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Abstract

This Scientific Opinion addresses the formulation of specific development needs, including research
requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a
world that demands more sustainable food systems. Current allergenicity risk assessment strategies
are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of
foods derived from ‘modern’ biotechnology initially published in 2003. The core approach for the safety
assessment is based on a ‘weight-of-evidence’ approach because no single piece of information or
experimental method provides sufficient evidence to predict allergenicity. Although the Codex
Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/
stacked event GM applications, experience gained and new developments in the field call for a
modernisation of some key elements of the risk assessment. These should include the consideration of
clinical relevance, route of exposure and potential threshold values of food allergens, the update of
in silico tools used with more targeted databases and better integration and standardisation of test
materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely
challenge the overall practical implementation of current guidelines, which were mainly targeted to
assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose
of the allergenicity risk assessment and the vital role it plays in protecting consumers’ health. A
roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to
inform a series of key questions for risk assessors and risk managers such as ‘what is the purpose of
the allergenicity risk assessment?’ or ‘what level of confidence is necessary for the predictions?’.
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Summary

This Scientific Opinion addresses the formulation of specific development needs, including research
requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a
world that demands more sustainable food systems. Current allergenicity risk assessment strategies
based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods
derived from ‘modern’ biotechnology was initially published in 2003.

Due to the continuous scientific advances over the last two decades, there is a functional
asynchrony between the availability of safety standards and concurrent scientific developments. The
European Food Safety Authority (EFSA) has been proactive in this respect and has already invested
resources to advance the allergenicity prediction field further. Likewise, EU-funded research
programmes, such as the ImpARAS Cost Action, EuroPrevall, iFAAM and AllerScreening projects,
among others, also provide insights on the use and improvement of existing and suggested
assessment tools in the field of allergenicity assessment of foods. However, important knowledge gaps
remain, and the development of novel approaches to deal with allergenicity assessment needs to be
pursued further. This Scientific Opinion aims to: (i) define knowledge gaps on allergenicity prediction;
(ii) identify specific research needs for improving the allergenicity risk assessment for products derived
from biotechnology; (iii) determine how new basic research findings and technological developments
can improve the current risk assessment methodology; and (iv) prioritise basic research funding.

By considering the complexity and variety of factors involved in food allergy and the current state-
of-the-art, it is unrealistic that a single test in the short/medium term will be predictive of the
allergenic potential of a protein. Therefore, the ‘weight-of-evidence’ approach for allergenicity
assessment remains valid. However, the evidence needed might differ depending on whether a
conventional GMO or another type of new biotech food is being assessed.

Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity
assessments of single/stacked event GM applications, experience gained and new developments in the
field call for a modernisation of some key elements, such as (i) better standardisation on the use of
the available knowledge on the source of the gene and the protein itself – context of clinical relevance,
route of exposure and potential threshold values of food allergens; (ii) modernisation of in silico tools
used with more targeted databases; (iii) better integration of in vitro testing, with clear guidance on
how protein stability and digestion informs the assessment and on the use of human sera; and (iv)
better clarity on the use of the overall weight-of-evidence approach for protein safety and the aspects
needed for expert judgement.

Furthermore, more complex future products will challenge the overall practical implementation of
such guidelines, mainly targeted to assess few newly expressed proteins. More challenging applications
are expected in the future with large numbers of diverse proteins, for instance, derived from new
genome techniques and synthetic biology. Therefore, it is timely to review and clarify the main purpose
of the allergenicity risk assessment overall and the vital role it plays in protecting consumers’ health
with existing food allergies and assessing the potential for foods to cause new food allergies.

Therefore, a draft of a roadmap that (re)defines the allergenicity safety objectives and risk
assessment needs will be needed to address the key questions for risk assessors and risk managers,
such as (1) what is the purpose of the allergenicity risk assessment?; (2) what should be assessed in
the allergenicity assessment?; (3) what level of confidence is necessary for the predictions?; and (4)
what is an unacceptable/acceptable risk in the allergenicity risk assessment?.

Development needs for the allergenicity and protein safety assessment
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1. Introduction

1.1. Background

In 2017, the scientific Panel on Genetically Modified Organisms of the European Food Safety
Authority (hereafter referred to as the ‘GMO Panel’) published a supplementary guidance document on
allergenicity risk assessment of genetically modified (GM) plants addressing non-IgE-mediated adverse
immune reactions to foods, in vitro protein digestibility tests and endogenous allergenicity of plant
constituents (EFSA GMO Panel, 2017). The purpose of this guidance document was to incorporate new
developments in allergenicity into the risk assessment process. For in vitro protein digestibility, the
GMO Panel considered that additional investigations were needed before providing any further
recommendations in the form of guidance to applicants. An EFSA external scientific report, where
various proteins of plant and animal origin were tested under specific gastrointestinal conditions, was
published in 2019 (Mackie et al., 2019).

Subsequently, an Ad hoc Allergenicity working group of the GMO Panel was established to address
to what extent the in vitro digestion test adds value to the allergenicity risk assessment of GM plants
and the protein safety assessment in general, and consequently, published a statement entitled ‘in
vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified
plants’ (EFSA GMO Panel, 2021).

The GMO Panel guidance document of 2017 did not consider broader aspects relating to IgE-cross-
reactivity and de novo sensitisation prediction. Based on current knowledge, experience gained, and
their relevance for the assessment of GMOs and food and feed derived from biotechnology, it is
important to address the issue of predicting IgE-cross-reactivity and de novo sensitisation. Therefore,
the Ad hoc Allergenicity Working Group was asked to deliver a Scientific Opinion on current gaps and
future development needs for the overall allergenicity and protein safety assessment, which is the aim
of this document. To support the drafting of this scientific opinion, EFSA organised an Allergenicity Risk
Assessment event, entitled ‘Workshop on allergenicity assessment – prediction’, in June 20211 and
published an event report (EFSA, 2021).

1.2. Terms of Reference

The European Food Safety Authority (EFSA) asked the Panel on Genetically Modified Organisms
(GMO Panel) to develop a GMO Panel Scientific Opinion on development needs in allergenicity and
protein safety assessment of food and feed derived from biotechnology. No guidelines for applicants
are provided in this document as it is not a follow-up of previous guidance documents.

2. Data and methodologies

2.1. Data

In delivering this scientific opinion, the EFSA GMO Panel considered information from relevant
scientific publications retrieved from the public domain. However, this Scientific Opinion is not intended
to be a comprehensive review of the field. The GMO Panel also considered comments raised by a
Stakeholder Consultative Group following the activities of the GMO Panel Allergenicity Working Group
and the main outcomes of the Allergenicity Risk Assessment Workshop in June 2021, organised by the
Allergenicity Working Group of the EFSA GMO Panel in collaboration with the Stakeholder Group. The
aim of the workshop was to set the scene on the current state-of-the-art in the science of allergenicity
assessment and to define the specific elements of such an assessment to develop to move forward
(EFSA, 2021).1

2.2. Methodologies

The GMO Panel considered the principles described on allergenicity in its guidance documents,
statements, and scientific opinions (EFSA GMO Panel, 2010, 2011, 2017, 2021), Regulation (EU)
No 503/2013 and other relevant international guidelines (Codex Alimentarius, 2003–2009).

1 https://www.efsa.europa.eu/en/events/gmo-workshop-allergenicity-assessment
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3. Assessment

The formulation of specific research requirements for allergenicity assessment and protein safety, in
general, is urgently needed in a world that demands more sustainable food systems (EFSA, 2019). The
European Commission targets food and nutrition security challenges with research and innovation
policies designed to future-proof the food systems – to become more sustainable, resilient,
responsible, inclusive, diverse and competitive. Consequently, the FOOD 20302 initiative should
generate futureproofing of our currently unsustainable food systems supporting alternative proteins
and innovative food sources. Before any food or feed derived from biotechnology can be introduced
into the EU market, a premarket safety assessment is undertaken to ensure the product’s
wholesomeness. Evaluating adverse immune reactions to proteins (hereafter referred to as
‘allergenicity’) is a challenging aspect of this safety assessment. Adverse reactions to foods may involve
IgE-mediated hypersensitivity reactions or non-IgE-mediated conditions, such as the T-cell-mediated
gluten-sensitive enteropathy, also named coeliac disease (Sampson and Anderson, 2000; Johansson
et al., 2001; Mills et al., 2013a; Valenta et al., 2015; Anvari et al., 2019).

Current allergenicity risk assessment strategies are based on the principles and guidelines of the
Codex Alimentarius for the safety assessment of foods derived from ‘modern’ biotechnology, which was
initially published in 2003 (Codex Alimentarius, 2003–2009). Subsequently, the GMO Panel published
Guidance Documents for the allergenicity assessment of GM plants (EFSA GMO Panel, 2011, 2017) that
follows the main principles laid down by Codex Alimentarius (2003–2009). As no single piece of
information or experimental method provide sufficient evidence to predict allergenicity, the core
approach for the safety assessment is based on a ‘weight-of-evidence’ approach, where information of
different nature is considered for the assessment of allergenicity (Codex Alimentarius, 2003–2009;
EFSA GMO Panel, 2011, 2017; Regulation (EU) No 503/2013).

According to the Codex Alimentarius, each step of the safety assessment aims to provide
assurance, in the light of the best available scientific knowledge, that the food does not cause harm
when prepared, used and/or eaten according to its intended use. Due to the continuous scientific
advances over the last two decades, there is a functional asynchrony between the availability of safety
standards and concurrent scientific developments. EFSA and other risk assessment bodies are
mandated to mitigate these gaps as much as possible (EFSA, 2021). This is in line with the principles
described in the Codex Alimentarius (2003–2009), which states that the safety assessment should be
reviewed in the light of new scientific information calling into question the conclusions of the original
safety assessment. EFSA has been proactive in this respect and has already invested resources to
advance the allergenicity prediction further. A series of EFSA procurements were undertaken, which
resulted in several publications representing significant steps forward (Mills et al., 2013a,b; Mackie
et al., 2019; Parenti et al., 2019; EFSA GMO Panel, 2017, 2021). Likewise, EU-funded research
programmes, such as the ImpARAS Cost Action, EuroPrevall, iFAAM and AllerScreening projects,
among others, also provide insights on the use and improvement of existing and suggested
assessment tools in the field of allergenicity assessment of foods. However, significant knowledge gaps
remain, and the development of novel approaches to deal with allergenicity assessment needs to be
pursued further (EFSA, 2021).

This Scientific Opinion aims to: (i) define knowledge gaps on allergenicity prediction; (ii) identify
specific research needs for improving the allergenicity risk assessment for products derived from
biotechnology; (iii) determine how new basic research findings and technological developments can
improve the current risk assessment methodology; and (iv) prioritise basic research funding.

3.1. Allergenicity prediction in the safety assessment of foods derived
from biotechnology

The international consensus on the safety assessment approach of foods derived from
biotechnology is based on the principle of a comparative safety assessment, where their equivalence to
a conventional counterpart with a history of safe use should be established. Allergenicity risk
assessment is part of the information required for the hazard identification and hazard characterisation
steps and other aspects such as the molecular characterisation, comparative analysis, potential toxicity
or nutritional value of the resulting food. The risk assessment is completed by an exposure assessment
and, eventually, by a risk characterisation step, as needed (EFSA GMO Panel, 2011; European

2 https://fit4food2030.eu/food-2030/
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Commission, 2013). For the assessment of proteins, the current paradigm builds on classical principles
and methodologies developed for assessing small molecules chemicals. However, proteins are large
and complex biopolymers that challenge this paradigm and present different hazard and exposure
assessments (Fernandez Dumont et al., 2018). Since the human body handles proteins in a very
different manner to small molecules, the safety assessment relies on information of a different nature
to provide the necessary weight-of-evidence to estimate potential risks. On a case-by-case basis, this
information may include in silico bioinformatic analysis, in vitro tests on protein stability, in vivo studies
and dietary exposure.

