.g. aggregates) finalise 
the list of parameters analysed in this review.

Concerning each animal protein family, data from an 
extensive literature search covering the impact of all these 
physicochemical parameters on the allergenicity of their 
protein members were collected and provided in detail as 
supplementary material. Summarised data resulting from 
this extensive analysis are presented in Tables 2, 3 and 4.
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Measuring the Effect on Allergenicity

The pathophysiology of food allergy involves two stages: 
the sensitisation and the elicitation phases that are also des-
ignated as induction and effector phases, respectively. The 
sensitisation phase can be defined as the interaction of an 
allergen with an antigen-presenting cell, T-cell and B-cell 
leading to the production of allergen-specific IgE, while 
elicitation phase relates to the interaction of the allergen 
with the allergen-specific IgE on the surface of the mast cell 
or basophils, resulting in the release of mediators which are 
responsible for the clinical symptoms [24, 129]. The sensiti-
sation phase is not always followed by elicitation, thus ham-
pering the prediction of a clinical food allergy by measuring 
alone the allergen-specific IgE. Still, most of the available 
approaches to assess the allergenic potential of a protein rely 
on IgE-mediated assays, which can be performed under dif-
ferent conditions and formats [130].

The evaluation of the impact of different physicochemi-
cal characteristics on the allergenicity of animal proteins 
depends on the data compilation from different assays 
(Table 3). Immunoblotting, ELISA (enzyme-linked immuno-
sorbent assay) and radioallergosorbent test (RAST)/enzyme 
allergosorbent test (EAST)/ImmunoCap using human sera/
plasma of sensitised or allergic patients provide an overall 
assessment of the IgE-binding capacity (either qualitative 
and/or quantitative) of allergens from almost all families 
of animal proteins under study (Table 3) [54, 131–151]. 
Although representing a great portion of data on the IgE-
binding capacity of animal allergens, their interpretation 
needs to be carefully conducted, considering all the pitfalls 

associated with these assays (the use of different sources of 
sera/plasma from food sensitised/allergic patients, different 
analytical conditions, different target analytes, indirect/poor 
correlation with clinical outcomes) [152].

Another strategy lies on the use of in vitro biological 
assays (cellular models), which provide a functional analysis 
of the specific effector cell activation by allergen-mediated 
specific IgE crosslinking (measured by mediator release or 
upregulation of cellular surface molecules). Such strategies 
present advantages related to high clinical specificity and 
sensitivity [152, 153]. Although being more laborious and 
expensive than the previous approaches, the human basophil 
activation tests (BAT), the humanised rat basophilic leukae-
mia (RBL) mediator release assay and the mast cell mod-
els can be considered as in vitro surrogates of the allergic 
reaction that happens in vivo in allergic patients [154–156]. 
Therefore, these tests can be used to explore the immune 
mechanisms of effector cell response to allergens [154], 
being also broadly applied to evaluate the allergenic poten-
tial of most families of animal proteins (Table 3) [135, 138, 
157–167].

Presently, the in vivo models are the only methods 
able to assess the potential sensitising capacities of food 
proteins [168]. The skin prick tests (SPT) and food chal-
lenges, either as open food challenges (OFC) or as dou-
ble-blind placebo-controlled food challenges (DBPCFC), 
are used for allergy diagnosis, but with very limited 
application to evaluate the allergic response to specific 
proteins or protein extracts as affected by different phys-
icochemical properties (Table 3) [11, 77, 133, 159, 164, 
169, 170]. However, carrying clinical trials in humans 

Fig. 1  List of food processing technologies analysed for each parameter
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(OFC and DBPCFC) is time-consuming, expensive and 
are not easy to perform, besides involving ethical issues.

To overcome this problem, animal models have been 
used as surrogates for the identification and characteri-
sation of food allergens, representing potential valuable 
tools for safety assessment [171]. Nonetheless, the use 
of animal models to mimic food allergy in humans car-
ries some concerns, such as how well they simulate the 
human disorder and what are their main strengths and 
limitations [172]. Still, they can provide some insights 
about the sensitising and eliciting capacities of specific 
allergens, representing the current closest physiological 
in vivo model of human immunological events. Therefore, 
animal allergy models have also been used to measure the 
influence of physicochemical properties on the allergenic-
ity of molecules from some families of animal proteins 
(Table 3) [166, 173–194].

For this review, some general definitions and terminol-
ogy were used to standardise an approach to deal with 
all different aspects of the data collected. Therefore, the 
definitions on the allergenicity/allergenic potential, immu-
noreactivity and IgG/IgE-binding capacity were adopted 
from Verhoeckx et al. [195]. By allergenicity/allergenic 
potential, we mean ‘the potential of a material to cause 
sensitisation and allergic reactions, frequently associated 
with IgE antibody’, immunoreactivity describes ‘the abil-
ity of a material to elicit an immune response’, and with 
IgG/IgE-binding capacity we, mean ‘an altered ability of 
IgG (also antigenic integrity) or IgE (also allergenic integ-
rity) to bind to epitopes, respectively’.

In practical terms, the data collected from immuno-
blotting, ELISA, and RAST/EAST/immunoCAP assays 
with the sera of food allergic/sensitised patients were 
classified as ‘IgE-binding capacity’, while data from 
similar immunoassays using animal antibodies were 
defined as ‘immunoreactivity’. The terms allergenicity/
allergenic potential were applied to classify results simu-
lating the elicitation of an allergic reaction, namely the 
in vitro functional assays (RBL, BAT), in vivo assays 
(SPT, OFC and DBPCFC) and animal allergy models 
(mice physiological responses, mice anaphylaxis). It is 
also important to stress that despite the defined strat-
egy of classifying the results from different analytical 
methods within the terms defined above, it was difficult 
to separate results from the events of sensitisation and 
elicitation. Therefore, the classification of IgE-binding 
capacity or allergenicity was determined in terms of 
weight of evidence (WOE). Highest WOE was concluded 
from animal models and functional biological assays that 
mimic main events of allergic reactions, acceptable WOE 
was seen in IgE-binding capacity, and modest WOE was 
seen in immunoreactivity studies (bearing in mind the 
extensive explanations above).Ta
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Abundance

Proteins, including allergens, play specific biological roles 
within organisms, whose expression is regulated by their 
physiological demands. In animals, most of the allergenic pro-
teins perform structural, regulatory and transport functions, 
except for Gal d 2 (serpins) that has nutritional storage function 
(Table 1). However, the correlation between the abundance of 
certain proteins and their allergenic impact is still a matter of 
debate. Within the four most relevant families of food aller-
gens from animal origin, caseins are by far the most abundant 
proteins [59, 89]. In this case, their high abundance seems to 
be well correlated with the increased risk for adverse immu-
nological reactions in individuals sensitised/allergic to milk.

Compared to caseins, tropomyosins and β-parvalbumins 
are minor protein components, representing only up to 1% 
or 1–3% of muscle mass in invertebrates (e.g. crustaceans, 
molluscs, insects) or fish, respectively [13, 29]. Nonetheless, 
despite their relatively low abundance, tropomyosins and 
β-parvalbumins are classified as important major allergens 
of animal origin. In the specific case of β-parvalbumins, 
their greater abundance in certain flesh tissues (e.g. white 
vs. dark muscle) and their location (e.g. rostral vs. caudal 
part of the white muscle) has been positively correlated with 
their increased allergenic potential [196–198].

