

Céline Marionneau

L'unité de recherche de l'institut du thorax Inserm UMR 1087 / CNRS UMR 6291 Nantes, France

Research experiences: Céline Marionneau

- 2001-2005: PhD (University of Nantes, l'institut du thorax, Nantes)
 Functional genomics of cardiac ion channels
- 2005-2009 : Postdoctoral fellow (Washington University, Saint Louis, MO, USA)
 Post-translational regulation of neuronal Kv4.2 channels
- 2009-2010 : Postdoctoral fellow (*l'institut du thorax, Nantes*)
- Since Nov 2010 : Chargée de recherche au CNRS (Equipe II, l'institut du thorax, Nantes)

Post-translational regulation of cardiac Nav1.5 channels

From this conference, you should know:

- Context : Cardiac electrophysiology, Nav1.5 channels
- Proteomics : goals, methods
- Apprehend the research developped

Cardiac excitability

Marban, Nature 2002

Electrocardiograms : ECG

Marban, Nature 2002

Cardiac voltage-gated Na⁺ channels

Nav1.5 channels in heart failure

CaMKII increases ${\sf I}_{\sf NaL}$ in heart failure

CaMKII decreases Nav1.5 channel availability

increasing I_{NaL} and decreasing channel availability in heart failure

-120

-100

Membrane potential (mV) Wagner et al, 2006

-20

Cardiac Nav1.5 channel complexes

Cardiac Nav1.5 channel complexes

Cardiac Nav1.5 channel complexes

Before 2012 : 9 phosphorylation sites

Methods to identify phosphorylation sites

- In silico analyses
 - phosphorylation consensus sequence (CaMKII: RXX[S/T])
- In vitro analyses
 - kinase assay + mass spectrometry
- In situ analyses
 - purification of proteins + mass spectrometry
- Functional analyses :
 - directed mutagenesis (Ser/Thr > Glu/Asp ; Ser/Thr > Ala)

CaMKII phosphorylation sites

In vitro

Hund et al, 2010

Ashpole et al, 2012

Quantitative phosphoproteomics

Purification of cardiac Nav1.5 channels

Marionneau et al, JPR 2012

Mass Spectrometry – A Brief Definition

Mass Spectrometry is a technique that produces charged molecules, and separates them by magnetic and/or electric fields based on their mass to charge ratio (m/z).

Electrospray ionization : ESI-MS

- Couples liquid chromatography to mass spectrometry
- Reversed-phase chromatography

MS/MS analyses

Identification of Nav pore-forming subunits

Na_v1.5 :