However, for the allergenicity assessment, key pieces of knowledge are lacking, including consensus
lists of clinically relevant allergens that are structurally well-characterised and have demonstrable
potency in eliciting an allergic reaction. The recently published FAO/WHO consultation has identified
consensus on reference doses for many major allergenic foods based on published data (Taylor et al.,
2002; Ballmer-Weber et al., 2015; Bluemchen and Eiwegger, 2019; Houben et al., 2020; Remington
et al., 2020; FAO/WHO, 2021a,b), as shown in Section 3.3.1. However, significant data gaps remain
regarding the allergenic potency of other allergenic foods, and there are no clinical data on threshold
doses for individual allergenic protein molecules. These gaps in knowledge make it challenging to
define strategies that consider the exposure in the risk characterisation step and increase the
uncertainty in the overall risk assessment process.

The prediction of allergenicity is also challenging because an allergic reaction to a protein depends
upon a complex interplay between an individual’s immune system and the protein. Allergic disease
develops in a process comprising sensitisation to the allergenic food and subsequent elicitation of the
allergic reaction. The resulting symptoms occur upon re-exposure to the allergen when administered in
sufficient amounts (Renz et al., 2018). The allergenicity risk assessment considers the risks that a
newly expressed protein or whole food poses to the existing allergic population by virtue of showing
IgE cross-reactivity. Existing methods are available for assessing the allergenic potential of new
proteins for cross-reactivity with a reasonable level of confidence. However, there are limited options
to assess the hazard and potential risks of new proteins due to de novo sensitisation (Remington et al.,
2018; Mazzucchelli et al., 2018). This is because, contrary to other safety assessment areas, such as
the toxicity assessment for which well-validated animal models have been in place for years (e.g.
OECD protocols for small molecules), no single test or parameter is currently available which provides
sufficient evidence to predict de novo sensitisation. Moreover, the methods included in the current
weight-of-evidence approach for the allergenicity assessment were designed for the assessment of
individual proteins and are not easily applicable to foods developed by introducing traits of many
different newly expressed proteins (EFSA GMO Panel, 2022a,b) or to complex mixtures of proteins that
often make up whole foods (e.g. insects).

The current paradigm, according to Codex Alimentarius (2003–2009), is that potential safety
concerns on allergenicity are raised when, for example, (i) reasonable evidence of IgE-mediated oral,
respiratory or contact allergy or non-IgE allergy is available on the source of the introduced protein or
on the protein itself; (ii) a newly expressed protein has sequence similarities to known allergens higher
than 35%; and/or (iii) highly stable proteins leading to resistant fragments following the classical
pepsin resistance are separated and visualised by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS–PAGE).

Over the years and following Codex Alimentarius principles (2003–2009), most of the tools used in
the allergenicity risk assessment focus on understanding the potential IgE binding properties
of allergens, leading to the typical classification of allergens as ‘major’ (> 50% IgE-binding) and ‘minor’
(< 50% IgE-binding) (Løwenstein, 1978). However, this classification does not carry any connotation of
allergenic potency but rather relates to the proportion of an allergic population that are sensitised to a
given molecule (Matricardi et al., 2016). This is because this classification is mainly based on the
frequency of IgE-binding in the population, especially detected in vitro, irrespective of clinical impact.
Thus, there is a need for a better approach to evaluate the clinical importance of allergens along with
prevalence in a population.

3.1.1. Clinical relevance of food allergens

The characterisation of an allergen involves from the analysis of its IgE antibody binding capacity to
the demonstration of clinical relevance. Moreover, the characterisation of all allergens is a challenging
and comprehensive process that also includes physicochemical properties, biological function and
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structure determination (Caraballo et al., 2020). An allergen becomes clinically relevant when it causes
symptoms and is corroborated by medical history and/or provocation testing (Worm et al., 2021).

The clinical relevance of individual food allergens should be a key driver for developing new
strategies and tools for allergenicity risk assessment (EFSA, 2021). To achieve this goal, it is necessary
to rely on clinical data of good quality and to determine criteria for describing the allergenicity of single
proteins. However, the factors that may determine a convincing history of an IgE-mediated allergic
reaction to a specific food are still controversial. Likewise, it is challenging to define ‘minimal criteria’
for food allergy (Asai et al., 2020).

It is well accepted that individuals are often sensitised to a food or allergen molecule but are still
able to consume food without experiencing an allergic reaction, and is one reason why double-blind
placebo-controlled oral food challenges (DBPCFC) are considered the gold standard for a diagnosis of
food allergy (Sicherer and Sampson, 2018). Consequently, criteria have been developed to identify
allergenic foods of public health importance where oral food challenges play a crucial role in
demonstrating clinical relevance, i.e. the capacity of a food to elicit an allergic reaction in an allergic
individual (Bj€orkst�en et al., 2008; Chung et al., 2012). Thus, although sensitisation is a predisposing
risk factor for IgE-mediated food allergy, neither a quantitative positive specific IgE test result nor a
positive skin prick test can prove the clinical relevance of a food extract or purified molecule. The
ultimate means of determining the clinical relevance of an allergen molecule would be to perform a
provocation test with a purified allergen molecule, as is undertaken with inhalant allergens used for
immunotherapy. However, data from such studies are lacking, and new alternatives are required.
Therefore, there is a need for consensus definitions of clinically relevant allergens, and these should
build on data available for component-resolved diagnostics in allergic patients, with some initiatives
being recently proposed (Caraballo et al., 2020, 2021). A crucial aspect of such definitions relates to
the source and quality of the diagnosis of the allergic population used to define an allergen.

The clinical relevance of allergens could include criteria such as (i) the severity (i.e. the proportion
of severe objective allergic symptoms to the potential allergen); (ii) the potency (i.e. the amount of
the potential allergen required to cause objective symptoms); (iii) the prevalence of immune-mediated
hypersensitivity to the potential allergen source; and iv) the exposure route that the allergen presents
to the immune system and the level of exposure. Recently, an Ad hoc Joint FAO/WHO Expert
Consultation on Risk Assessment of Food Allergens reviewed and validated the Codex priority allergen
list based on systematic and thorough assessments using prevalence, severity and potency as key
criteria (FAO/WHO, 2021a).

In addition, the definition of a set of non/low-allergenic (control) proteins is needed. One initiative
has been proposed by Krutz et al. (2019). Briefly, the main principle assumes that proteins to which
humans are known to have significant exposure (such as proteins from spinach, corn, potato, rice,
tomato or wheat), but that are not (or only rarely) associated with allergy, can be classified as having
low (or even absent) sensitising potential.

Finally, in the last years, allergic diseases in animals have gained great prominence in veterinary
practice. However, very few studies are currently available (mainly in dogs and horses), which provide
evidence of the allergens involved, but it is unclear whether these allergens are similar to those in
humans (Mueller et al., 2018). Furthermore, the prevalence of food allergy in animals is largely
unknown, and additional efforts in this field are needed (Pali-Scholl et al., 2017, 2019).

3.1.2. Determinants of food protein allergenicity

3.1.2.1. Intrinsic and extrinsic properties of food allergens

Despite many approaches aimed at understanding what makes a food protein an allergen (Huby
et al., 2000; Helm, 2001; Bannon, 2004; Scheurer et al., 2015; Costa et al., 2020, 2021), the
underlying reasons why proteins or peptides become allergenic in susceptible individuals is not fully
understood (EFSA GMO Panel, 2010, 2011, 2017; EFSA NDA Panel, 2014). The molecular determinants
of allergenicity depend on the protein sequence with contributions from protein structure and
dynamics (James et al., 2018).

It has long been recognised that food and pollen allergens belong to a limited number of protein
superfamilies (Jenkins et al., 2005; Radauer and Breiteneder 2006; Jenkins et al., 2007; Radauer et al.,
2008). Although these protein family scaffolds are associated with allergenicity, there are no single
common structural causes, features or sequence motifs identified that contribute to their overall
allergenicity.

Development needs for the allergenicity and protein safety assessment
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However, not all members of a certain protein family are allergens, and many allergens do not
exhibit any known physicochemical, functional or structural properties that account for their
allergenicity (Scheurer et al., 2015; Costa et al., 2020, 2021). Interestingly, recent studies reported
differences in biophysical properties and structural dynamics between shrimp and pig tropomyosins,
despite their high degree of conservation, which may explain differences in their allergenic potential
(James et al., 2018; James and Nanda, 2020). Finally, although abundance might not be a universal
characteristic of all food allergens, it seems to be a predisposing factor that enhances their chance to
interact with the immune system, when coupled with other biochemical characteristics, that could
produce a food allergen (Bannon, 2004; Foo and Mueller, 2021).

Nevertheless, there are possibly a few distinct biochemical characteristics associated with the
different protein families that mainly correlate to the elicitation capacity of certain allergens. These
characteristics are determined by the 3D structure of proteins, which confer the physicochemical and
biological properties governing protein stability, such as the capacity to bind ligands (ranging from
metal ions to lipids) and/or resistance to protease degradation and thermal stability (Radauer et al.,
2008; EFSA GMO Panel, 2017, 2021; Foo and Mueller, 2021). Ligands generally increase the stability of
allergens to thermal and/or proteolytic degradation (Moreno et al., 2005; Vassilopoulou et al., 2006;
Bossios et al., 2011; Berecz et al., 2013; Petersen et al., 2014) and can also act as immunomodulatory
agents that favour Th2 polarisation. However, some exceptions have been reported, as is the case of
wheat LTP, whose ligand binding properties enhanced its conformational flexibility resulting in
increased susceptibility to gastroduodenal proteolysis (Abdullah et al., 2016). Moreover, ligand-binding
allergens expose the immune system to a variety of biologically active small molecules that could play
important and still not well-understood roles in the sensitisation process in addition to the allergenic
protein itself (Chruszcz et al., 2021).

Post-translational modifications (PTMs), such as disulphide bond formation (Apostolovic et al.,
2016), have also been identified as additional important determinants for preserving allergenic
properties in digestion-resulting peptides. Ideally, stable breakdown protein fragments should be
characterised and evaluated with regard to the potential to cause adverse health effects linked to their
biological activity (Bøgh and Madsen, 2016; EFSA GMO Panel, 2017). However, the appropriate
methodology is currently unavailable (EFSA GMO Panel, 2021). Likewise, optimal IgE binding to linear
epitopes of important allergens from timothy grass pollen (Phl p 1) (Petersen et al., 1998) and peanut
(Ara h 2) (Bernard et al., 2015) requires post-translational hydroxylation of proline residues. The in-
depth characterisation of potential PTMs on allergens warrants further research because the
information is limited in some cases. This was the case of clinically relevant grass pollen and house
dust mite allergens, which through a glycoproteomic analysis using a powerful analytical approach (i.e.
orbitrap-based mass spectrometry with complementary fragmentation techniques for site-specific PTM
characterisation) revealed novel PTMs. These were based on more complex glycan structures than
previously reported and could play important roles in allergen recognition and response by the immune
system (Halim et al., 2015). Nevertheless, according to the current state-of-the-art, PTMs are not a
prerequisite for a high probability of allergenicity (Costa et al., 2020).

3.1.2.2. Environmental and other factors influencing protein allergenicity

In addition to the allergen itself, environmental factors may play a role. These include different
routes of exposure, the timing of exposure, microbial exposure, oral and gut microbiota composition in
case of oral exposure, epithelial barrier integrity and/or non-allergenic components of the food matrix
such as immune-modulating components (adjuvants) of allergenic sources that facilitate T helper 2
(Th2) immune responses (Scheurer et al., 2015; Valenta et al., 2015). Human related factors (e.g.
genetic factors such as mutations in the filaggrin genes, SPINK5 and SERPINB7) and co-factors such
as alcohol, anti-inflammatory drugs, infection, exercise or stress (Dua et al., 2020) could potentially
reduce the barrier function of the intestinal epithelium and facilitate sensitisation and impact elicitation
(Groschwitz and Hogan, 2009; Irvine et al., 2011; Perrier and Corth�esy, 2011; Valenta et al., 2015;
Breiteneder et al., 2020). More recently, glycosylation (specifically, sialylation) of IgE has been reported
as an important regulator of allergic disease (Shade et al., 2020).