Among the miscellaneous families of proteins, the 
serum albumins are present in moderate/low amount 
(approximately 5%) in the plasma of mammals, namely 
in bovine (Bos d 6), pork (Sus s 1), lamb, and deer meats 
[199] and also in hen’s egg yolk (Gal d 5) [77]. Their 
relative moderate/low amount seems to be well correlated 
with their ability to induce allergic responses in sensitised 
individuals [24, 170], especially due to the high cross-
reactivity among serum albumins (Bos d 6, Sus s 1) from 
different meats (bovine, pork), epithelia and milk [199]. 
However, in cow’s milk, Bos d 6 is a minor component of 
whey (about 1% of total protein fraction) but is considered 
as a major food allergen with high clinical relevance [24, 
60].

The two representative members of the glycoside 
hydrolase family 22 are the Gal d 4 and the Bos d 4, 
which account for 3.4% of egg white and 5% of milk pro-
tein fractions, respectively [59, 79]. Regardless of their 
relative moderate/low abundance, Gal d 4 and Bos d 4 
have been classified as highly immunogenic [200, 201]. 
Likewise, the Gal d 1 of the ovomucoid family repre-
sents less than 11% of egg white protein fraction, but it 
is considered the immunodominant allergen in egg, being 
often related to severe cases of anaphylaxis [142]. Gal d 
1 exhibits higher IgE-binding capacity than other aller-
gens, following this specific order: Gal d 1 (11%) > Gal d 
2 (54%) > Gal d 4 (3.4%), despite their different propor-
tions in egg [175].

In the transferrin family of proteins, the two representa-
tive allergens are Bos d LF and Gal d 3, which have differ-
ent proportions in their respective matrices, namely < 1% 
in milk (variable according to the species) and 12% in egg 
white. Contrarily to other allergens, the abundance of these 
proteins is not well interconnected with their allergenic 
potential. In this case, the abundance seems to be inversely 
correlated with protein allergenic potential since the Gal d 
3 (12% of egg white) is described as presenting very limited 
clinical relevance [200], while Bos d LF (often less than 
1% of milk protein) has strong IgE-binding response [100].

The Bos d 5 from lipocalin family represents 10% of the 
total protein fraction in milk, and it is classified as a major 
allergen. In the case of Bos d 5, its abundance seems to be 
well correlated with a higher risk to trigger allergic reac-
tions in milk-allergic patients. This is most likely related 
to the fact that Bos d 5 is absent in human milk, as well as 
in milk from other mammalian species (e.g. camel), which 
have been demonstrated to be less allergenic than cow’s milk 
[202].

Gal d 2 from serpin family accounts for more than 54% of 
egg white protein fraction, but despite its great abundance, 
Gal d 2 is not an immunodominant allergen in egg’s white 
[203]. Nonetheless, it has been shown that there is a strong 
correlation between the amount of egg ingested by women 
that are breastfeeding and the concentration of Gal d 2 in 
breast milk, which is considered to be responsible for elicit-
ing egg-allergic reactions in infants [204].

Concluding remarks:

• The high abundance of caseins, serum albumins (meats 
and egg yolk), lipocalins (Bos d 5), and ovomucoids (Gal 
d 1) seems to be related to increased allergenic risk.

• The high abundance of other allergens (Bos d LF, Gal d 
3, Gal d 2) does not always represent an additional risk 
for allergic reactions.

• The limited quantity of specific allergens (tropomyosins, 
parvalbumins, glycoside hydrolase family 22, serum 
albumin—cow’s milk Bos d 6) often imply added hazard 
of eliciting severe immunological responses.

• Within the families of animal allergens, it is not possi-
ble to establish a correlation between abundance and an 
increased risk for triggering allergic reactions in sensi-
tised individuals since different patterns are observed.

Protein Structure

Food allergens are typically defined as molecules of small 
size and/or with compact globular structure (monomeric 
conformation), which is the case of some families of ani-
mal proteins, namely parvalbumins, arginine kinases, serum 
albumins, glycoside hydrolase family 22 and transferrins 
(Table 1). However, like in plant food allergens [4], there are 
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several examples of animal allergens that present structures 
with a high level of organisation (quaternary structures), 
such as tropomyosins, lipocalins, ovomucoids and serpins 
(Table 1).

In opposition, caseins are intrinsically unstructured 
proteins, exhibiting very little secondary/tertiary struc-
tures. In milk, the four variants of caseins have structural 
differences, with Bos d 9 and Bos d 10 being unfolded 
proteins with extended coil-like conformations, and Bos d 
11 and Bos d 12 presenting molten globule-like structures 
[205]. In the absence of calcium, caseins have no regular 
structures, but in response to calcium-phosphate binding, 
they form micelles that correspond to particles of colloidal 
size designated as supramolecules. In those cases, casein 
micelles are defined as complex molecules with quater-
nary structures, showing great conformational flexibility 
because they are easily adapted to different environments 
[206, 207].

In most families of animal proteins, the loss of high level 
of spatial organisation (tertiary and quaternary conforma-
tions) leads to a reduction in the IgE-binding capacity of 
their members, which are the cases of parvalbumins, argi-
nine kinases, glycoside hydrolase family 22 and serpins 
(Table 2). The reasons behind this accentuated reduction 
are normally the damage of structural integrity (globular 
monomer), through  Ca2+ depletion or by modification of 
different residues in the  Ca2+ binding region in parvalbumins 
[35, 208] or by the disruption of conformational epitopes in 
arginine kinases, glycoside hydrolase family 22 and serpins 
[139, 209–211].

The loss of structural stability of tropomyosins, caseins, 
serum albumins, lipocalins and ovomucoids has limited 
impact on their IgE-binding capacity, mostly due to the pres-
ence of important sequential epitopes that become accessible 
upon disruption of native conformation [114, 132, 212–214]. 
However, the disruption of disulphide bonds and loss of 
secondary structure contribute to a small decrease in the 
IgE-binding capacity of caseins, serum albumins, lipoca-
lins and ovomucoids [114, 214, 215]. For proteins of the 
transferrin family, the loss of their monomeric conformation 
seems to have a dual character. By one side, the exposure of 
hydrophobic groups and the partial unfolding of transferrin 
structure reavels hidden linear epitopes with increasing IgE-
binding capacity, while the destruction of conformational 
epitopes (loss of secondary structure by the destruction of 
disulphide bonds), upon severe protein unfolding, reduces 
the immunoreactivity of these proteins [139, 216, 217].

The use of denaturing agents, such as urea, can disrupt 
the conformational structure of proteins, leading to a molten 
globule state with increased IgE-binding capacity (partially 
denatured protein but retaining native-like structure), which 
seems to be the case of glycoside hydrolase family 22 and 
transferrins [142].

Concluding remarks:

• The IgE-binding capacity of parvalbumins, arginine 
kinases, glycoside hydrolase family 22 and serpins is 
reduced by the loss of 3D/4D conformations (destruc-
tion of conformational epitopes).

• The IgE-binding capacity of glycoside hydrolase fam-
ily 22 and transferrins is increased by the destruction of 
native structures caused by denaturing agents (e.g. urea).

• The IgE-binding capacity of tropomyosins, caseins, 
serum albumins, lipocalins and ovomucoids is hardly 
changed by the loss of native structural integrity (pres-
ence of linear epitopes).

• The disruption of disulphide bonds and loss of second-
ary structure contribute to a slight decrease in the IgE-
binding capacity of ovomucoids and lipocalins.

• The loss of 3D structures of transferrins presents a dual 
character—exposure of hidden linear epitopes increases 
and the destruction of conformational epitopes reduces 
the IgE-binding capacity, respectively.

Post‑translational Modifications

Post-translational modifications have been greatly described as 
affecting protein conformational structure, which has a substan-
tial influence on its allergenic potential. Conversely, it is not clear 
yet to what extent PTM impact distinct food allergen families, 
or even different members within the same protein family. In 
the case of animal protein families, three specific PTM can be 
found among their members, namely glycosylation, acetylation 
and phosphorylation. All involve enzymatic processes, where 
glycosyl, phosphoryl or acetyl groups, respectively, are added 
to the side chains of amino acids of different proteins [218, 219].