- Q1080 and Q1080 del isoforms
- 310 unique peptides
- 56% amino acid coverage

1	MANFLLPRGTS <mark>S</mark> FRRFTRESLAAIEKR <mark>MAEKQARGSAT</mark> SQE <mark>S</mark> REGLPEEEAPRPQLDLQASKKLPDLYGNPPREL
76	N-I EKNI TGE PLE DLDDEV STOKTETVLNKG KTIEP FSATNAL VVLS PEHPVERA AVKTLVHSLESMI. TMCTILTNCVEMAO
10	N-TERM IS1
151	HDPPPWTK YVEYTFTAIYTFESLVK ILARGFCLHAFTFLRD PWNWLDFSVIVM<mark>AYTTEFV</mark>DLGNVSALRTFRVLR
	IS2 IS3 IS4
226	ALKTISVISGLKTIVGALIQSVKKLADVMVLTVFCLSVFALIGLQLFMGNLRHKCVRNFTELNGTNGSVEADGIV
301	
501	WNSEDVIENDPANIELR <mark>NGIIDVEEGIN</mark> OSICPEGIN
376	RLYQQTLRSAGKIY MIFFMLVIFLGSFYLVNLILAVV AM <mark>AYEEQNQATIAETEEK</mark> EK <mark>RFQEAMEMLKKEHEALTI</mark>
	IS6
451	RGVDTVSR <mark>SS</mark> LEMSPLAPVTNHERRSKRR <mark>KRLSS</mark> GTEDGGDDRLPK <mark>S</mark> DSEDGPRALNQLSLTHGL <mark>S</mark> RTSMRPRSS
526	
520	RGSIFTFRRRDQGSEADFADDEN TAGESESHRTSLLVPWPLRRPSTQGQPGFGTSAPGHVLNGRRNSTVDCNGV
601	VSLLGAGDAEATSPGSHLLRPIVLDRPPDTTTPSEEPGGPOMLTPOAPCADGFEEPGARORAL AV VLTSALEE
	Loopl
676	LEESHRKCPPCWNRFAQHYLIWECCPLWMSIKQKVK <mark>FVVMDPF</mark> ADLTITMCIVLNTLFMALEHYNMTAEFEEMLQ
	list
751	VGNLVFTGIFTAEMTFKLIALDPYYYFQQGWNIFDSIIVILSLMELGLSRMGNLSVLRSFRLLRVFKLAKSWPTL IIC2 IIC3 IIC4
826	NTLIKTIGNSVGALGNLTLVLAIIVFIFAVVGMOLFGKNYSELRHRISDSGLLPRWHMMDFFHAFLITFRILCGE
020	
901	$\texttt{WIETMWDCMEVSGQS} \underline{\textbf{LCLLVFLLVMVIGNLV}} \texttt{VLNLFLALLLSSFSADNLTAPDEDGEMNNLQLALARIQRGLRFV}$
	lise
976	KRTTWDFCCGLLRRRPKKPAALA THSQLPSCIAAPRSPPPPEVEKAPPARKETRFEEDKRPGQGTPGDTEPVCVP
1051	LOOP II TAVAE DUDOEEDEENSLGTEEEESSK [O]OESOVVSGGHEPPOEPRAWSOVSETUS EAEASTSOADWOOERE
1124	AEPRAPGCGETPED <mark>S</mark> YSEGSTADMINIADLLEQIPDLGEDVKDPEDCFIEGCVRRCPCCMVDIIQAPGKVWWRLR
	LoopII
1199	KTCYRIVEHSWFETFIIFMILLSSGALAFEDIYLEERKTIKVLLEYADKMFTYVFVLEMLLKWVAYGFKKYFTNA
1274	IIISI WCWLDFLIVDVSLVSLVANTLGFAFMGPTKSLRTLRALRPLRALSRFEGMRVVVNALVGATPSIMNVLLVCLIFW
1349	$\underline{\texttt{LIFSIMGVNLFAGK}} \texttt{FGRCINQTEGDLPLNYTIVNNKSECESFNVTGELYWTKVKVNFDNVGAGYLALLQVATFKG}$
	IIIS5
1424	WMDIMYAAVDSRGYEEQPQWEDNLYMYIYFVVFIIFGSFFTLNLFIGVIIDNFNQQKKKLGGQDIFMTEEQKKYY
1/00	IIISO NAMKKI GSK <mark>K POKPI PRPI NKVOGFI FDIVITKOA FDVT IMFI. I CI NMVTMMVFTDDOS PEKVNIII. AKINI I. FVAI</mark>
1433	Loop III IVS1 IVS2
1574	FTGECIVKMAALR <mark>HYYFTN</mark> SWNIFDFVVVILSIVGTVLSDIIQK <mark>YFFSPTLFR</mark> VIRLARIGRILRLIRGAKGIRT
	IVS3 IVS4
1649	LLFALMMSLPALFN IGLLLFLVMFIYSIFGMANFAYV K <mark>WEAGIDDMFNFQTFAN</mark> SMLCLF <mark>QITTSAGWDGLLSPI</mark>
4704	IVS5
1724	LNTGPPYCDPNLPNSNGSRGNCGSPAVGILFFTTYIIISFLIVVNMYIAIILENPSVATEESTEPLSEDDPDMPY IVS6
1799	EIWEKFDPEALOFIEYLALSDFADALSEPLRIAKPNOISLINMDLPMVSGDRIHCMDILFAF
	C-TERM
1874	LKIQMEEKFMAANPSK <mark>ISYEPITTTLRRKHEEVSATVIQR</mark> AFRRHLLQRSVK <mark>HASFLFRQQAG</mark> SGLSDEDAPER
40.40	C-TERM
1949	EGLIAYMMNENFSKE GPLSESEIDETSFPPSYDSVTRATEDNLPVRASDYSRSEDLADFPPEPDRDRESIV
	C-IERM

Characterization of cardiac Nav1.5 channel complexes

2012 : 9 + 7 = 16 phosphorylation sites

2017: 16 + 8 = 24 phosphoryaltion sites

2018 : 49 + 4 + 9 = 62 phosphorylation sites

TMT9 quantitative analysis from Sham/TAC mice

Quantitative phosphoproteomics in Sham/TAC mice

Electrophysiological analysis of Nav1.5-S664-671A and E mutants

Electrophysiological analysis of simple Nav1.5 phosphomutants

Main finding: Phosphorylation at S664 and S667 regulates Nav1.5 channel activation.

Electrophysiological analysis of simple Nav1.5 phosphomutants

l'institut du thorax

Main finding: Phosphorylation at S671 decreases I_{Na}.

Phosphorylation at S671 decreases Nav1.5 cell surface expression

Take-home messages

- Cardiac electrophysiology, Nav1.5 channels
- Methods to analyze macromolecular complexes and PTM
- Identification of phosphorylation sites
 - in silico
 - in vitro
 - in situ
- Mass spectrometry
 - How does it work?
 - Advantages versus other approaches

L'institut du thorax, Nantes, France Floriane Bibault Marine Sarlandie Agnès Tessier Flavien Charpentier

University Hospital Regensburg, Germany Lars Maier and Stefan Wagner

University of Bern, Switzerland Hugues Abriel and Jean-Sébastien Rougier

The Ohio State Universit

Washington University Medical School, Saint Louis Jeanne Nerbonne Jonathan Silva Reid Townsend

Colum

Marie Curie 7th Framework Program of the European Commission

Contact : celine.marionneau@univ-nantes.fr