Possible links between the proteins’ biological function/activity and their allergenicity are emerging
(Ozias-Akins & Breiteneder, 2019; Foo and Mueller, 2021). For example, the proteolytic activity of some
food allergens might contribute to the sensitisation process via different mechanisms such as the
cleavage of certain proteinase-activated receptors leading to the release of pro-inflammatory cytokines
(Cayrol et al., 2018; Scott et al., 2018; Dietz et al., 2019) or through the direct proteolysis of tight
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junctions, and other extracellular structures enhancing the intestinal epithelial barrier permeability
(Grozdanovic et al., 2016).

The route of allergen exposure may be an additional key driver in food allergy. Historically, the oral
route of exposure has been the focus (Tordesillas and Berin, 2018). However, the other routes of
exposure may also be relevant for sensitisation (Wavrin et al. 2015; du Toit et al., 2016; van Bilsen
et al., 2017). For example, peanut exposure via impaired skin or the airway may lead to sensitisation
(Kulis et al., 2021).

3.1.2.3. Adjuvant properties of food components

An adjuvant is a substance that augments the body’s immune response to an antigen. They
typically enhance the immunogenicity and/or allergenicity of unrelated proteins, but they are not
usually immunogenic or allergenic. They are mainly lipids and glycans, sometimes minerals, and oils,
and bacterial proteins, which enhances adaptive immune and allergic responses via the innate immune
system.

In the clinical setting, vaccines and subcutaneous allergen immunotherapy products contain
adjuvants. For allergen immunotherapy, the adjuvants are mainly aluminium phosphate, aluminium
hydroxide (alum), aluminium monostearate (Jensen-Jarolim, 2015). While some vaccines also contain
aluminium adjuvants, there are more options, including MF59 (derivative of squalene used as oil-in-
water adjuvant), AS03 (squalene-base, DL-a-tocopherol, polysorbate 80), AS01 (liposome-based
adjuvant containing 3-O-desacyl-4’-monophosphoryl lipid A from Salmonella minnesota and QS-21,
saponins from Quillaja saponaria Molina), and AS04 (aluminium hydroxide and monophosphoryl lipid
A), Pam3CSK4 (triacylated lipopeptide and TLR2/TLR1 ligand), Pam2CSK4 (diacylated lipopeptide),
MPLA (monophosphoryl lipid A), saponins (plant-based), oligonucleotides – CpG, polyI:C and flagellin
(globular protein in flagellated bacteria).

Adjuvants have been extensively used in basic immunology research to induce immune reactions in
animals and skew these responses towards a Th1- or Th2-type pathway. Some examples include an
emulsion of foreign protein with Freund’s adjuvant to induce a Th1 response or precipitating a protein
in aluminium hydroxide (alum) to generate a Th2 reaction. Researchers have also used bacterial
products like pertussis and cholera toxins and lipopolysaccharide (LPS). Many in vivo food allergy
animal models, most notably mice and rats, use adjuvants like cholera toxin to induce the disease.

There are also exogenous ‘Th2 adjuvants’ like glycans (e.g. N-glycans from Schistosoma mansoni
egg antigens), lipids, mast cell and basophil-activating molecules, proteases, chitin, arachidonic acid
metabolites. Other potential Th2 adjuvants are lectins, such as concanavalin A, colectins, adhesins,
some galectins, selectins and mistletoe lectin I (ML-I), appear to enhance allergic responses in vitro
and, in some cases, in vivo (Lavelle et al., 2001; Reyna-Margarita et al., 2019). The role of these
adjuvants in food allergy, when present in foods and co-delivered with food proteins, is not currently
well understood.

The role of intrinsic structural and functional features of some ingested food proteins that result in
immune stimulation in the development of food allergy is also not well understood. Indeed, to date,
there is little evidence that food proteins are adjuvants. There is some evidence that some food
proteins have innate immune-stimulatory properties due to features such as glycosylation, lipid-binding
and enzymatic activity (Ruiter and Shreffler, 2012). For instance, glycan structures on glycoproteins
from peanuts, insects, and crustaceans in vitro can activate dendritic cells, enhance antigen uptake
and potentially contribute to allergen sensitisation (Shreffler et al., 2006). However, it is not clear
whether these immunostimulatory activities play a role in vivo at the concentrations present in
ingested food.

Without evidence that ingested food proteins are adjuvants, the likelihood that a GMO protein or
proteins have adjuvant properties is low. To date, there is no evidence that intact GMOs or isolated or
recombinant GMO proteins at the levels expressed have adjuvant properties in vivo.

Overall, there are naturally occurring molecules found in whole foods like plant lectins, glycosylated
proteins, lipids, proteases, phytoprostanes and chitin with potential adjuvant activity, though not
confirmed as adjuvants that increase sensitisation to food allergens or symptom severity. However,
there is a report illustrating that some allergenic foods (e.g. peanut, egg, and milk) bind and activate
dendritic cells in vitro while other non-allergenic foods like chickpeas and corn do not (Kamalakannan
et al., 2016), suggesting that there are glycoproteins in food that might increase the allergenicity of
the whole food.

Development needs for the allergenicity and protein safety assessment
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3.1.2.4. Food matrix and processing

The EFSA GMO guidance document (EFSA GMO Panel, 2017) and the related statement on in vitro
protein digestibility (EFSA GMO Panel, 2021) acknowledge the importance of the food matrix and food
processing in the digestibility of food allergens and in the potential to trigger an immune response.
However, the monitoring of individual newly expressed proteins in a matrix could be technically difficult
because they are normally present at low levels. In addition, methods included in the current weight-
of-evidence approach for allergenicity assessment were designed for the assessment of individual
proteins and are not easy to apply to whole foods that may contain dozens to hundreds of different
proteins (EFSA GMO Panel, 2022a,b). Furthermore, the safety assessment of GMOs normally covers
any use of GM plants for food/feed purposes. This makes the overall assessment challenging because
of the potential need to test all the possible food matrices and food processing conditions that the GM
plants might undergo when released into the market.

The impact of processing, especially thermal treatments that most foods undergo, is important to
understand the structural traits of food allergens at the molecular level (Nowak-Wegrzyn and Fiocchi,
2009; Wickham et al., 2009). Heat treatments induce chemical/physical modifications, which may
affect the stability of enzymatic digestion and, consequently, the allergenicity of food proteins to a
varying extent, depending on the time and temperature (Di Stasio et al., 2020). Physical stability
(aggregation ability) of some allergens highly labile to digestion (e.g. bovine milk caseins, Ara h 1,
etc.) is a key parameter that explains their allergenic capacity (Bøgh et al., 2009, 2012; Radosavljevi�c
et al., 2020). In addition, the homogenisation of milk could lead to an increase in allergic reactions
because this non-thermal processing results in a large number of lipid droplets adsorbing caseins and
whey proteins, as described by Poulsen et al. (1987), Høst and Samuelsson (1988) and Geiselhart
et al. (2021). However, this effect could not be confirmed by other authors, indicating that the impact
of homogenisation and other technological processes on the allergenic properties of milk proteins
requires further clarification (Michalski and Januel, 2006; Michalski, 2007). Interestingly, adjuvant
effects in food could arise from the Maillard reaction. Cooking or heating food may lead to the
production of advanced glycation end-products of food proteins. In a food allergy model, increased
expression of the receptor for advanced glycation end-products on dendritic cells enhanced T-cell
responses (Hilmenyuk et al., 2010), thus, suggesting that cooking or heating may increase the
allergenicity of ingested food proteins.

Unfortunately, most of the investigations have been limited to single purified allergens (Koppelman
et al., 2010; Bøgh and Madsen, 2016; Pekar et al., 2018), pointing out that the stability of allergens
within their natural matrix upon heat treatments and the elicitation properties of the resulting digestion
products have been poorly explored (Prodic et al., 2018; Di Stasio et al., 2020; Mattar et al., 2021). In
addition, the assessment process mainly focuses on the properties of the intact proteins, even though
they change during passage through the gastrointestinal tract (GIT). Moreover, certain food protein
fragments that are stable to digestion, like gluten proteins, might be even more hazardous than the
intact protein. Coeliac disease is activated when intact gluten peptides pass through the intestinal
epithelium into the lamina propria where they are deamidated by tissue transglutaminase, which
activates the peptides for CD4+ T-cell binding via the human leukocyte antigen (HLA)-DQ 2 or 8 cell
surface receptors (Shan et al., 2002; Fernandez et al., 2019; Pilolli et al., 2019). Other studies such as
that by Prodic et al. (2018) showed that a peptide’s ability (e.g. LTPs) to hold together and adopt a
three-dimensional (3D) structure, similar to the native protein under certain conditions, allows them to
retain theirs in vivo allergenic activity (Vassilopolou et al., 2006).

3.2. Risk assessment tools for allergenicity prediction: current stage and
improvement needs

The purpose of the allergenicity assessment for products derived from biotechnology mainly
focuses on the assessment of newly expressed proteins. For the risk assessment, it is necessary to
include information on the source of the gene/protein (history of use), the amino acid sequence for
performing similarity searches, and on structural properties such as susceptibility to enzymatic
degradation. For the latter, although the isolation or purification of the newly expressed protein is
needed, it might not be possible or practical because of the presence of a large number of proteins or
technical difficulties of intractable proteins (Bushey et al., 2014; Eaton et al., 2017). Synthetic biology-
derived plants (and their derived food and feed products) may arrive on the market in the near future

Development needs for the allergenicity and protein safety assessment
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with an increased level of complexity compared to conventional GM plants (e.g. composition, number
of newly proteins expressed) (EFSA GMO Panel, 2022a).

For non-IgE-mediated adverse immune reactions to foods, detailed risk assessment considerations
were provided by the EFSA GMO Panel on the safety profiles of the protein or peptide under
assessment with regard to its potential to cause coeliac disease. This assessment includes available
information on the source of the transgene, on the protein itself, and in silico and in vitro data, when
appropriate (EFSA GMO Panel, 2017).

An additional aspect considered in the allergenicity assessment is the evaluation of the whole food and
feed to ensure that the genetic modification does not affect the levels or characteristics of endogenous
compounds that would adversely impact human and animal health (K€onig et al., 2004; EFSA GMO Panel,
2011; Fernandez et al., 2013). The latest EFSA GMO Panel guidance on allergenicity provides detailed
information on the current stage and improvement needs for this topic (EFSA GMO Panel, 2017).

The following sections below will address the current allergenicity risk assessment tools in place for
the safety assessment of newly expressed proteins, providing insights on their usefulness and
relevance within the current weight-of-evidence approach, as well as the identification of potential
improvement needs in terms of alternative and/or complementary tools.

3.2.1. In silico tools

The current practice for the in silico assessment of a protein consists of an amino acid sequence
similarity search against an allergen database and a sliding window analysis designed to evaluate the
extent to which the protein under assessment is similar in structure to a known allergen. The amino
acid sequence homology comparison is performed using publicly available search engines such as the
FASTA local alignment algorithm (Pearson and Lipman, 1988) or the Basic Local Alignment Search
Algorithm (BLAST) (Altschul et al., 1990) and a default threshold value of 35% identity over at least 80
amino acids established by an FAO/WHO scientific advisory panel in 2001. Such an approach was
adopted by Codex Alimentarius (2003–2009) and, subsequently, by EFSA (EFSA GMO Panel, 2010,
2011). This strategy is highly conservative and untargeted for current assessment purposes, also
considering the follow-up actions required in case of relevant hits with known allergens are identified.
This is because the original in silico approach was defined for the assessment of few individual
proteins, and it was mainly based on knowledge about birch pollen homologues belonging to the same
protein family, i.e. the pathogenesis-related proteins 10 family (PR-10). Furthermore, this approach has
been considered inadequate when broadly applied to a large number of protein sequences, such as for
the assessment of putative open reading frames (Harper et al., 2012).