In opposition to plant food allergens, whose glycosylated 
proteins are mainly restricted to members of the vicilin family 
[4], glycosylation is the most common PTM among the families 
of animal allergens (tropomyosins, caseins, arginine kinases, 
glycoside hydrolase family 22, transferrins, lipocalins, ovomu-
coids and serpins). Despite the generalised concept that glyco-
sylation greatly contributes to increase the allergenic potential 
of proteins, this fact cannot be defined as a rule. Depending on 
the family of animal proteins, or even among different members 
of a specific family, glycosylation has been described as show-
ing contradictory effects on the allergenic potential of a protein.

Enzymatic deglycosylation of tropomyosins (glyco-
sylated proteins with N- and/or O-glycans) from crab or 
prawn retained or increased their IgE-binding capac-
ity, respectively [157, 220]. Gal d 1 (ovomucoid family) 
is a glycosylated protein with high carbohydrate content 
(20–25%), although the role of the carbohydrate in the 
IgE-binding capacity of this allergen is still ambiguous. 
Deglycosylated Gal d 1 has been reported to preserve or 
decrease its allergenicity, which is explained by the fact that 
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the carbohydrates are not part of the IgE-binding epitope 
or by potential structural alterations of the protein (degly-
cosylated forms are more easily digested), respectively 
(Table 2) [165, 221]. Caseins are glycosylated (e.g. Bos d 
12), which difficult their subsequent digestion [222], thus 
increasing their potential allergenicity. N-glycosylation sites 
have also been advanced in crayfish Pro c 2 (arginine kinase 
family), although their role in the IgE-binding capacity of 
this protein is still unknown [223].

Phosphorylation is another PTM that occur among mem-
bers of some animal protein families, namely in caseins and 
serpins (Table 2). Dephosphorylated variants of Bos d 10 
and Bos d 11 are less IgE-reactive than their native coun-
terparts, suggesting that the phosphorylation site(s) might 
be part of the IgE-binding epitope(s). Additionally, differ-
ent casein variants contain a common phosphorylation site 
that is considered to be responsible for the cross-reactivity 
among caseins in milk-allergic individuals [169, 224, 225]. 
Phosphorylated caseins and serpins (Gal d 2) are more IgE-
reactive than their dephosphorylated counterparts, suggest-
ing that phosphorylation increases the IgE-binding capacity 
of these proteins (Table 2).

Acetylation occurs in members of animal food allergens, 
although at a smaller scale. Fish parvalbumins can be modi-
fied by N-terminal acetylation, a PTM that makes parvalbu-
mins highly stable and more allergenic [226].

Concluding remarks:

• Glycosylation occurs in tropomyosins, caseins, arginine 
kinases, glycoside hydrolase family 22, transferrins, 
lipocalins, ovomucoids and serpins. Phosphorylation is 
common among caseins and serpins, while acetylation 
occurs in parvalbumins.

• Glycosylation has contradictory effects on the IgE-
binding capacity of different families: tropomyosins 
(increase/maintain/decrease), arginine kinases (unknown 
effect), ovomucoids (maintain/increase) and caseins 
(increase).

• Phosphorylation increases the IgE-binding capacity of 
caseins and serpins.

• Acetylation increases the IgE-binding capacity of parval-
bumins.

Ligand‑Binding

Protein structure might be greatly influenced by the pres-
ence of specific ligands (metals, ions) because they are 
often essential for protein folding. Some families of pro-
teins can bind ligands, although in different ways, which is 
the case for parvalbumins, caseins, serum albumins, trans-
ferrins and lipocalins (Table 1). Structurally, parvalbumins 
are calcium-binding proteins presenting two available sites 
(two domains) for binding  Ca2+ and  Mg2+. Metal-binding 

stabilises protein conformation and contributes to main-
taining their allergenicity as assessed by basophil histamine 
release assay when compared to their apo-forms [35, 135, 
208, 227].

Caseins contain phosphoryl groups that can sequester 
 Ca2+ and form thermodynamically stable complexes (casein 
micelles), which prevents their aggregation into amyloid 
fibrils (insoluble proteins) [228] and to conserve their IgE-
binding capacity [224, 225]. Transferrins and lipocalins 
are also able to accommodate and transport metal ions. In 
both cases, Gal d 3 (transferrin) and Bos d 5 (lipocalin) 
are less allergenic in their holo-forms (iron-bound) than in 
apo-forms (iron-free). Iron-binding seems to attenuate the 
immune responses by maintaining Th1/Th2 balance (holo-
forms are more immunosuppressive than apo-forms), thus 
decreasing their allergenicity [163, 177, 229]. Besides iron, 
Bos d 5 is also able to transport other small molecules (e.g. 
retinoic acid) in its central core. Lipid-binding of Bos d 5 
with retinoic acid (active vitamin A metabolite) can prevent 
an immune response by inducing profound inhibitory effects 
on different T-cell subsets and cytokine expression, therefore 
greatly reducing its allergenicity [230].

Concluding remarks:

• Parvalbumins, caseins, serum albumins, transferrins and 
lipocalins can bind ligands  (Mg2+,  Ca2+,  Fe2+,  Na+ and 
retinoic acid).

• Ca2+- and  Mg2+-binding stabilise the structural confor-
mation of parvalbumins, which maintain their allergenic-
ity.

• Caseins bind  Ca2+ (by phosphoryl groups), forming 
casein micelles (stable macromolecules) and conserv-
ing their allergenic potential.

• Transferrins and lipocalins can bind iron, decreasing their 
allergenic potential. Bos d 5 binds other small molecules 
(e.g. retinoic acid), reducing its allergenicity.

Glycation and Aggregation

Glycation is a chemical reaction between the amino groups 
of proteins, lipids or nucleotides and the carbonyl groups of 
monosaccharides (typically reducing sugars), and it is called 
as Maillard reaction or non-enzymatic browning [231]. 
Glycation is responsible for changing colours, odours and 
flavours of foods, resulting from non-enzymatic reactions 
during food processing under mild conditions. Although 
representing two distinct processes, glycation is frequently 
incorrectly designated as glycosylation (post-translational 
modification of proteins with the addition of carbohydrates 
during protein synthesis) [232]. In this section, we tried 
to include all manuscripts for the literature using the term 
glycosylation but meaning glycation (Maillard reaction).
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Glycation is known to affect the allergenicity of spe-
cific proteins, although its effects are not yet fully clear. 
This process requires the application of heat treatments to 
thermodynamically favour the chemical reactions between 
amino and carbonyl groups, which often contributes to 
protein unfolding and formation of macrostructures, such 
as aggregates [233]. Protein aggregation can also result 
from other processes (e.g. mistakes in protein synthesis, 
mutations); although during food processing, it is most 
likely to occur as a consequence of Maillard reactions.

Protein behaviour towards glycation and aggregation 
processes can reflect their allergenic potential. Tropo-
myosin [131, 157, 173, 234–237], parvalbumin [190, 
238–240], casein [241, 242], lipocalin [143, 243–250] 
and serpin [185, 251–257] allergenicity is differently 
affect by glycation (Table 2). The behaviour of Gal d 2 
(serpins) towards glycation is probably one of the best-
studied, with several reports supporting the dual character 
of Gal d 2 IgE-binding capacity upon Maillard reactions. 
Accordingly, glycation of this protein with reducing sugars 
decreases the IgE-binding capacity of its glycated products 
[251–253], while advanced glycation end-products of Gal 
d 2 or glycation products in the presence of different con-
centrations of sodium carbonate-bicarbonate buffer con-
tributed to increasing their allergenic potential, as assessed 
by in vivo mice allergy models and mediator release assays 
[185, 254, 256, 257].

