

Préparation de sources α

Licence Métrologie Chimique et Nucléaire

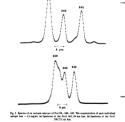
Caractéristiques et spécifications

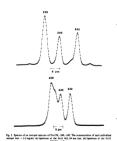
Domaines d'application et objectifs

- Comptage de particules α Analyses, bilan matière
- Spectrométrie α **Analyses isotopiques**

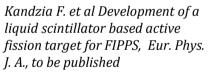
Physique nucléaire

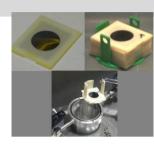
Physique du solide

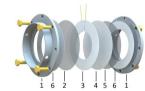

Réactions nucléaires


Structures électroniques

Par Inconnu — CDC PHIL image library, PHIL id#12020. Domaine public. https://commons.wikimedia.org/w/index. php?curid=10354956


240-242


tope shift (pm)



	0			
		10		
			3	-
-doll				1
		30//		

Compteur proportionnel

Meot V. et al ²³⁹Pu(n.2n)²³⁸Pu cross section measurement using a recoil method, Phys. Rev. C, to be published

Ionisation

Elimination électricité statique

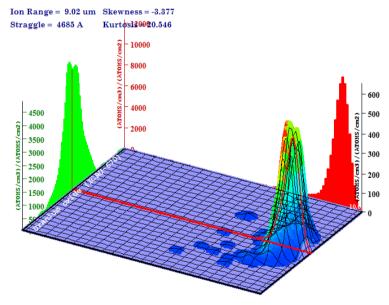
Ref. [2]

153000

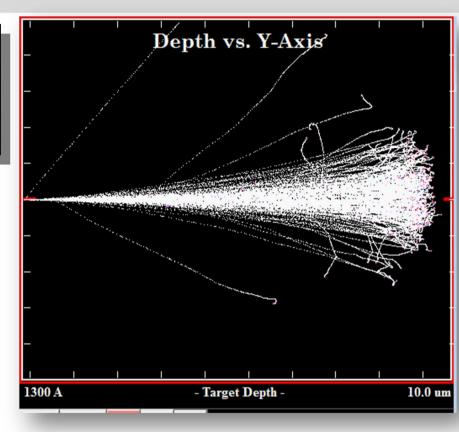
Source ²¹⁰Po 60 MBq

- Nature du substrat : épais ou transparents aux rayonnements, conducteur ou non conducteur
- Géométrie : définie ou 4 π
- Nature de la couche déposée : métal, sels ou oxydes
- Masse & géométrie du dépôt : circulaire, carré, etc.
- Structure du dépôt : polycristallin ou amorphe
- Adhésion au substrat

Exemple : analyse quantitative par spectrométrie α


Dépôt mince : résolution optimale
Géométrie définie : détecteur PIPS
Dépôt d'oxyde : conséquence de
l'électrodéposition utilisée pour obtenir
des couches minces
Substrat conducteur : électrodéposition
Dépôt amorphe : conséquence de la
méthode d'électrodéposition
Forte adhésion au substrat : chambre de
détection sous vide léger

Pourquoi un dépôt mince


$$\frac{dE}{dx} = -N_{V} Z \frac{Z_{1}^{2} e^{4}}{8\pi \varepsilon_{0}^{2} m_{0} V_{1}^{2}} Log \frac{2m_{0} V_{1}^{2}}{I}$$

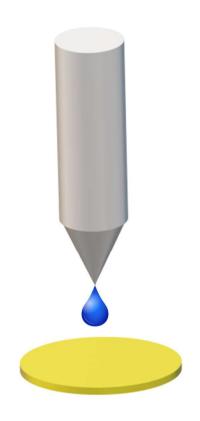
Ion Distribution

Plot Window goes from 1300 A to 10.0 um; cell width = 987 A Press PAUSE TRIM to speed plots. Rotate plot with Mouse.

Ion = He (4.2 MeV)

$$\rho = 10,97 \text{ g/cm}^3 \rightarrow \text{e} = 9 \mu\text{m}$$

Remarque : un alpha de 5 MeV dans un dépôt de 100 µg/cm² perd 20 keV.