The highly conservative current approach appears to lead to a high number of false positives
(Ladics et al., 2007; Abdelmoteleb et al., 2021; Herman et al., 2021). A full FASTA approach with
appropriate match criteria has claimed to be as sensitive as the 35% identity over an 80-aa sliding
window approach, while the specificity is significantly higher (Ladics et al., 2007; Silvanovich et al.,
2009; Abdelmoteleb et al., 2021). Conversely, there are studies reporting experimental IgE cross-
reactivity between proteins despite a low sequence identity (i.e. below 35% sequence identity)
(D’Avino et al., 2011; Guhsl et al., 2014; Dubiela et al., 2018).

Two important additional considerations for homology comparisons are as follows:

i) The in silico approaches are used as a first step in identifying relevant identity between a
newly expressed protein and a known allergen before other confirmatory but more laborious
testing are required, such as in vitro and/or in vivo studies. However, the in silico tool only
informs about the capacity of a protein to cross-react with IgE directed towards a known
allergen. Briefly, if relevant shared sequence identity is observed with a known allergen
(currently a sequence identity higher than 35% over at least 80 amino acids as defined by
FAO/WHO in 2001), subsequent serum IgE binding studies using sera from individuals with a
specific, relevant type of allergy would likely follow, as established by Codex Alimentarius
(2003–2009). The absence of sequence homology indicates that a newly expressed protein is
unlikely to be cross-reactive with IgE directed towards known allergens. However, current in
silico tools used in the allergenicity assessment does not provide information on the capacity
of proteins for de novo sensitisation. By considering the current framework, the amino acid
sequence homology comparison does not possess the capacity to predict on its own for the
allergenicity risk assessment of newly expressed proteins, and additional pieces of information
are needed to conclude the allergenicity assessment.

Development needs for the allergenicity and protein safety assessment
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ii) The allergen sequence databases3 used for sequence comparison have a strong influence on
the outcome of the in silico analysis. The allergen sequence databases currently in use for
the allergenicity risk assessment do not all provide systematic information on the allergenic
potential of entries, and the inclusion criteria used are often different between databases
(Mazzucchelli et al., 2018; Radauer and Breiteneder, 2019). Discrepancies in the quantity and
quality of entries between existing databases are documented evidence of the lack of
consensus on the inclusion criteria for building a reliable database. This aspect might be a
source of inconsistent opinions depending on the database used for the sequence identity
search or resources available for data curation and maintenance. Following current
approaches, whenever a relevant hit with a known allergen is identified, the follow-up risk
assessment strategy analyses the quality of the pairwise sequence alignment, and testing
using human sera is also required. The clinical relevance of the known allergen is usually
considered only as an additional element in the overall evaluation. The current approach
relies heavily on expert judgement to interpret a posteriori the outcome of the bioinformatic
analysis, which can lead to a lack of harmonisation, reproducibility, and transparency of the
risk assessment.

Other bioinformatic approaches for predicting the allergenic potential of proteins have been
developed that differ from those defined by Codex and which might provide higher sensitivity,
specificity, and accuracy than the classical FASTA algorithm. These also include alternative or
complementary approaches beyond sequence alignment principles as defined by Codex. Some selected
examples of alternative in silico approaches are (i) increasing the match criteria above 35% identity
and decreasing the E-score below 1e-7 or smaller (Abdelmoteleb et al., 2021); (ii) numerical descriptors
representing the physicochemical properties of the amino acid in protein sequence and machine
learning approach for classification of allergens (Dimitrov et al., 2013, 2014a); (iii) similarity of their 3D
protein structure as well as their amino acid sequence (Maurer-Stroh et al., 2019); (iv) similarity search
to a data set of allergenic and non-allergenic proteins represented as binary fingerprints (Dimitrov et
al., 2014b); (v) machine learning approaches based on mapping of IgE epitope, motif search and/or
other selected variables (Westerhout et al., 2019; Sharma et al., 2021); (vi) as well as novel
approaches considering human leucocyte antigens (HLA) binders from known allergens for the in silico
assessment of the sensitisation potential of innovative/novel proteins (Dimitrov & Atanasova, 2020).

These advanced bioinformatic tools provide new opportunities to develop novel approaches that
reduce uncertainties and improve allergenicity prediction. However, further work is needed to validate
these new approaches by using an appropriate set of positive and negative control allergens.
Therefore, the definition of control proteins that can be used to test specific hypotheses relevant for
allergenicity assessment is of paramount importance (Table 1). In July 2021, EFSA launched a
procurement4 focusing the attention in this direction.

The in silico criteria for the risk assessment of new proteins and their potential to cause coeliac
disease were delineated in the most recent guidance on the allergenicity of the EFSA GMO Panel
(2017). These were based on searches for sequence identity (e.g. searches with known coeliac disease
peptide sequences and motif searches) and, if concerns from the sequence identity search were
raised, in a second step, in silico peptide modelling can be applied. New recent approaches have been
developed based on: (i) the definition of clear inclusion criteria for database formation (Sollid et al.,
2020; Fernandez et al., 2021)5; (ii) the ranking of T-cell epitopes according to their clinical relevance
and related features (Vriz et al., 2021); and (iii) the development of a software tool for peptide binding
prediction to HLA-DQ2 and/or HLA-DQ8 proteins and to predict their binding affinities, specially
designed and developed for EFSA.6 These elements could be useful in the future, when proven
predictive, for reshaping the risk assessment strategy of innovative proteins and their potential to
trigger coeliac disease.

3 For example: http://www.allergenonline.org/; https://www.allergome.org/; http://www.allermatch.org/; https://comparedatabase.
org/; http://allergen.org/

4 https://etendering.ted.europa.eu/cft/cft-display.html?cftId=8829
5 https://croplife.org/plant-biotechnology/celiac-peptide-database
6 https://ted.europa.eu/udl?uri=TED:NOTICE:129869-2020:TEXT:EN:HTML
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3.2.2. In vitro tools

The in vitro tools currently in place in the weight-of-evidence approach for allergenicity assessment
include the classical pepsin resistance test and immunological assays (e.g. immunoblots) if sera are
available (Codex Alimentarius 2003–2009; EFSA GMO Panel, 2010, 2011).

The pepsin resistance test is performed regularly, although several studies have demonstrated that
there is a poor correlation between resistance to pepsin digestion and allergenicity (Kenna and Evans,
2000; Fu et al., 2002; Takagi et al., 2003; Thomas et al., 2004; Herman et al., 2007; Ofori-Anti et al.,
2008; Costa et al., 2020). In contrast, other studies show that the classical pepsin resistance assay
and simple SDS–PAGE analysis, as developed by Astwood et al. (1996), can distinguish between pepsin
susceptible and resistant proteins and remains as the most useful assessment of the potential
exposure of an intact newly expressed protein as part of product safety assessment within a weight-of-
evidence approach (Wang et al., 2017, 2020). However, these studies only used small sets of proteins
and a larger reference set is needed to make definite conclusions on the predictability of digestion
tests. Furthermore, Foster et al. (2013) reported that analysis of pepsin-resistant fragments could
improve the power of the pepsin test to discriminate between allergens and non-allergens when
studied in their native form. This controversy was previously pointed out in the statement on in vitro
protein digestibility tests published by the EFSA GMO Panel (2021).

More recently, a series of in vitro models to assess antigen uptake via the intestinal mucosal barrier,
epithelium and dendritic cell activation and migration, and T- and B-cell differentiation, have been
identified to evaluate the potential sensitising capacity of food proteins (Lozano-Ojalvo et al., 2019).

Finally, the types of test items used in in vitro studies performed for regulatory purposes are
important. For example, in the GMO area, in vitro studies are mostly carried out on purified newly
expressed proteins because their expression levels in planta are usually very low. In addition, the
safety assessment of these products should cover any use of GM plants for food/feed purposes, which
makes the overall assessment a challenge (EFSA GMO Panel, 2021).

3.2.2.1. Use of protein digestibility data in allergenicity risk assessment

In January 2021, the GMO Panel delivered a statement addressing the usefulness of in vitro protein
digestion in allergenicity and protein safety assessment (EFSA GMO Panel, 2021). The highlights were:

– the classical pepsin resistance test, as currently used, is not an in vitro digestibility test
designed to mimic the physiologic conditions of gastric digestion.

– the evidence supporting the resistance to degradation by pepsin as a direct predictor of
allergy is weak.

– the information that the classical pepsin resistance test can provide is on the stability of the
proteins under acidic conditions. However, there are other methods that can be used to obtain
data on a protein’s structural and/or functional integrity.

Table 1: Challenges and research needs identified by the EFSA GMO Panel for in silico tools used in
the allergenicity risk assessment of foods derived from biotechnology

Challenges necessary to improve the
reliability and predictability of the
allergenicity risk assessment

Research needs

To identify the relevant in silico approaches to
improve sensitivity, specificity and accuracy
compared with the classical sequence alignment
algorithms for assessing the allergenic potential of
food proteins (using IgE cross-reactivity).

To develop in silico methods with the capacity to
assess the hazard and potential risks of new
proteins resulting from de novo sensitisation.

To validate alternative bioinformatics approaches using a
series of well-defined positive and negative control
allergens.

To determine if cut-off values or ranges can be set for risk
assessment purposes and fit into the sensitisation and
elicitation scenarios.

To refine and harmonise the existing allergen
databases to create more targeted/fit-for-purpose
databases for the allergenicity risk assessment. To
ensure data curation and maintenance.

To only include well-defined and characterised allergens in
the allergen databases following reliable and consensual
inclusion criteria. To introduce follow up actions when
specific hits upon identification of known allergens. To
identify resources for data curation and maintenance.
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– for future development, there is a need for more reliable systems to predict digestion, to
better understand the fate of the protein/fragments in the GIT and how they interact with the
relevant cells in the human body.

A series of general and specific research questions were formulated in the statement on in vitro
protein digestion in allergenicity and protein safety assessment of the EFSA GMO Panel (2021). This
Scientific Opinion provides additional suggestions to the general questions whereas the specific
questions would require dedicated research programs/procurements to be fully addressed.

General questions

– What is the usefulness of in vitro digestion in the overall protein safety assessment?

Digestibility studies may provide useful data regarding the properties and characteristics of proteins.
This is important for understanding their presentation to the gastrointestinal mucosal immune system
(gastrointestinal luminal processing) and uptake into the body (Akkerdaas et al., 2018; EFSA GMO Panel,
2021). Both processes can affect the generation of specific IgE-sensitisation and elicitation of reactions
in allergic individuals. In addition to resistance to extracellular digestion by gastrointestinal proteases,
the resistance to endosomal degradation (i.e. digestion within the antigen-processing and presenting
cells (APC) of the immune system, such as dendritic cells) and its relationship with a protein’s capability
to act as an allergen has been less studied (Foster et al., 2013; Machado et al., 2016; Soh et al., 2019;
Kamath et al., 2020). To be recognised as an allergen, exogenous antigens must first be internalised into
the endosome of APC and then are subjected to endosomal degradation, where they are exposed to
cathepsin proteases under increasingly acidic and reducing conditions. The resulting peptide fragments
are loaded onto the class two major histocompatibility complex (MHCII) and presented on the cell
surface for recognition by T-cell receptors (Foo and Mueller, 2021). Moreover, the intestinal barrier has a
crucial role in protecting the organism against pathogens and possibly harmful substances derived from
the external environment (Cardoso-Silva et al., 2019). A dysfunctional GIT barrier makes a key
contribution to food allergic reactions, and, more concretely, the physiological gastrointestinal barrier
seems to play an essential role in food allergy (Samadi et al., 2018). Thus, factors such as food
processing, digestion, and transport (including internal processing and presentation to the immune cells)
should be ideally included in an allergenicity assessment assay; however, it is crucial to consider the
feasibility and practicality of including these factors (EFSA GMO Panel, 2017, 2021; Smits et al., 2021).
Likewise, new data have indicated that the GIT is a reservoir of IgE+ B lineage cells in food allergy in
peanut-allergic patients, whereas mice cannot switch from IgA to IgE due to the ordering of isotypes in
their IgH locus (Hoh et al., 2020). These data suggest that B cell differentiation pathways in patients
who develop food allergy differ from those in patients with aeroallergies, and potentially that food
allergy sensitisation or allergen-specific B cell clonal expansion may occur in oral or gastrointestinal
mucosa (Hoh et al., 2020), supporting the relevance of the gastrointestinal environment in food allergy.