The allergenicity of glycoside hydrolase family 22 (Bos 
d 4) and arginine kinases (e.g. Scy p 2) are decreased by 
glycation, as determined by in vivo mice allergy models and 
mediator release assays [173, 258], while in ovomucoids 
(Gal d 1) its IgE-binding capacity is increased (Table 2) 
[252]. In addition, Maillard reactions with different reducing 
sugars (glucose, mannose, ribose) might also induce distinct 
alterations in conformational structures, thus contributing 
to the contradictory effects in terms of protein IgE-binding 
capacity (e.g. tropomyosins, parvalbumins) [235–239].

In all referred families, the formation of aggregates as a 
result of glycation is commonly pointed out as the main fac-
tor for both increasing or decreasing the IgE-binding capac-
ity of most allergens [237]. As an example, the formation 
of aggregates contributes to a decreasing effect on the IgE-
binding capacity of arginine kinases and lipocalins, although 
when neoepitopes are formed in the aggregates, their IgE-
binding capacity can increase [173, 223, 245, 259]. Caseins 
naturally tend to form ordered aggregates, which contributes 
to maintaining their IgE-binding capacity [260]. However, 
when caseins form aggregates with other proteins, like the 
whey and wheat proteins, their IgE-binding capacity is 
increased or reduced, respectively [261–263]. In the case of 
tropomyosins and parvalbumins, aggregated proteins seem 
to have increased IgE-binding capacity [134, 237], while 
aggregated forms of serum albumins, glycoside hydrolase 

family 22, ovomucoids and serpins are normally classified 
as less IgE-reactive [145, 176, 179, 180, 264, 265].

Concluding remarks:

• Chemical changes in tropomyosins, parvalbumins, 
caseins, lipocalins and serpins (as a consequence of gly-
cation) can lead to decreased, increased or maintained 
allergenicity (depending on the allergen within a family, 
or even for the same allergen).

• Chemical changes in tropomyosins and parvalbumins, as 
a consequence of glycation with different reducing sugars 
(glucose, mannose, ribose), can affect their IgE-binding 
capacity (maintain, decrease or increase).

• Structural changes (formation of aggregates with other 
molecules) in caseins can increase or decrease their IgE-
binding capacity when aggregates are formed with whey 
or wheat proteins, respectively.

• Structural changes (formation of aggregates) in arginine 
kinases and lipocalins induce a decrease in their IgE-
binding capacity (except when neo conformational 
epitopes are formed, leading to an increase in IgE-
binding capacity).

• Structural changes (formation of aggregates) in tropo-
myosins and parvalbumins increased their IgE-binding 
capacity, while in serum albumins, glycoside hydrolase 
family 22, ovomucoids and serpins reduced their aller-
genicity.

Heat Stability

Heat stability is generally considered as an important char-
acteristic of allergenic proteins. For the evaluation of heat 
stability on the allergenicity of proteins, the influence of 
different thermal treatments used for food processing was 
extensively reviewed (Fig. 1). This is the case for tropomy-
osins [133, 237, 266–268], parvalbumins [190, 197, 269] 
and caseins [162, 261, 270, 271], whose members are heat-
stable proteins that conserve or increase their allergenicity 
(as determined by BAT, mediator release assays and in vivo 
mice allergy models), even after being submitted to extreme 
thermal conditions.

Moreover, treatments like pasteurisation, boiling, 
frying and roasting can induce severe alterations on the 
secondary structures of tropomyosins with subsequent 
exposure of hidden epitopes, contributing to increasing 
their allergenicity. This feature seems to be common to 
several crustacea and mollusc tropomyosins, as confirmed 
by their increased overall IgE-binding capacity, greater 
basophil activation, and larger wheal size in skin prick 
tests compared to their raw counterparts [133, 237, 267, 
268]. Gal d 1 from ovomucoid family is also considered a 
heat-stable protein, thus preserving its IgE-binding capac-
ity upon thermal processing [141, 261], although when 
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this protein is submitted to temperatures above 90 °C and 
for several minutes (> 15 min), its IgE-binding capacity 
is significantly reduced [252, 272]. Serum albumins have 
been described as partially heat-labile (Gal d 5), but in 
fact, their behaviour is more likely to be heat-stable (Bos 
d 6 and Sus s 1), since these proteins tend to preserve their 
IgE-binding capacity upon boiling, broiling or even auto-
clave [151, 170, 214, 273, 274]. Therefore, depending on 
the family member, serum albumins might be differently 
affected by distinct heat treatments. Accordingly, Bos d 6 
and Sus s 1 tend to conserve their IgE-binding capacity 
when submitted to temperatures above 90 °C [151, 170, 
214, 273, 274], probably due to the presence of sequen-
tial epitopes, while the allergenicity of Gal d 5 is greatly 
reduced after 10 min at 90 °C, as assessed by skin prick 
tests and food challenges [77, 275].

Proteins belonging to arginine kinase and other miscel-
laneous families (glycoside hydrolase family 22, transferrin, 
lipocalins and serpins) are all heat-labile, which means that 
most thermal treatments are efficient in reducing or even 
eliminating the IgE-binding capacity of their members 
[136, 139, 141, 223, 252, 261, 270, 276, 277]. The loss of 
tertiary/secondary structures and destruction of conforma-
tional epitopes, or the formation of protein aggregates, as 
a consequence of heat treatments, are among the main rea-
sons justifying the decrease in the IgE-binding capacity of 
these heat-labile proteins [139, 216, 261, 270]. However, 
the application of mild heat treatments (55-60ºC) for short 
periods (< 10 min), causing an incomplete unfolding and 
subsequent exposure of hydrophobic regions in proteins 
from transferrin and serpin families, might result in a tran-
sient increased or preserved IgE-binding capacity of these 
members, respectively [141, 216].

It is also important to highlight that the heat process-
ing in the presence of proteins from other matrices, namely 
from wheat, might contribute to a great reduction (or even 
elimination) of the IgE-binding capacity of ovomucoids and 
serpins, probably due to aggregation through intermolecular 
disulphide bonds with wheat proteins [145, 264].

Concluding remarks:

• Tropomyosins, parvalbumins, caseins and ovomucoids 
are heat-stable proteins. Serum albumins are partially 
heat-labile/stable proteins. Arginine kinases and other 
miscellaneous protein families (glycoside hydrolase fam-
ily 22, transferrin, lipocalins and serpins) comprise heat-
labile proteins.

• Heat stability (upon extreme heat conditions) contributes 
to increase the allergenicity of tropomyosins (exposure 
of hidden epitopes) and preserve the allergenic potential 
of parvalbumins, caseins and serum albumins (Bos d 6 
and Sus s 1), but not for proteins of the ovomucoid family 
(e.g. Gal d 1 decreases its IgE-binding capacity).

• Structural changes (unfolding, exposure of hidden linear 
epitopes) increases the allergenic potential of tropomy-
osins and maintain the allergenicity of parvalbumins, 
caseins and serum albumins.

• Structural changes (unfolding, destruction of confor-
mational epitopes, and formation of aggregates) reduce 
or even eliminate, the IgE-binding capacity of arginine 
kinases, glycoside hydrolase family 22, transferrins, 
lipocalins and serpins.

Pressure Stability

Regarding food allergens, the parameter of pressure stability 
has gained some relevance over the last few years, especially 
due to the increasing application of the novel food process-
ing technologies (Fig. 1). Despite their numerous advantages 
related to the preservation of food quality (prolonging self-
life, improving sensorial attributes) and safety (eliminat-
ing microorganisms), the impact of these technologies on 
the allergenicity of different proteins is still controversial 
(Table 2).

In the case of tropomyosins and parvalbumins 
(Table 2), the application of pressure treatments seems to 
contribute to a generalised reduction in their IgE-binding 
capacities, which is even more pronounced by the com-
bination of pressure with heat [174, 190, 278]. Likewise, 
the use of high pressures also contributes to decreasing 
the immunoreactivity of caseins by affecting the intermo-
lecular forces in the micelles and by changing the surface 
structure of these molecules [279]. The application of 
pressure at 600 MPa caused casein aggregation (involv-
ing Bos d 5 with Bos d 12), shifting the balance of Th1/
Th2 type cytokines towards Th1, thus diminishing the 
allergenic capacity of caseins [280]. However, when pres-
sure is combined with high temperatures, for short bursts 
of time, followed by instant pressure drop to vacuum, 
the IgE-binding capacity of caseins is increased due to 
the dissociation of the casein micelles or to the aggrega-
tion of casein’s monomers [281]. In the case of serum 
albumins, the application of high-pressure treatments 
(400 MPa) does not affect their immunoreactivity [282].

Treatments using high-pressures seem to have contra-
dictory effects on the IgE-binding capacity of members 
from the glycoside hydrolase family 22. By one side, high-
pressure treatments contribute to increasing the sensitising 
capacity of Gal d 4 (by inducing limited denaturation), as 
assessed by in vivo mice allergy models [175]; on the other 
side, it maintains or even reduces the IgE-binding capacity 
of Bos d 4 [280, 281]. In Bos d 5 (lipocalin family), the 
application of high-pressure treatments has a similar behav-
iour as in the glycoside hydrolase family 22. Although keep-
ing its internal core and primary/secondary structures, Bos 
d 5 undergoes small rearrangements in its 3D conformation 
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when subjected to high-pressure treatments. These rear-
rangements are reported as the main factor to increase or 
reduce its IgE-binding capacity [144, 280, 281, 283, 284]. 
The combination of dynamic high-pressure treatments 
with the glycation process seems to reduce the IgE-binding 
capacity of Bos d 5 conjugates in a pressure-dependent-
manner (greater reduction with higher pressures) [143]. The 
application of high pressures (400 MPa) during enzymatic 
hydrolysis also reduces the sensitising capacity of Bos d 5 
in mice allergy model [178].

In ovomucoids (Gal d 1) and serpins (Gal d 2), there 
were no significant differences in the levels of Gal d 1- 
or Gal d 2-specific IgE between the group of mice allergy 
model sensitised with pressurised egg white (400 MPa for 
10 min at 37 °C) and the native egg white groups, suggest-
ing that pressure treatments induce similar allergic sensi-
tisation capacity of Gal d 1 and Gal d 2 in mice, as their 
native counterparts [175]. Regarding arginine kinase and 
transferrin families, no information on the effect of pressure 
stability on the allergenicity of allergens could be retrieved 
from literature.

Concluding remarks:

• Tropomyosins and parvalbumins are pressure-labile pro-
teins, while serum albumins and ovomucoids and serpins 
seem pressure-stable. Caseins, glycoside hydrolase fam-
ily 22 and lipocalins have dual behaviour towards pres-
sures (most likely pressure-stable).

• Pressure treatments of ovomucoids (Gal d 1) and serpins 
(Gal d 2) induce similar allergic sensitisation capacity of 
their native counterparts. Pressure treatments of serum 
albumins do not affect their immunoreactivity.

• Structural changes induced by pressure (especially when 
combined with heat) reduce the IgE-binding capacity of 
tropomyosins and parvalbumins.

• Structural changes induced by pressure (affecting the 
intermolecular forces in the micelles and changing 
the surface structure) reduce the immunoreactivity of 
caseins, but when combined with heat (dissociation of 
casein micelles or aggregation of caseins) increases their 
IgE-binding capacity (clinical impact unclear).

• Structural changes induced by pressure (limited unfold-
ing) have contradictory effects on the IgE-binding capac-
ity of glycoside hydrolase family 22. HP treatments 
increase the sensitising capacity of Gal d 4 (by inducing 
limited denaturation), but it maintains or even reduces 
the IgE-binding capacity of Bos d 4.

• Structural changes induced by pressure (with the con-
servation of the internal core and the 2D structure) 
have contradictory effects on the IgE-binding capacity 
of lipocalins. HP increase (clinical impact unclear) or 
reduce the IgE-binding capacity of lipocalins (Bos d 5). 
HP combined with glycation or with enzymatic hydroly-

sis reduce IgE-binding or sensitising capacities, respec-
tively, of Bos d 5.

• Effect of pressure on the allergenicity of other protein 
families (arginine kinases and transferrins) is not known.

Light/Radiation Stability

Along with processing technologies using pressure, there 
are other novel non-thermal treatments of great interest in 
the food industry. Based on the application of light/radiation 
to increase the safety, quality and organoleptic character-
istics of processed foods, treatments like gamma-radiation 
(γ-radiation), high-voltage impulses, pulsed electric fields 
(PEF), pulsed UV light and microwave are widely used 
by industry [285–287]. However, the knowledge about the 
impact of this type of treatments on the allergenicity of pro-
teins from animal origin is still very limited (Fig. 1, Table 2).

In general, the application of treatments with light/
radiation (UV, pulsed UV, γ-radiation, microwave and 
PEF) seems to reduce the IgE-binding capacity of most 
proteins from different families [167, 184, 191, 223, 265, 
272, 288–295], although some exceptions have also been 
described (Table  2). This is the case of tropomyosins, 
whose IgE-binding capacity has been reported to increase 
or decrease, depending on the dose of γ-radiation used 
(small dosages lead to a small increasing effect, while upper 
dosages contribute to a slight reduction) [296]. Similarly 
to tropomyosins, the IgE-binding capacity of Gal d 2 (ser-
pin family) is negatively affected by increasing dosages of 
γ-radiation, ranging from an increase at low levels of radia-
tion to a decrease at higher ones (> 10 kGy) [147, 276, 293, 
297]. A decline in the secretion of IgE and cytokines (IL-4 
and IL-5) associated with Th2 immune response is pointed 
out as the main cause for the reduction of Gal d 2 allergenic-
ity [186, 187].

In parvalbumins, treatments based on the application 
of UV light do not affect their IgE-binding capacity [190], 
while PEF induces contradictory outcomes in lipocalins and 
serpins [247, 298, 299]. The application of PEF (25 kV cm−1 
for 60 μs) as a pretreatment greatly increases the IgE-binding 
capacity of Bos d 5 (lipocalin family) by unfolding the 
structure to a certain degree. Conversely, when the treatment 
is followed by glycation with mannose, it expressively 
diminished Bos d 5 IgE-binding capacity, by masking 
the conformational epitopes through covalent binding 
with carbohydrate [247]. When submitted to radiation 
(≥ 10 kGy), the IgE-binding of Gal d 2 is greatly reduced 
(even abolished) [147, 276, 293, 297], as well as its ability 
to induce sensitisation in mice allergy models [186, 187]. 
The application of low electric field intensity (< 25 kV/cm, 
for 180 μs) or for short time (< 60 μs, at 35 kV/cm) to Gal 
d 2 induces gradual intensification in its IgG/IgE-binding 
capacities due to the partial unfolding of the protein and 
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to an increase of free thiol content, surface hydrophobicity 
and UV absorption. However, when increasing the exposure 
time or the intensity of the electric field, Gal d 2 IgE-binding 
capacity is significantly reduced due to aggregation [298].

Concluding remarks:

• Most protein families are light/radiation labile, with some 
exceptions (tropomyosins, parvalbumins, lipocalins, and 
serpins).