Protein digestibility plays a central role for the risk assessment of coeliac disease, where
gastrointestinal digestion is important in the delivery of immunologically active fragments to
gastrointestinal mucosal segments (Shan et al., 2002; Pilolli et al., 2019; Vriz et al., 2021). The proline-
rich nature of gluten renders these proteins resistant to degradation by enzymes in the GIT resulting in
the generation of relatively long, persistent gluten peptide fragments in the small intestine. Thus, the
resistance to proteolytic degradation contributes to the allergenic nature of gluten peptides (Shan
et al., 2002) together with specific recognition by the transglutaminase 2 present in the GIT and
peptide-binding properties of HLA-DQ2.5 and HLA-DQ8 (EFSA GMO Panel, 2017).

– What are the most suitable in vitro digestion models?

Gastrointestinal digestion is a dynamic, complex, highly integrated and regulated process, which
makes it challenging to replicate in vitro. The pepsin resistance test is a biochemical surrogate of
‘protein stability’ under acidic conditions and does not provide sufficient information on gastric
digestion. It is well known that variations in assay conditions (pH and pepsin:protein ratio values) have
a large impact on the digestibility of proteins in vitro, and a ring-trial validated protocol for pepsin
resistance assays has subsequently become a de facto standard method (Thomas et al., 2004). This
method does not (and does not seek to) replicate human in vivo digestion but serves as a
standardised method for comparing the pepsin resistance of proteins in a well-understood context
(Pickles et al., 2014). Interestingly, data from the pepsin resistance test measuring resistance to
degradation by pepsin is currently used in a weight-of-evidence approach to assessing not only the
potential allergenicity but also the potential toxicity of newly expressed proteins in GM plants (EFSA
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GMO Panel, 2021). However, according to the Codex Alimentarius (2003–2009), the assessment of
potential toxicity should consider, among other aspects, the stability of the protein to degradation in
suitable representative gastric and intestinal model systems.

In vitro gastroduodenal digestion methods that use physiological conditions may reveal more
information about protein presentation to the gastrointestinal epithelium in a physiologically relevant
context (EFSA GMO Panel, 2021). However, there are gaps in gastroduodenal in vitro digestibility
protocols that prevent their potential application at short-term in a risk assessment context:

– There has been little work on the applicability of these assays to new proteins, and the
number of control proteins included in these studies is low.

– Validation required to suit the needs of foods derived from modern biotechnology risk
assessment regarding (i) levels and type of enzymes and biosurfactants (these change with
age, health status, food composition) (EFSA GMO Panel, 2017); (ii) type of material to be
tested; and (iii) read-out to be used (SDS-PAGE, chromatographic and spectrometric
techniques to monitor peptide profile, bioactivity measurements).

– Their reliability of predictions in the allergenicity assessment remains to be determined.

– What are the optimal items to test in such models?

The in vitro pepsin resistance test was initially developed to assess individual and abundant
proteins (Astwood et al., 1996; Metcalfe et al., 1996). The use of test materials of higher complexity
than that of purified single proteins could require the fine-tuning of the read-outs because more
sensitive and higher resolution detection analytical methods could be needed to monitor the in vitro
digestion tests. Ideally, the more representative test material, the better the results of the test.
However, the test material could vary depending on the nature of the product to be assessed. For
instance, in the case of intractable proteins or transcription factors expressed at a very low level, an
extract from edible plant tissues could be a more appropriate material to have functional and active
proteins than the use of heterologous expression systems.

Food matrix and processing may play an important role in modulating the digestibility rate of
proteins. For example, in vitro digestion studies of purified Ara h 3 allergen revealed that this allergen
is labile to pepsin-digestion and, therefore, it is unlikely to sensitise via the GIT and cause systemic
food allergy symptoms (van Boxtel et al., 2008). However, the harmonised in vitro INFOGEST oral-
gastro-duodenal digestion sequential model found contradictory results. This model was complemented
with a brush border membrane step proteomics and immunochemical assays to track the metabolic
fate of allergens in a food matrix. It showed that the food matrix impacts enzymatic degradation of
peanuts with digestion leading to previously undetected large fragments of Ara h 3 (ranging from 7 to
21 kDa by western blotting and from 0.8 to 5 kDa by mass spectrometry) that survived in vitro human
digestion and still harboured IgE- binding sequences (Di Stasio et al., 2017). A possible explanation of
this finding is a ‘masking effect’ of the peanut matrix that delays or impairs protein degradation and
alters the pattern of the peptide fragments released by proteolysis. However, Ara h 3 is one of the
most abundant proteins in peanuts, while the interpretation of data derived from in vitro digestion
studies of proteins expressed at low levels within a complex food matrix is technically difficult, as
explained above (Section 3.1.2.4). A similar effect is observed with peanuts baked in a muffin matrix,
although when presented in a cookie or chocolate dessert matrix used in the iFAAM project for food
challenges, the peanut allergens are highly digestible (Rao et al., 2020; Mattar et al., 2021). Similar
results are seen with gluten proteins which, when presented in a purified solubilised gliadin fraction,
provide highly digestible, but when baked their digestibility was radically reduced (Smith et al., 2015).
How food is processed and prepared for consumption is important when preparing material for testing
in experimental studies when investigating hazard identification, characterising new or modified
proteins and determining the extent of exposure. Ideally, all possible processing methods should be
considered in the assessment (Remington et al., 2018); this approach could be feasible in a product-
based risk safety assessment or in more targeted applications but not in full scope applications
covering any potential use of for food/feed purposes (Section 3.1.2.4).

– What would follow-up actions be required to assess the relevant proteins/fragments identified
in previous steps?

There is no consensus about how to interpret specific characteristics of digestion products (e.g.
molecular size, persistence and abundance) within the context of the safety assessment of newly
expressed proteins. Moreover, the criteria for classifying a protein as resistant or labile to digestion as
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well as the risk implications (which may be different when considering sensitisation or elicitation) of
such data are not defined, which impairs the setting of appropriate limits for digestibility in assessing
the safety of a protein (EFSA GMO Panel, 2021). It is evident that more targeted research is needed to
link in vitro data analysis of digesta to the probability of allergenicity. For instance, the use of
multivariate analytic and machine learning approaches to provide statistical analysis of all persistent
peptides and using a broad range of known allergens and their epitopes as training sets has been
proposed (Mackie et al., 2019). Therefore, European Commission mandates and research projects may
be needed for establishing: (i) the most appropriate standardised and harmonised test conditions and
items to test which could better elucidate the interaction between proteins/fragments and the GIT/
immune system in a risk assessment context; (ii) the most suitable methodology for fragment profiling;
(iii) the criteria to identify digestion fragments as relevant for risk assessment of sensitisation and/or
elicitation (i.e. abundance, persistence size, and/or others); and (iv) an appropriate set of reference
control proteins (‘allergenic’ and ‘nonallergenic’) (Table 2). All this gathered information will likely be
needed before a consensus can be agreed upon as to what is meant by ‘resistance’ to digestion (Mills
et al., 2013b).

– How can this information be integrated into a weight-of-evidence approach?

Measurement of protein digestibility should not be regarded as a stand-alone endpoint for the
safety assessment of novel proteins (Ladics, 2019). Therefore, the weight-of-evidence approach for
allergenicity assessment remains valid. What is needed is to develop specifically how much weight
each method provides, including in vitro digestion.

3.2.2.2. Use of human data in allergenicity risk assessment

The human-specific immunoglobulins E (sIgE) present in the sera of allergic patients can be used
as molecular probes to detect allergenic proteins intended for human consumption (e.g. newly
expressed proteins in GMOs or in new foods). However, this is not a first-line screening tool. In GMOs,
specific serum tests should be performed whenever sera are available, (i) if the source of the
introduced gene is considered allergenic or (ii) if the source is not known to be allergenic, but there is
an indication that the newly expressed protein presents a sequence homology (> 35%)/structure
similarity with a known allergen (EFSA GMO Panel, 2011). This strategy is much more difficult to apply
to a whole food, because they may contain many proteins and some without known gene sequences.
Generally, experience has revealed some practical and technical problems with this procedure, also
because Codex Alimentarius and other guidance documents do not provide information on:

i) why human sera testing is always required independently of the clinical relevance of the
known allergen to which the hit was identified;

ii) how the testing is performed – is not clearly outlined; and
iii) what other testing might be required to conclude the allergic potential of the protein in

question.

IgE binding to allergens

To fulfil regulatory requirements, sera should be collected from very well-characterised allergic
individuals. These individuals should present a convincing clinical history of allergy against a specific
food and a cause-and-effect relationship between the consumption of the food, and the elicitation of
allergic symptoms should be established by a DBPCFC.

Individual sera, rather than pooled sera, should be used (EFSA GMO Panel, 2010, 2011). According
to an FAO/WHO expert consultation (FAO/WHO, 2001), a minimum of eight relevant sera is required to
achieve a 99% certainty that a new protein is not an allergen in the case of a major allergen. Similarly,
a minimum of 24 relevant sera is required to achieve the same level of certainty in the case of minor
allergens. These numbers of sera requested when performing such studies might not always be
available. Furthermore, an important additional consideration is that food allergies may vary depending
on the population studied and, that should be considered when performing such tests.

IgE binding assays, such as radio or enzyme allergosorbent assays (RAST or EAST), enzyme-linked
immunosorbent assay (ELISA) or electrophoresis combined to immunoblotting with sIgE sera, are
considered adequate (EFSA GMO Panel, 2011). Immunoblots have the advantage to test more than
one protein. So, the simultaneous use of other IgE binding tests (RAST or ELISA) or a better test for
functional IgE binding (Basophil activation) is advisable (Verhoeckx et al., 2016). Also, sera from
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individuals with allergies to non-phylogenetically related organisms (negative controls) should be used
to exclude non-specific IgE binding (Verhoeckx et al., 2016; Remington et al., 2018).

However, a single serum represents a heterogeneous repertoire, even when considering only the
IgE isotype. Mutagenesis studies showed that multiple amino acids could be critical for IgE binding to
a single epitope (Coco et al., 2003). Furthermore, a single serum may contain a mixture of antibodies
with different isotypes recognising clinically irrelevant epitopes. Thus, serum-based assessment could
be significantly improved by defining epitope specificities and affinities of the selected sera (Ehlers
et al., 2019). However, the collection of significant volumes of serum in allergic patients,
notwithstanding ethical considerations, constitutes a major bottleneck, particularly for rare allergens.

From a future perspective, these practical and methodological obstacles could be overcome by
using human-derived monoclonal IgE antibodies. A first step could be the isolation of patients’
allergen-specific B cells through antigen-specific flow-cytometry. This technique allows the study of the
B-cell repertoire against specific allergens, confirming that, within a single patient, numerous B-cell
clones may recognise a narrowly defined epitope (Hoh et al., 2016). Once these B cells are isolated, it
is possible to generate monoclonal antibodies from a single B-cell RT-PCR to clone into a eukaryotic
expression vector (Tiller et al., 2008). Another possibility is to select allergen-specific IgE B cells in
allergic patients and to fuse them with myeloma cells to create hybridomas, which will produce human
monoclonal IgE antibodies (Wurth et al., 2018).

Allergen-specific monoclonal IgE antibodies allow to map epitopes, assess cellular activation in
response to allergen exposure (Madritsch et al., 2011; Hecker et al., 2011; Ehlers et al., 2019) and
even study key structural aspects of allergen-sIgE interaction (Pom�es et al., 2020).