• Structural changes induced by light/radiation (unfolding) 
reduce the IgE-binding capacity of proteins from most of 
the investigated protein families, with some exceptions 
(tropomyosins, lipocalins, and serpins).

• Structural changes caused by high doses of radiations 
(unfolding) and long periods of exposure (formation 
of aggregates) contribute to reducing the IgE-binding 
capacities of tropomyosins, lipocalins, and serpins (only 
exception for Gal d 2, whose application of low-intensity 
electric fields increases its IgE-binding capacity).

Mechanical/Chemical Stability

The application of ultrasound or sonication treatments are 
among the most common mechanical processes used by 
industry, which might include drying, sterilisation, enzyme 
inactivation, extraction, filtration, homogenisation and meat 
tenderisation [300]. Ultrasound or sonication alone is not 
capable of altering the allergenic potential of animal pro-
teins [164, 190, 223, 290, 301, 302]. However, when com-
bined with other treatments, especially thermal processes, 
like boiling or glycation, the IgE-binding capacity of certain 
proteins is reduced, as reported for tropomyosins, glycoside 
hydrolase family 22, lipocalins and serpins [174, 248, 255, 
301].

In addition to the mechanical processes, there are 
several chemical or enzymatic treatments commonly 
used by the food industry that might include fermenta-
tion, acid or urea treatments, carboxymethylation, enzy-
matic hydrolysis and crosslinking (Fig. 1). Fermentation 
(chemical modification of sugars to other end-products 
by the metabolic activity of microorganisms, typically in 
anaerobic conditions) and enzymatic hydrolysis (enzy-
matic crosslinking of proteins using enzymes like trans-
glutaminases, alcalase, among others) are the most effec-
tive in mitigating, or even eliminating, the allergenicity 
of most allergens from animal origin [138, 181, 182, 189, 
303–309]. Such treatments are often combined with heat 
to reduce the allergenicity of different proteins, thus lead-
ing to the production of hypoallergenic foods [309–313]. 
Both processes, enzymatic hydrolysis, and fermentation 
of foods can induce severe protein modifications, causing 
the alteration or destruction of conformational and linear 
epitopes and converting highly IgE-reactive proteins into 

small and non-reactive peptides. However, it is important 
to highlight that the efficiency of these treatments is highly 
dependent on several factors, such as pH, temperature, 
time, the extent of hydrolysis, enzyme–substrate ratio, 
type of microorganism (specific strains) and substrate 
concentration [287].

Protein hydrolysis can be carried out with acids and alkali 
(chemical hydrolysis), but such reactions are normally dif-
ficult to control, leading to the formation of products with 
reduced nutritional qualities. Nevertheless, in some cases, 
they are used by industry for food processing. Chemical 
hydrolysis of tropomyosins has been reported to contribute 
to a great reduction (in some cases, up to 90%) of their IgE-
binding capacity, which is independent of the type of acid 
used [267, 314]. Treatments with acids also contribute to 
a strong reduction in the IgE-binding capacity of Gal d 3 
(transferrin family) and Gal d 2 (serpin family), but in the 
case of Gal d 1 (ovomucoid family), its IgE-binding capacity 
was not significantly affected by boiling (10 min) followed 
by acidic treatment [139, 146].

Some amino acids (mostly serine residues) of Gal d 2 
can naturally suffer some conformational modifications dur-
ing storage, converting Gal d 2 into a more stable protein 
(S-ovalbumin) and contributing to reducing its IgE-binding 
capacity. The same effect can be obtained when treating Gal 
d 2 with high pH (~ 10) and heat (~ 55 °C) during several 
hours, thus allowing to decrease the IgE-binding capacity 
of Gal d 2 [315]. In the case of Gal d 2, its immunoreactive 
epitopes are destroyed by the application of heat and alkali 
treatments [211].

Concluding remarks:

• The integrity (intactness) of the proteins is affected by 
processes that destroy primary sequence (fragmentation 
due to hydrolysis), while mechanical, heat, pressure and 
light change the protein conformational structure (e.g. 
unfolding).

• Changes in protein structure (by combining ultrasound 
and heat) are seen for members of tropomyosins, gly-
coside hydrolase family 22, lipocalins and serpins, thus 
reducing their IgE-binding capacity.

• Changes in protein size (resulting in protein fragmen-
tation, as a consequence of fermentation, enzymatic 
hydrolysis or treatments with reducing agents) reduce 
or even mitigate the IgE-binding capacity of all animal 
protein families.

Digestibility and Epithelial Transport

The correlation between protein allergenicity and high 
resistance to pepsin digestion has been widely consid-
ered as an important parameter related to food allergens. 
Conversely, this correlation fails to explain why relatively 
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well-digested allergens (e.g. some members of tropomy-
osins) are still able to trigger potent clinical symptoms 
in allergic individuals, while stable non-allergens remain 
non-immunoreactive [316]. When considering that 
digested peptides with an estimated size of 3–5 kDa can 
induce mast cell degranulation, the production of resistant 
allergen fragments represents an increased allergenic risk. 
Since the uptake of proteins/peptides via the mucosal-
associated lymphoid tissue is highly dependent on their 
shape, polarity, size, 3D structure and aggregation status, 
the mechanisms mediating this crossing are of major aller-
gological importance [317–319].

Several pathways enable the movement of molecules 
between the lumen and the mucosa, which consist of trans-
port through the specialised microfold cells of Peyer’s 
patches and isolated lymphoid follicles or across the epi-
thelium, via transcellular (through cells) or paracellular 
(between cells) mechanisms. Therefore, the molecular form 
(allergen properties) and cellular processing of antigens are 
equally crucial in the elicitation of an allergic reaction [319, 
320].

In general, caseins are resistant to gastrointestinal diges-
tion, thus preserving or even increasing their immunoreac-
tivity, especially when digested peptides: (i) present PTM, 
as phosphorylation and glycosylation, or (ii) result from the 
formation of aggregates with whey proteins, whose struc-
tures are stabilised by disulphide bridges [241, 242, 262, 
263]. Parvalbumins, arginine kinases, and transferrins are 
quite resistant to trypsin/chymotrypsin activities, but they 
seem to be easily digested by pepsin, thus contributing to a 
significantly reduced IgE-binding capacity [223, 316, 321, 
322]. However, in the case of parvalbumins, the formation 
of amyloid fibres (polymeric structures of partially or com-
pletely unfolded protein chains) leads to a strong resistance 
to proteolytic activity at acidic and neutral conditions. The 
formation of such amyloid structures greatly facilitates their 
passage across the intestinal epithelial barrier, increasing 
their IgE-binding capacity [134, 323].

After pepsin digestion, the allergenicity of tropomyosins 
is diminished, as assessed by skin prick tests and basophil 
activation tests, being greatly reduced or eliminated by 
subsequent intestinal digestion [159, 188]. However, 
pepsin sensitivity does not seem to be a common trait of 
all tropomyosins, as it has been demonstrated for Pen m 
1 and Lit v 1, which are rather resistant to pepsin activity 
[11, 324]. Deglycosylated, glycated or crosslinked forms 
increase the susceptibility for gastrointestinal digestion, 
contributing to significantly decrease the allergenicity of 
tropomyosins [157, 188, 234, 235, 325]. Gal d 4 from the 
glycoside hydroxylase family 22 is resistant to trypsin/
chymotrypsin activities, but it is partially degraded by 
pepsin at very low pH (<  1.5) [139, 326]. Bos d 4 is 
easily destroyed by pepsin [252, 277, 306, 327, 328], thus 

greatly reducing, or even abolishing, Bos d 4 IgE-binding 
capacity. Some IgE‐binding and basophil activation 
capacities are maintained, being explained by the presence 
of high proportions of intact Gal d 4 that can cross the 
epithelial barrier in an activated state [140, 161, 326]. 
Additionally, Gal d 4 may contain some linear epitopes, 
previously hidden in its conformational structure, which 
become accessible after the digestion process, increasing 
its allergenic potential [161].