As for IgG, IgE can be produced using a range of expression systems and with sufficient yields to
allow translation into clinical applications (Sutton et al., 2019). Thus, ideally, the building up of a bank
of monoclonal sIgE, which could be used to detect allergenic proteins, is possible. This could be
achieved through international cooperation like the human genome project, with more clinically
relevant results. These methods should be validated before any application in risk assessment.

Similar reasoning may be applied to other immunoglobulin isotypes, which could also be considered
valuable probes for the detection of allergenic epitopes. Indeed, some isotypes (e.g. IgG4) recognise
the same epitope patterns, as do IgE, in allergenic patients, probably due to developmental IgG4-IgE
filiation (isotype switching) (Gould and Wu, 2018; Saunders et al., 2019).

Functional assessment of IgE binding

As stated in Section 3.1.1, IgE binding as such does not indicate that a clinically relevant reaction
will take place. The presence of specific IgE in plasma reflects sensitisation to a given allergen but
does not predict that an allergic reaction will occur if the subject is exposed again to this allergen.
Therefore, a subsequent step might be needed to evaluate the clinical relevance of the in vitro IgE
binding with ex vivo/in vitro functional testing strategies (Codex Alimentarius, 2003–2009; EFSA GMO
Panel, 2010,2011; Verhoeckx et al., 2016).

IgE binds to two principal receptors FceRI and FceRII/CD23. FceRI is expressed on tissue mast
cells, blood basophils, intestinal epithelial cells and various antigen-presenting cells. IgE has a very
high affinity for FceRI (Ka1010 M-1), at least two orders of magnitude higher than that of IgG for any of
its receptors. Thus, most IgE is cell bound (Sutton et al., 2019). The allergic reaction is triggered by
the binding of a multivalent allergen to its specific, cell-bound IgE, thereby cross-linking the FceRI
receptors, initiating signal transduction leading to basophil/mast cell activation, which results in the
explosive release of preformed mediators and concurrent synthesis of inflammatory lipid mediators
with pleiotropic effects (Gould and Wu, 2018). Reproducing this chain of events would demonstrate
that the specific IgE/serum tested do recognise clinically relevant allergens.

Basophil activation test

Activation of basophils can be detected through upregulation of selected surface proteins measured
by flow cytometry. CD63 is the most used activation marker. Its expression on the surface of the
basophils is tightly correlated with histamine release in the medium (Knol et al., 1991). The response
to more than four sequential dilutions of allergen should be determined. In allergic patients, the
percentage of CD63 basophils (%CD63+) follows a sigmoidal dose–response curve, with a plateau at
high allergen concentrations. BAT was consistently proven to be highly specific and highly sensitive,
particularly in food allergies (Santos et al., 2021). Thus, its use can dispense patients from a risky and
stressful exposure to allergens during oral food challenges (Santos and Lack, 2016). Indeed, BAT can
correctly predict the clinical outcome following exposure of allergic patients to specific allergens
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(elicitation) (Santos et al., 2021). This technique could be further refined and standardised by using
the microfluidic immunoaffinity basophil activation test (miBAT) (Aljadi et al., 2019). However, BAT also
presents limitations. For instance, analyses should preferably be performed within 4 h after sampling.
Despite many efforts, BAT remains difficult to standardise. Furthermore, it does not allow large scale
analyses, and its results may be biased by the presence of non-responding basophils.

Mast cell activation test

It is important to consider the use of tissue-resident mast cells (MC), long considered as the
primary effector cells in IgE-dependent allergies. However, it is very difficult to isolate viable and
functional MC in sufficient numbers. To circumvent this difficulty, it is possible to generate human-
derived MC (hMC) from peripheral blood precursors (CD117+CD34+ cells) from healthy donors. hMC
can be passively sensitised by incubation with patients’ sera (or monoclonal IgE), then challenged with
various purified or recombinant allergens and their activation monitored by the upregulation of
membrane activation markers (CD63 or CD107a). This human-derived mast cell activation test (hMAT)
presented the best discriminating power compared with all other tests, including BAT. hMAT also
displayed a very high sensitivity which would be very useful in assessing the unintended presence of
allergen during food production (Bahri et al., 2018). This technique may be superior to other MAT
using other sources of MC or LAD-2 cell lines (Elst et al., 2021), and its development will require
collaboration and funding support.

Thus, it is possible to conceive an in vitro platform to screen the presence of an allergen in foods by
using a bank of human-derived monoclonal sIgE (and IgG4) specific for a vast array of allergens, then to
evaluate the clinical relevance of its sIgE detection through the activation of human-derived MC (Table 2).

3.2.2.3. In vitro tools to understand cellular and molecular mechanisms of sensitisation

Molecular and cellular events potentially involved in food sensitisation are studied using in vitro and
in vivo data. This information has been collected, organised and evaluated applying the concept of
adverse outcome pathway (AOP) (van Bilsen et al., 2017; Lozano-Ojalvo et al., 2019). The proposed
AOP framework describes the events of an adverse outcome at a biological level of organisation with
relevance for risk assessment.

Briefly, the AOP for food sensitisation starts with a molecular initiating event involving the allergen
uptake over the mucosal barrier of the digestive tract. The food protein passage may induce the
activation of intestinal epithelial cells, followed by the local activation of dendritic cells and their
migration to the mesenteric lymph nodes. Subsequently, dendritic cells present processed allergen to
naive T cells, priming them towards a Th2 response.

Thus, these events may cause the activation of B cells and also the production of specific IgE by
plasma cells, being the adverse outcome clinical symptoms upon repeated exposure to the offending
food (Lozano-Ojalvo et al., 2019). The data gaps identified by these authors could drive future
research needs that might be directed into developing in vitro microfluids systems, human gut-on-a-
chip devices (Kim et al., 2012), intestinal organoids (Leushacke and Baker, 2014), ex vivo models
(Westerhout et al., 2014), among others (Table 2). Notably, this AOP mainly focuses on the oral route
of exposure and other routes of exposure such as the skin should be further investigated.

Integration and comparability between experiments and the need of setting the panel of tested
food proteins by including also low/non-allergenic proteins was considered an important breakthrough
within the weight-of-evidence approach to determine the sensitising potential of food proteins. It was
postulated that when applied in the context of an integrated testing strategy, such an AOP approach
could reduce and ideally replace current animal testing (Lozano-Ojalvo et al., 2019).

Table 2: Challenges and research needs identified by the EFSA GMO Panel for in vitro tools used in
the allergenicity risk assessment of foods derived from biotechnology

Challenges necessary to improve the reliability
and predictability of the allergenicity
risk assessment

Research needs

To determine optimal protocols for digestibility
assays.

To standardise and harmonise test conditions and items
to investigate the interaction between proteins/fragments
and the gastrointestinal tract/immune system for a risk
assessment.

Development needs for the allergenicity and protein safety assessment

www.efsa.europa.eu/efsajournal 19 EFSA Journal 2022;20(1):7044

 18314732, 2022, 1, D
ow

nloaded from
 https://efsa.onlinelibrary.w

iley.com
/doi/10.2903/j.efsa.2022.7044 by Inrae - D

ipso, W
iley O

nline L
ibrary on [14/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.2.3. In vivo tools

In vivo animal models of food allergy typically focus on mechanistic insights and are not used in
risk assessment because they are not yet predictive. The main reasons for using in vivo models are
for: elucidating disease pathogenesis of IgE-mediated food allergy, mechanisms governing allergic
sensitisation to food proteins, and testing prophylactic and therapeutic strategies. Ideally, if in vivo
models are ever used for risk assessment, they would need to induce disease that (1) mimics clinical
symptoms with measurable allergic responses, (2) uses inbred animals, (3) distinguishes low from high
allergenic proteins, (4) are translational, (5) can test individual proteins and/or whole foods for
allergenicity and adjuvanticity, (6) have varying disease susceptibility, and (7) are robust, sensitive,
fast, cost-effective, easy and reliable. However, several limitations have hindered developing a
standardised and validated animal model used to predict proteins allergenicity and adjuvanticity,
including a lack of predictive biomarkers for disease development and because they do not wholly
reproduce clinical disease.

Provided that food allergy models are developed in the future that is predictive and translatable to
humans, and allergenicity risk assessment would benefit. The models must be validated and predictive
for individual proteins and/or whole foods and could be potentially considered for the following, (1) for
proteins or foods without a history of safe human dietary consumption; (2) for testing proteins with a
high risk for sensitising and causing allergic reactions; or (3) a food matrix that can potentially alter
tolerance, cause sensitisation, elicitation or has adjuvant properties. Novel in vivo models would also
be potentially useful for determining threshold doses for sensitisation or elicitation using different
exposure routes and determining whether proteolysis and heat processing modifies allergy sensitisation
or elicitation (e.g. more severe symptoms). Any model should predict the clinical outcomes of
sensitisation to individual proteins and/or whole foods, predict sensitisation, IgE reactivity, clinically
relevant sensitising proteins and adjuvants.

The most frequently used models are with mice and rats. However, to date, the immune responses
in rodents are not predictive for allergenicity, adjuvanticity or for the ranking of the strength of
allergenic responses against proteins (Ladics et al., 2010). Though food allergy models are not
predictive, rodent models have elucidated many underlying pathophysiological processes in the allergic
response to food, including immune responses, roles of IgE and IgA, multiple mediators, e.g.
cytokines, thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, IL-25 and
IL-33 and cells, e.g. T-helper Th2 cells, ILC2s, regulatory T (Treg) cells, natural killer T cells, basophils,
mast cells and dendritic cells. Furthermore, in vivo models shed light on the tolerance of cross-reactive
allergens and the role of bystander effects from other proteins and contaminants. Integrating basic
immunological data from in vivo models to fully understand the sensitisation potential of new food

Challenges necessary to improve the reliability
and predictability of the allergenicity
risk assessment

Research needs

To determine which endpoints, fragments versus
intact protein, should be used to assess in vitro
digestibility.

To determine the criteria to identify digestion
fragments as relevant for risk assessment of
sensitisation and/or elicitation (i.e. abundance,
persistence size, and/or others).

To determine which follow-up actions are required to
assess the relevant proteins/fragments identified in
in vitro digestibility test.

To correlate in vitro analysis of digesta with the
probability of allergenicity using multivariate data
analysis, statistical analysis and machine learning.

To investigate the optimal methodology for fragment
profiling.

To determine the feasibility of setting acceptable/
unacceptable limits for digestibility for assessing the
safety of a protein.

To set up a bank of well-characterised sIgE and to
design ex vivo/in vitro functional test strategies to
evaluate the clinical relevance of sIgE binding to a
given protein.

To further investigate the use of sera of allergic patients
as molecular probes.

To unravel mechanisms of pathogenesis leading to
food allergy.

To build upon existing AOPs for food sensitisation and to
develop an integrated strategy of tests for allergenicity
prediction.

Development needs for the allergenicity and protein safety assessment

www.efsa.europa.eu/efsajournal 20 EFSA Journal 2022;20(1):7044

 18314732, 2022, 1, D
ow

nloaded from
 https://efsa.onlinelibrary.w

iley.com
/doi/10.2903/j.efsa.2022.7044 by Inrae - D

ipso, W
iley O

nline L
ibrary on [14/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



proteins is essential. Moreover, sensitisation mechanisms go beyond the immune system with crucial
knowledge from in vivo models on the GIT pathophysiology such as digestion, pH, motility, barriers,
mucin, tight junctions and GIT permeability.

Despite many available in vivo models, the basic model to mimic IgE-mediated allergic disease to
food proteins requires two steps. Step 1: Sensitisation – administer the allergen by ingestion,
inhalation, dermal application or systemically with intraperitoneal (i.p.) injection; Step 2: Elicitation –
administer the same allergen after the immune response develops via the GIT by feeding or
intragastric administration. However, protocols may differ for both steps as follows: Exposure time,
dose and frequency of the food or protein, the allergen (e.g. milk, egg, peanut), the nature of the
allergen tested (e.g. purified proteins, processed or non-processed whole food matrix with possible
contaminants, cooked or heated), allergen administration route (e.g. oral, dermal, i.p., inhalation), use
and type of adjuvant (e.g. cholera toxin, lipids, alum, lectins), and use of negative and positive
controls. The models may also utilise different animals and genetic backgrounds (e.g. mice (BALB/c,
C3H), rats (Brown Norway), genetically modified mouse strains or humanised mice (human immune
cells seeded into immunodeficient mice) and animals with differing microbiomes and environmental
conditions (e.g. diet, housing).

Once sensitised and challenged, there are several measured endpoints for disease (Castan et al.,
2020), such as the quantification of serum immunoglobulins (e.g. allergen-specific IgE), inflammation –
circulating and local tissue (e.g. location, cellular homing, cell numbers, phenotypes), cytokine
production (e.g. Th2 cytokines, mast cell, basophil and eosinophil mediators), response to allergen
rechallenge, basophil and mast cell degranulation (e.g. basophil activation test), and clinical
parameters (e.g. body temperature/hypothermia, active or passive-cutaneous anaphylaxis, ear
swelling, diarrhoea).

For non-IgE-mediated diseases, e.g. coeliac disease, an in vivo model is unnecessary because of
the extensive knowledge on the underlying mechanisms (Koning et al., 2015) and an array of non in
vivo methods to predict disease development.

Although the different IgE-mediated in vivo models are beneficial for generalising results about
underlying disease mechanisms, it makes using them challenging for the allergenicity risk assessment.
It will only be possible to use an in vivo model when it is well defined, validated and subsequently
standardised, as with other in vivo toxicity studies used for risk assessment (EFSA GMO Panel, 2011).

Several studies have tested GMOs in various animals, including pigs, salmon, sheep, cattle,
zebrafish, rats or mice (El Sanhoty et al., 2004; Prescott et al., 2005; Custodio et al., 2006; Finamore
et al., 2008; Paul et al., 2008; Trabalza-Marinucci et al., 2008; Adel-Patient, et al., 2011; Walsh et al.,
2012; Gu et al., 2013; Sanden et al., 2013; Zeljenkova et al., 2014; Andreassen et al., 2015). Some
experimental models have addressed potential immunogenicity, allergenicity, or adjuvanticity of GMOs,
including Bacillus thuringiensis (Bt) Cry1 proteins, alpha-amylase inhibitor (aAI) peas, PHA-E lectin in
rice, sunflower seed albumin in narrow leaf lupin and lactoferrin GMOs (Marsteller et al., 2015).

More specifically, for assessing adjuvanticity, most studies focused on Bacillus thuringiensis (Bt)-
maize Cry1 proteins or including the whole food matrix (V�azquez-Padr�on et al., 1999; V�azquez et al.
1999; Guimaraes et al., 2008; Reiner et al., 2014; Andreassen et al., 2016; Tulinska et al., 2018).
However, other studies addressed the potential adjuvant effect of the bean alpha-amylase inhibitor in
GM peas (Prescott et al., 2005; Lee et al., 2013). A few of these studies reported adjuvant effects
upon co-administration of the ingested protein or food matrix with an unrelated protein from peanut or
chicken egg, but with Cry1 protein doses much higher than what is found in Bt-maize. Notably, there
was no adjuvant effect upon short-term feeding of mice with a diet containing 33% of Bt-maize
(MON810), showing that a diet with physiological levels of GM protein did not enhance allergic
responses (Reiner et al., 2014). In studies reporting adjuvant effects, it was not clear whether the
results were related to the high dose of the administered study protein.

Overall, such studies evaluate the GMO effects on animals that consumed GM, near-isogenic or
non-GM materials or recombinant, purified, isolated or extracted GM proteins. Using in vivo models for
GMOs and also for novel food allergenicity risk assessment is difficult due to many challenges
(Table 3).

To date, the usefulness of in vivo models for predictive allergenicity risk assessment is uncertain
because of the current lack of validated, predictive models for allergenicity in humans. However, once
available, a validated predictive animal model could help identify biotechnology products, mainly
because of the complex pathophysiology. However, it is essential to consider their use in the context of
the current limitations and following a search for a history of safe use, sequence homology, serum
testing, protein characterisation, and pepsin digestibility and potentially other physiological in vitro

Development needs for the allergenicity and protein safety assessment
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digestion studies. To effectively utilise in vivo models in the safety assessment of genetically modified
crops, it is necessary to address critical knowledge gaps (Table 3).

In vivo models could potentially improve risk assessment and facilitate the introduction of
innovative/novel protein sources with a low risk of allergic sensitisation. However, it is currently
impossible to use them in the allergenicity risk assessment because there are no standardised
predictive models. Additionally, it would be ideal to avoid animals for the allergenicity risk assessment.
However, if animal models are ever to be used in allergenicity risk assessment in the future, following
the 3Rs principles, a consensus approach is necessary with the predictive power to mimic human
allergic risks. For now, in vivo food allergy models could be further developed into an established
useful tool for testing individual proteins and whole foods for allergenicity used to potentially validate
in vitro models if beneficial and to elucidate unknown mechanisms underlying disease.

Table 3: Challenges and research needs identified by the EFSA GMO Panel for in vivo tools used in
the allergenicity risk assessment of foods derived from biotechnology

Challenges necessary to improve the reliability
and predictability of the allergenicity risk
assessment

Research needs

Animal models

Overall, need to select an optimal experimental
design with standard standardised protocols –
animal, allergen, dose, route, dose–response
relationship, adjuvant, and appropriate positive and
negative controls.

To establish an optimal experimental design with
standardised protocols – animals, allergens, doses, routes,
dose–response relationships, adjuvants, and appropriate
positive and negative controls.

Outcomes of experiments with models with different
protocols, endpoints and test materials may differ.

To establish an optimal experimental design with
standardised protocols, endpoints and test materials.

Assays and endpoints from animal experiments may
differ – clinical signs, immune markers, or protein-
specific functionally active IgE making comparisons
difficult (Bøgh et al. 2016; Castan et al., 2020)

To establish an optimal experimental design with
standardised endpoints.

Contradictory data from different laboratories or
models make it difficult to assess the risk for human
food safety.

To establish an optimal experimental design with
standardised protocols – animals, allergens, doses, routes,
dose–response relationships, adjuvants, and appropriate
positive and negative controls.

Determining which type of model for risk assessment
is optimal – a model for sensitisation, elicitation or
cross-reactivity.

To establish an optimal experimental design for
sensitisation, elicitation and cross-reactivity to determine
which is more predictive.

Environmental conditions may alter the response to
GM proteins, including diet, housing conditions,
microbiota and contaminated test materials, e.g. GM
food with fungal contamination – aflatoxin or other
mycotoxins).

To report on environmental conditions for the experiment,
e.g. housing, diet, microbiome, and full assessment of test
materials.

Experimental reproducibility may differ within and
between laboratories making intra- and inter-
laboratories comparisons with the same test
materials difficult to compare – demonstrated by two
reports of labs testing the same GM, using the same
materials, protocol, and mouse strain and yet, the
results were contradictory, emphasising the
importance of repeated experiments in independent
laboratories (Prescott et al., 2005; Lee et al., 2013).
Types of test materials

Presence of cross-reactive proteins in a GM material
or novel food might interfere with the results –
alpha-amylase inhibitor GM peas contain a pea lectin
that is cross-reactive (Lee et al., 2013).

To test whole food matrix where possible with appropriate
extracts and purified proteins for protein-specific
responses, e.g. in vivo challenge and ex vivo analysis,
serum IgE.

Development needs for the allergenicity and protein safety assessment
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3.2.4. Additional remarks on risk assessment tools

In addition to the identification of improvement needs dealing with specific issues related to in
silico, in vitro and in vivo tools, this document also collects a pool of overarching challenges whose
solutions could help to reduce the knowledge gaps on allergenicity prediction for risk assessment of
food/feed derived from modern biotechnology (Table 4).

Ideally, the development needs to predict allergenicity would include the following: (i) models for
sensitisation, elicitation, adjuvanticity and cross-reactivity; (ii) a comprehensive evaluation of tools with
extensive validation testing with allergenic and non-allergenic materials under carefully controlled
experimental conditions, ensuring appropriate statistical power under standardised conditions and
proper controls; (iii) tools for use in risk assessment that are simple, reproducible, specific and
sensitive; iv) tools that can predict the threshold and magnitude of the allergic potential of an allergen;
and (v) tools for ranking proteins that correlate with clinical relevance.

Challenges necessary to improve the reliability
and predictability of the allergenicity risk
assessment

Research needs

Appropriate controls for a GMO, an isogenic line are
necessary – a strongly allergenic positive control, a
non-allergenic protein/material, and the vehicle
alone. For novel foods, it could be even more
challenging to select the correct controls.

To establish standardised positive and negative controls.

Standardisation of the test materials are dependent
on the test material and the type of cooking and/or
processing methods used.

To determine the best approaches for processing and
preparation of test materials.

Protein concentration of a GMO differs, making
comparisons difficult – Mon810 contains 0.01% of
the total protein (Steinke et al., 2010) and whether
protein quantities change in processed food and feed
end products unless testing whole food.

To establish protein content of test materials for
comparative analyses.

Differential post-translational modifications in the
host plant (Campbell et al., 2011) compared with
recombinant test proteins may lead to new
conformational allergenic epitopes resulting in
potential allergenicity identified in vitro and in vivo.

To consider post-translational modifications in test
materials when comparing experiments.

Recombinant proteins may contain contaminants
lipopolysaccharide (LPS), which might explain
observed differences in reports (e.g. Reiner et al.,
2014; Andreassen et al., 2015).

To test, remove and report on potential contaminants in
test materials.

Determining the effect of added (e.g. cholera toxin)
and intrinsic adjuvants (LPS) in the test materials.
GMOs contain lectins and carbohydrates, which could
stimulate antigen uptake and influence immune
responses to unrelated proteins (Takata et al., 2000;
Cardone et al., 2014). Other innovative or novel
foods also may have adjuvant properties.

To establish and standardise protocols containing
adjuvants and to assess the content of potential
contaminants in whole food matrix test materials.

Translation to humans – prediction and validation

Determining and mimicking human consumption of a
GMO or novel food in animal experiments
challenging because of the difficulty of translation
from humans to animals.

To establish standardised approaches for quantity and
frequency of consumption based on the test material and
human consumption patterns.

Determining how to validate the model, e.g. against
pepsin resistance or in vitro digestion studies.

To establish standardised models used to validate in vitro
assays.

Reliable ranking of allergen allergenicity in animal
models would enable predictability and could be
compared to the clinical relevance of the particular
allergen.

To establish a reference set of proteins for gauging
allergenicity- low to high responsiveness that mirrors
clinical relevance of the allergen.

Development needs for the allergenicity and protein safety assessment
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3.3. Other key elements in the allergenicity risk assessment

3.3.1. Acceptable levels and threshold values of food allergens

Establishing thresholds constitutes a critical first step to assessing the risk from allergens, as they
are a characteristic of the hazard that allergenic foods present to the food-allergic population. Their
establishment is, thus, essential to the evidence-based application of risk management and mitigation
strategies, such as Precautionary Allergen Labelling (PAL) (FAO/WHO, 2021b). However, no threshold
values applicable to food allergens are currently available for risk assessment purposes (EFSA NDA
Panel, 2014). A key question going beyond scientific issues would be ‘what level of risk is acceptable?’.
Although there is a consensus that zero risk is not realistic or achievable (Madsen et al., 2012;
DunnGalvin et al., 2015), the level of risk that is acceptable to consumers and regulators remains
unclear (Madsen et al., 2020).

Recently, the FAO/WHO Expert Committee on risk assessment of food allergens has agreed that,
for a series of priority allergenic food sources, the objective of minimising ‘to a point where further

Table 4: Challenges and research needs identified by the EFSA GMO Panel for the allergenicity risk
assessment of foods derived from biotechnology. Overarching issues

Challenges necessary to improve the reliability
and predictability of the allergenicity risk
assessment

Research needs

To elaborate a consensus list of clinically relevant
allergens with demonstrable potency in eliciting allergic
reactions in humans and animals.