Bos d 6 (serum albumin family), Bos d 5 (lipocalin fam-
ily), Gal d 1 (ovomucoid family) and Gal d 2 (serpin fam-
ily) are in part resistant to pepsin activity but susceptible 
to trypsin/chymotrypsin digestion [148, 151, 329, 330]. 
After complete digestion, the IgE-binding capacity of Bos 
d 6 and Bos d 5 is practically abolished [170, 331], while 
Gal d 1 and Gal d 2 retain some allergenicity, most likely 
due to the presence of digested peptides containing linear 
IgE-binding epitopes [140, 149, 166, 252, 332, 333]. The 
thermal processing of Gal d 1 and Gal d 2 induces small 
irreversible changes in their secondary structures, which 
facilitate their gastrointestinal digestibility, contributing 
to the reduced IgE-binding and mast cell degranulation 
capacities [166, 252]. Differences in the immunogenic 
properties of heat-digested fragments seem to promote 
shifts from Th2 to Th1-type responses, leading to a signifi-
cant reduction in allergenicity [183]. Additionally, thermal 
processing before gastrointestinal digestion of Gal d 1 and 
Gal d 2 prevent their transport across human intestinal 
epithelial cells in a state capable of inducing basophil or 
T-cell activation, thus reducing their allergenicity [166].

The formation of Bos d 5 aggregates during the glyca-
tion process enhances the resistance to proteolytic diges-
tion, changing the mechanism of transport across the intes-
tinal epithelium. On one side, Bos d 5 aggregates are more 
prone to endolysosomal degradation, inducing lower effec-
tor response, and reduced basophil activation. On the other 
side, these aggregates are redirected to Peyer’s patches, pro-
moting a significantly higher Th2 response than the native 
allergen, thus increasing its allergenicity [176, 192, 246].

Concluding remarks:

• Most animal allergens are pepsin-sensitive, while caseins, 
serum albumins, lipocalins and serpins are considered 
pepsin-resistant.

• Most animal allergens present reduced IgE-binding 
capacity after complete digestion, with some exceptions:

In caseins, the presence of PTM or formation of aggre-
gates in digested peptides preserved/increased immu-
noreactivity.
In parvalbumins, the formation of amyloid fibres 
(facilitate crossing epithelium barrier) increase their 
IgE-binding capacity.
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In transferrins, the partial protective effect of matrix 
components (facilitate crossing epithelium barrier in 
intact forms) preserve their IgE-binding capacity.
In lipocalins, the formation of aggregates hampers 
digestion, changing the mechanism of transport across 
the epithelium barrier, increasing its allergenicity.

Lipid Interactions

Since food allergens are not likely to be presented to the 
human immune system in their natural state (native mol-
ecules), it is important to consider the immunomodula-
tory effects of the surrounding components (e.g. lipids) 
within the protein source (e.g. food matrix) [334, 335]. 
Although the association between allergens and lipids is 
not yet clearly understood, some studies seem to indicate 
that lipids intervene in the early stages of allergic sensitisa-
tion by interacting with numerous components of the innate 
immune system. Additionally, lipids are also known to pro-
tect allergens from the enzymatic activity during digestion 
and to facilitate allergen passage through the epithelial bar-
rier [334].

The effect of the interaction of lipids on the aller-
genicity of proteins was evaluated for some members of 
specific families, namely tropomyosins, parvalbumins, 
glycoside hydrolase family 22, lipocalins, and serpins 
(Table 2). In general, the presence of lipids contributes 
to preserving the IgE-binding capacity of proteins from 
parvalbumins, glycoside hydrolase family 22, lipocalins 
and serpins [140, 148, 161, 326, 336]. In most cases, 
lipids increase the resistance of proteins towards pro-
teolytic activity during digestion (often protecting the 
allergen native structure) [161, 326, 336] and facilitate 
their passage through the intestinal lumen as intact mol-
ecules [337, 338]. Even when lipids enhance the prote-
olysis during digestion, as seems to be the case of Gal d 4 
(glycoside hydrolase family 22) and Gal d 2 (serpin fam-
ily), the IgE-binding capacity of these allergens remain 
unaltered [140, 148].

Contrarily to the referred proteins, tropomyosins can 
be oxidised by acrolein and malondialdehyde (compounds 
resulting from lipid peroxidation during shrimp conserva-
tion), modifying their digestibility, as well as their IgE-
binding properties. Met e 1 (tropomyosin) oxidation by 
malondialdehyde can enhance the resistance to pepsin 
digestion, while oxidation by acrolein produces structural 
changes, which in both cases significantly reduce the IgE-
binding capacity of tropomyosins [325, 339]. The release 
of inflammatory cytokines and mediators from activated 
RBL‐2H3 cells was also strongly influenced by Met e 1 
crosslinked with malondialdehyde in a dose-dependent 
manner, thus confirming a reduction in its allergenicity 
[158].

Concluding remarks:

• Lipids have a protective effect on the allergen stability 
during digestion for parvalbumins, glycoside hydrolase 
family 22, lipocalins, and serpins, preserving their IgE-
binding capacity.

• Lipid oxidation (by acrolein and malondialdehyde) of 
tropomyosins during conservation, increased their sus-
ceptibility to proteolytic digestion and reduced their 
allergenicity.

Can Physicochemical Properties Shape 
Allergenicity?

After evaluating the effect of the selected set of physico-
chemical parameters on the allergenicity of distinct animal 
protein families, it has become clear that the importance 
of each parameter is quite different depending on the pro-
tein family or even on the allergen itself (Tables 2, 3 and 
4). Independently on the effect that each parameter has on 
the IgE-binding capacity/allergenic potential of a specific 
protein (Table 4), they all converge to a common outcome, 
which concerns protein integrity.

Within the studied animal protein families, PTM during 
protein synthesis occurs with high frequency. Glycosylation 
is the most common PTM, followed by phosphorylation and 
acetylation. However, not every glycosylated protein seems 
to be correlated with increased allergenicity. In fact, among 
the families of animal proteins, glycosylation is common 
(e.g. tropomyosins, arginine kinases, caseins, serpins), but 
it cannot be considered as an important parameter for aller-
genicity, since glycosylated proteins are often described as 
less IgE-reactive than their deglycosylated counterparts (e.g. 
tropomyosins).

Phosphorylation is well correlated with increased IgE-
binding capacity of caseins and serpins, but it is not impor-
tant or described for other animal protein families. There-
fore, PTM could be involved in allergenicity but it is not 
necessary to induce an allergic reaction, meaning that not 
all allergens have PTM (phosphorylation or glycosylation). 
Contradicting the generalised concept that allergens have 
globular and compact structures, there is a huge number of 
potent animal allergens (tropomyosins, lipocalins, ovomu-
coids and serpins) presenting a high level of structural 
organisation (quaternary conformations). The decrease in 
the IgE-binding capacity of several allergens can be cor-
related with the loss of high-ordered structures (3D and 4D 
structures), specifically because most of the conformational 
epitopes are destroyed. However, there are several exam-
ples of allergenic proteins that preserve or even increase 
their IgE-binding capacity upon loss of 2D structures or 
rupture of disulphide bonds (e.g. tropomyosins, caseins), as 
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Table 4  Main conclusions about the adequacy of each physicochemical property as potentially shaping allergenicity

Impact on IgE-binding capacity Supporting evidence/main concerns

Abundance Low Low abundant as well as high abundant proteins are known as 
potent allergens, e.g. tropomyosins (low abundant), caseins 
(high abundant)

Biological function High Potent allergens display biological functions as storage, regu-
lation, transport and defence