To build on data available for component-resolved
diagnostics in allergic patients.

To collect data regarding the allergenic potency of
certain allergenic foods and identify genetic differences
between allergic and non-allergic individuals.

To collect data on the prevalence of food allergy in
animals (e.g. companion animals, farm) and determine
the allergens involved.

To establish a reference set of proteins with varying
allergenic potential for the development of improved
predictive models for risk assessment.

To collect and analyse data for the generation of a
database on scaling and comparison of the allergenic
potential for allergenic foods and individual allergens.

To fully understand the interaction between allergenic
proteins with other components in food that influences
their potency and stability and their potential as
adjuvants.

To develop reliable, accurate and sensitive methods to
assess the potency, stability and potential adjuvant
activity of allergens.

To identify new in silico, in vitro, ex vivo and in vivo
approaches able to predict allergenicity of food
proteins.

To develop new tools as predictive methods for the
allergenicity risk assessment will require validation and
standardisation of methodology, experimental design,
and read-outs.

To determine if adverse outcome pathway (AOP) can be
applied to food sensitisation and/or elicitation to support
new allergenicity risk assessment strategies.

To establish standardised test materials for the
prediction of allergenicity, such as individual proteins
and extracts (raw or processed), whole food matrix or
a combination of all these.

To determine which characteristics of test materials,
e.g. post-translational modifications, other biochemical
and/or physicochemical properties, are related to
protein stability.

To determine standardised, relevant strategies for
processing and preparation of test materials and if those
are compatible with full scope applications (i.e. covering
any potential use for food/feed purposes) or if they
should be circumscribed to product-based risk safety
assessment.

Comparative analysis and data integration between
experiments to allow for the extrapolation of broader
conclusions than those from a single study.

To standardise the experimental design to validate
clinical context. To integrate all data sets using
multivariate models

Development needs for the allergenicity and protein safety assessment
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refinement does not meaningfully reduce health impact, the probability of any clinically relevant
objective allergic response’ could be met by defining reference doses (RfDs) based on dose distribution
modelling of minimum eliciting doses (MEDs) and supported by data on the severity of symptoms.
Using this approach, the Committee agreed the safety objective could be met for RfD’s corresponding
to eliciting doses predicted to result in objective reactions in no more than 5% (ED05) of the allergic
population, as evaluated using the data from Remington et al. (2020) and Houben et al. (2020).
Recommended RfD values (as mg of protein from the allergenic source) have been established for
several tree nuts and peanut (ranging from 1 to 3 mg of total protein from the allergenic source), egg
(2 mg), wheat (5 mg), fish (5 mg) and shrimp (200 mg) as a result of a high level of quality, quantity,
availability and accessibility of data for these priority allergenic food sources and also supported by
data on health manifestations (severity) at the proposed RfD (FAO/WHO, 2021b). However, it has been
recently reported that around 5% of individuals reacting to an ED01 or ED05 level of exposure to
peanuts might develop anaphylaxis in response to that dose. This equates to 1 and 6 anaphylaxis
events per 2,500 patients exposed to an ED01 or ED05 dose, respectively, in the broader population of
individuals with peanut allergy (Patel et al., 2021), illustrating that zero risk is not a realistic goal.

Therefore, the use of data on eliciting doses and co-factors affecting these is considered of great
potential use for its incorporation into an allergenicity risk assessment, although some challenges have
first to be overcome (i.e. information supporting some or all of the above considerations are lacking
for individual allergens and less commonly allergenic food sources, or how to deal with interindividual
variability or low level of quality of clinical data, etc.). However, there could be sufficient knowledge on
the most common and potent allergens that could be used to cover those for which there is less
available and robust data and, therefore, to implement a framework with threshold levels that may be
realistic, attainable, and provide optimal protection for people with food allergy (Madsen et al., 2020).

3.3.2. Post-market monitoring tools

Post-market monitoring is a risk management measure that may assist the risk assessment
process (Codex Alimentarius, 2003–2009). According to the EFSA GMO Panel and Regulation (EU) No
503/2013, when there is a likelihood of allergenicity, the food derived from the GM plant should be
further characterised in the light of anticipated intake and appropriate conditions for placing on the
market, including labelling (EFSA GMO Panel, 2011).

EFSA has previously published an external report reviewing the existing post-market monitoring
strategies developed for the safety assessment of human and animal health useful for GM food and
feed (ADAS, 2015). Other EU projects such as MARLON investigated the possibility of measuring health
indicators during post-market monitoring for potential effects of feeds, particularly GMOs, on livestock
animal health (de Santis et al., 2018).

Despite having been identified as a gap many years ago (Hepburn et al., 2008), little progress has
been made on how to undertake post-market monitoring to provide useful insights into adverse
reactions to novel foods beyond fat replacers (Slough et al., 2001). However, online surveys have been
used in Japan to re-evaluate the safety of nutritional supplements (Nishijima et al., 2019). Registries
have been developed to collect data on severe, anaphylactic reactions (Worm et al., 2014), which
could be adapted to allow clinicians or patients to report adverse reactions to provide a signal of
potential adverse effects. Innovative approaches may be required to provide a cost-effective solution
and could draw on those being developed to improve reporting and analysis of adverse events caused
by drugs. For example, text mining of social media has provided new insights into adverse events for
widely prescribed drugs such as steroids which could have applicability to identifying adverse events to
foods (Vivekanantham et al., 2020). The current tools for text mining are imperfect, and many
challenges remain for such approaches as identified by the Innovative Medicines Initiative (IMI) WEB-
RADR (Recognising Adverse Drug Reactions) project where a need for coordination to facilitate
development, adoption and acceptance of such technology was clearly identified (Vivekanantham et
al., 2020). Social media networks for health already exist, such as Health Unlocked,7 but their use
needs to be undertaken in a sensitive manner as studies have already shown that consumer trust is
greater in activities undertaken for research or by regulatory authorities (Bulcock et al., 2021). In
addition, some initial activities have been piloted as a reporting system.8

7 https://healthunlocked.com/
8 https://www.food.gov.uk/report-a-food-allergy-intolerance-reaction
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Future assessment of complex foods will benefit from a developed post-market monitoring system,
paying attention to the reliability, sensitivity and specificity of the proposed methods, which should
answer specific questions such as uncertainties in the pre-market assessment phase. Such initiatives
could be linked with others ongoing in the healthcare sector.

4. Conclusions and Recommendations

This Scientific Opinion has: (i) defined knowledge gaps on allergenicity prediction; (ii) identified
specific research needs for improving the allergenicity risk assessment for products derived from
biotechnology; (iii) determined how new basic research findings and technological developments can
improve the current risk assessment methodology; and (iv) prioritised basic research funding
(Tables 1–4).

By considering the complexity and variety of factors involved in food allergy, as well as the current
state-of-the-art, it is unrealistic that a single test will, in short/medium term, be predictive of
allergenicity. Therefore, the ‘weight-of-evidence’ approach for allergenicity assessment is still valid,
although the evidence needed might differ depending on whether a conventional GMO or another type
of new biotech food is being assessed (Figure 1).

On the one hand, it is necessary to progress in this field as the current guidelines in the Codex
Alimentarius, initially published in 2003, focused on food derived from existing ‘modern’ biotechnology
available at the time and requires updating. Although the Codex Alimentarius and EFSA guidance
documents successfully addressed allergenicity assessments of single/stacked event GM applications,
experience gained and new developments in the field call for a modernisation of some key elements
such as (i) better standardisation on the use of the available knowledge on the source of the gene and
the protein itself – context of clinical relevance, route of exposure and potential threshold values of
food allergens; (ii) modernisation of in silico tools used with more targeted databases; (iii) better
integration of in vitro data with clear guidance on how protein stability and digestion inform the
assessment and on the use of human sera; and (iv) clarity on the use of the overall weight-of-evidence
approach for protein safety and the aspects needed for expert judgement. This could benefit from
being set within the risk assessment frameworks used in other aspects of public health with clearly
defined terminologies relating to the level of potential risk at a population level. This framework can
support greater transparency in the way conclusions are drawn from the weight-of-evidence approach.

On the other hand, the pace of innovation in the Agri-Food arena needs to meet the challenges
facing society in the 21st century and will increasingly challenge the allergenicity risk assessment
process. The risk assessment process, which started in the 1990s in the wake of the release of
transgenic crops, now needs to be extended to meet the challenges of innovations from genome
editing to synthetic biology. The recent FAO/WHO expert consultation provided safety objectives and
guidance on the aspects relating to managing existing, known allergenic foods to ensure allergic
consumer safety. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk
assessment and the vital role it plays in protecting consumers’ health with existing food allergies and
assessing the potential for foods to cause new food allergies.

The setting of clear safety objectives that address new technologies are needed as a backdrop to
inform the safety assessment and to ensure that allergenic risks of foods are assessed in an
appropriate, consistent and proportionate manner across all the many different technologies for their
production. Therefore, the draft of a roadmap to (re)define the allergenicity safety objectives and risk
assessment will be needed to address the key questions for risk assessors and risk managers: (1) what
is the purpose of the allergenicity risk assessment?; (2) what is to be assessed in the allergenicity
assessment?; (3) what level of confidence do we need for the predictions?; (4) what is considered an
unacceptable/acceptable risk in the allergenicity risk assessment? (Figure 1).

EFSA GMO Panel recommends:

– to continue investing resources in the modernisation of available tools to consider experience
gained, current and new knowledge that could lead to increase the robustness, avoid
inconsistences and lack of reproducibility of the assessments. For such purposes, a series of
research priorities are proposed in Tables 1–4 to advance the allergenicity risk assessment
field in a systematic, interdisciplinary and coordinated approach. The outcome of present and
future EFSA procurements, European Commission mandates, as well as EU and other projects,
will guide the EFSA Panels.
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– progresses along the lines outlined in Figure 1 will be possible only if European wide
multicentre collaborations are established which imply the development of standardised tools
and quality control to reduce redundancies and increase data reliability. To investigate
possibilities of EFSA facilitating or acting as an international focal point to find a consensus
addressing the questions above to prepare for the future. This activity will require broad and
transdisciplinary participation where collaboration with the Member States, Stakeholders and
the international community at large will be needed.

5. Documentation provided to EFSA

1) Proposal for a self-task mandate of the EFSA GMO Panel to establish a Working Group to
develop supplementary guidelines for the allergenicity assessment of GM plants to
incorporate new developments. May 2014. Submitted by the Chair of the EFSA GMO Panel.

2) Acceptance of the self-task mandate of the EFSA GMO Panel to establish a Working Group to
develop supplementary guidelines for the allergenicity assessment of GM plants to
incorporate new developments. July 2014. Submitted by EFSA Executive Director.

3) Acceptance of the self-task mandate of the EFSA GMO Panel to establish a Working Group to
develop a statement of the GMO Panel updating its latest guidance document on
Allergenicity assessment of GM plants (EFSA GMO Panel, 2017). May 2020. Submitted by
EFSA Executive Director.
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aAI Alpha-amylase inhibitor
AOP Adverse outcome pathway
APC Antigen-processing and presenting cells
BAT Basophil activation test
BLAST Basic Local Alignment Search Algorithm
DBPCFC Double-blind placebo-controlled food challenge
EAST Enzyme allergosorbent assay
ED Eliciting dose
ELISA Enzyme-linked immunosorbent assay
FAO Food and Agriculture Organization
GIT Gastrointestinal tract
GM Genetically modified
GMO Genetically modified organisms
IgE Immunoglobulin type E
IgG Immunoglobulin type G
HLA Human leucocyte antigen
hMAT Human-derived mast cell activation test
LPS Lipopolysaccharide
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miBAT Microfluidic immunoaffinity basophil activation test
MC Mast cells
MHCII Class two major histocompatibility complex
OECD Organisation for Economic Co-operation and Development
PAL Precautionary Allergen Labelling
PTM Post-translational modification
RAST Radio allergosorbent assay
RfD Reference dose
SDS–PAGE Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
WHO World Health Organization
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