PTM
  Glycosylation Low Contradictory effects are found for potent allergens. Informa-

tion is limited to tropomyosins, arginine kinases, caseins 
and ovomucoids

  Acetylation Limited Increase the IgE-binding capacity of parvalbumins. Informa-
tion limited to parvalbumins

  Phosphorylation Limited Phosphorylation increases IgE-binding capacity. Information 
limited to caseins and serpins

Lipid-binding Limited Reduces allergenicity. Information is limited to Bos d 5 
(lipocalins)

Ligand-binding Low Contradictory effects are found for different potent allergens. 
Information is limited to parvalbumins, caseins, transfer-
rins, and lipocalins

Protein structure
  Loss of 2D Low Contradictory effects. Loss of structural stability decrease 

(destruction of conformational epitopes) or maintain/
increase (unmasking hidden linear epitopes) IgE-binding 
capacity

  Loss of S–S bonds Low Contradictory effects. Loss of structural stability decrease 
(destruction of conformational epitopes) or maintain/
increase (unmasking hidden linear epitopes) IgE-binding 
capacity

Glycation Low or inconclusive Chemical changes (formation of advanced glycation products) 
can decrease, maintain, or increase IgE-binding capacity 
(depending on protein family or within the same family). 
Data missing for transferrins and serum albumins

Aggregation Low or inconclusive Structural changes (formation of aggregates and potentially 
new conformational epitopes) can decrease, maintain, or 
increase IgE-binding capacity. Data missing for transferrins

Heat stability Low Heat stable allergens are potent allergens. Fails to explain 
potent heat-labile allergens (e.g. arginine kinase, lipocalins)

Pressure stability Low Pressure alone has a limited effect on allergens, but in vivo 
evidence is needed. Maintain protein integrity. Data missing 
for arginine kinases and transferrins

Light/radiation stability High Light/radiation stable proteins are potent allergens. High 
doses of radiation decrease IgE-binding capacity (promotes 
unfolding). Data missing for transferrins

Mechanical stability Low Most allergens are stable to mechanical processing, preserv-
ing their IgE-binding capacity. Maintain protein integrity. 
Data missing for caseins, transferrins, and ovomucoids

Chemical stability
  Changes in protein structure High Reduce the IgE-binding capacity
  Changes in protein integrity (fragmentation) High Reduce/mitigate the IgE-binding capacity. Loss of protein 

primary structure
Digestibility

  Pepsin resistance Low or inconclusive Fails to explain potent pepsin-labile allergens (e.g. some 
members of tropomyosins)

  Trypsin/chymotrypsin resistance High Most allergens are labile to trypsin/chymotrypsin activities
  Lipid interaction High Presence of lipids protects allergens from proteolysis. Main-

tain protein integrity
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a consequence of unmasking hidden linear epitopes. This 
means that there is no straightforward correlation between 
the loss of 2D structures/disruptions of disulphide bonds and 
the allergenic potential of different proteins, due to conflict-
ing effects for different animal protein families, or even for 
the same allergen.

Protein stability towards heat is normally associated 
with potent allergens since they tend to return to native 
states upon cooling to lower temperatures. However, 
like in the case of plant allergens, this physicochemical 
property also fails to explain potent heat-labile animal 
allergens (e.g. arginine kinases, lipocalins). Protein sta-
bility towards light/radiation is similar to heat stability, 
normally because radiation often results in the raising of 
temperature, contributing to increasing the degree of pro-
tein unfolding.

Most of the available literature considers pressure-treated 
proteins as of lower allergenicity, an interpretation that is 
based on data from IgE-binding studies. With no clini-
cal studies available and only a few studies based on mice 
allergy models, indicating a slight reduction of allergenic-
ity in proteins (tropomyosins, parvalbumins, and serpins) 
combining pressure and heat [174, 175, 190], the impact of 
pressure in allergenicity might be overestimated. The forma-
tion of aggregates has also a conflicting effect on allergen 
IgE-binding capacity, since in their aggregated forms new 
conformational epitopes may become accessible (e.g. tro-
pomyosins, parvalbumins, glycoside hydrolase family 22, 
arginine kinases and lipocalins).

Protein stability towards chemical and enzymatic pro-
cesses is well correlated with a significant decrease, or 
even mitigation, of the IgE-binding capacity of practically 
all animal allergens [138, 189], mostly due to the extensive 
fragmentation of protein primary structure, with subsequent 
destruction of IgE-binding epitopes. The high resistance of 
allergens towards the digestion process is also a general-
ised concept, but it cannot be interpreted straightforward. 
In fact, it fails to explain several potent pepsin-sensitive 
animal allergens, such are the cases of some members of 
tropomyosins and parvalbumins. The protective effects of 
lipids towards allergen digestion are well correlated with the 
preservation of the IgE-binding capacity of animal proteins, 
as demonstrated for glycoside hydrolase family 22, lipoca-
lins, and serpins.

Conclusions

Some families encompass many proteins, but with only one 
or two acting as potent allergens, while others are comprised 
of a large number of important allergens, which confirms the 
existence of unknown factors that render protein to be aller-
genic. By the end of this analysis, it was possible to conclude 

that there are still several gaps concerning the impact of 
different physicochemical parameters on animal allergens. 
One of those is related to the fact that numerous allergens 
have not yet been the target of intensive research, which 
hampers to determine the real effect of different properties 
on protein allergenicity.

At this point, there is a great number of techniques 
(mostly by indirect means) that can be used to test the 
influence of those physicochemical properties, but it is 
also true that most of those are highly dependent on the 
use of sera from sensitised/allergic patients. Along with 
the difficulties of most research groups to have access to 
sera, it is also crucial to refer that the quality/composition 
of sera can be highly variable according to several factors 
(e.g. geographical origin, age, patients’ sex, among oth-
ers). Data from interlaboratory analysis (considering that 
similar allergens would be analysed using similar condi-
tions) is practically inexistent, but which could help clarify 
if most of the contradictory effects observed for specific 
allergens are real or if they result from cumulative differ-
ences in protocols used by distinct research teams. Another 
aspect that has not been investigated is the comparison of 
the behaviour of non-allergens with allergens towards the 
same physicochemical parameters (only very few excep-
tions [11]).

Comparing data retrieved from methods simulating 
sensitisation (IgE-binding capacity) with elicitation (clini-
cal symptoms) phases is not ideal. However, considering 
the limited information for different allergens within the 
same family or across families, this comparison was per-
formed to provide a more holistic picture of the impact 
of different physicochemical properties on animal protein 
allergenicity.

Despite the gaps herein identified, we were able to draw 
some important conclusions regarding specific physico-
chemical properties and to demystify some preconceived 
concepts. Glycosylation is not a universal trait of allergens, 
as well as heat stability and proteolytic resistance are not 
always a synonym of increased protein allergenicity. Like 
in the case of plant allergens, the body of evidence con-
firms that several physicochemical properties may shape 
the allergenicity of animal proteins, although at different 
extents. Moreover, the level at which each parameter may 
impact protein allergenicity is not the same among plant or 
animal allergens.

Properties affecting protein integrity and composition 
can be correlated with the elicitation capacity of certain 
allergens, but what renders a protein to be allergenic in 
the first place and which properties might impact sen-
sitisation are still quite unclear. The integration of all 
the factors (properties) that link large protein families 
containing numerous allergenic proteins with protein 
families with only one or two allergens (data integration 
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by multivariate models), could give a broader picture of 
how the complete set of properties impact protein aller-
genicity (Fig. 2), instead of looking at individual proteins 
or events. It would also clarify why a protein behaves as 
an allergen in some people, while for others is innocu-
ous, thus possibly paving the way for novel therapeutic 
concepts.
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