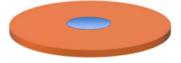


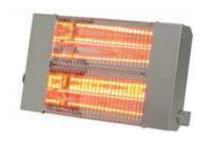
Le dépôt direct

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Le dépôt direct – Procédure

① Dépôt des gouttes


poids connu


② Evaporation

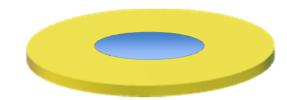
à sec

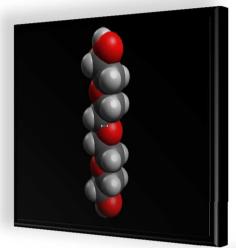
3 Calcination

au rouge sombre

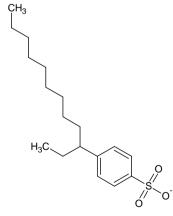
Le dépôt direct – précautions

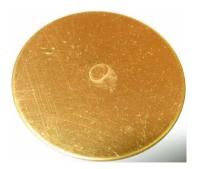
Sans mouillant



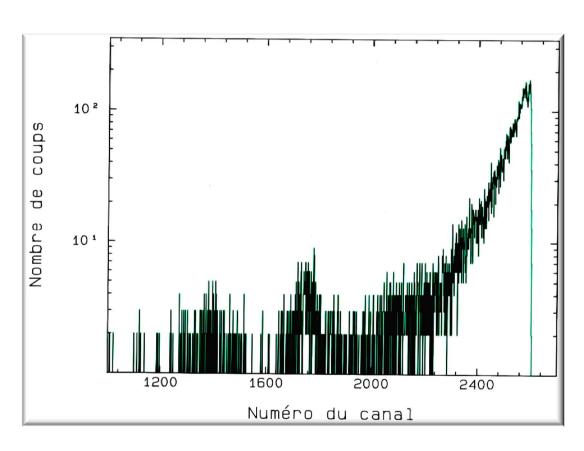

Quelques mouillant :

- T.E.G.




non homogène

centré peu épais homogène


Le dépôt direct – Avantages et inconvénients

Avantages

- rapide
- aisé
- rendement 100 % donc quantitatif
- substrat quelconque (résistant à la chaleur)

Inconvénients

- non sélectif
- sur solutions peu chargées en sels non volatils
- centrage et surface aléatoires (sans mouillant)

Solution pure de ²⁴⁴Cm

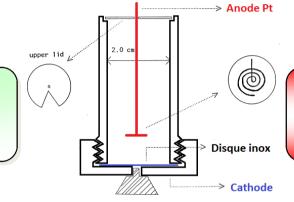
L'électrodéposition (Electroprécipitation)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

L'électroprécipitation des actinides - Redox

- Cations difficiles à réduire (potentiel < -1,8 V) :
 - U^{3+}/U^{0} $-1,798 \pm 0,020 \text{ V/ENH}$
 - $Np^{3+}/Np^0 -1,772 \pm 0,020$
 - $Pu^{3+}/Pu^{0} -2,000 \pm 0,009$
 - $Am^{3+}/Am^0 -2,068 \pm 0,016$
 - Cm³⁺/Cm⁰ -2,06 ± 0,03
- Masse électrodéposée n'est pas déterminable par le courant.
- Variation de pH.

 $t=25^{\circ}C$



L'électroprécipitation des actinides – Exemples de réactions redox dans NH₄Cl

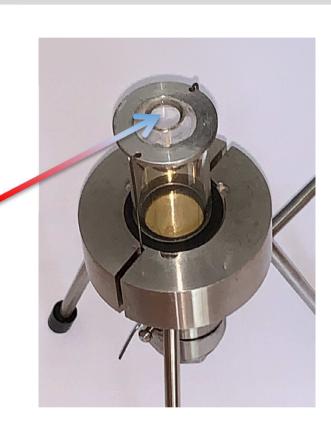
Milieu d'électrolyse : NH_4Cl 5,5 M à pH = 1 (Pu) – 2 (autres An)

$$Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$$

Cathode

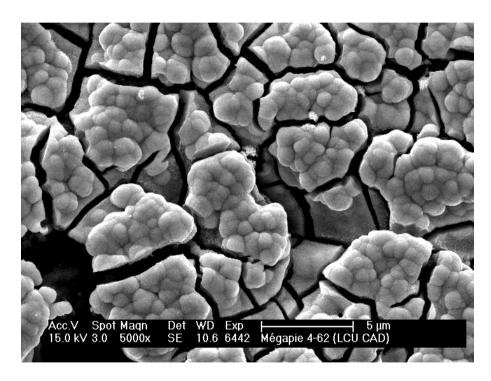
$$H^+ + e^- \rightarrow \frac{1}{2} \overline{H}_2$$

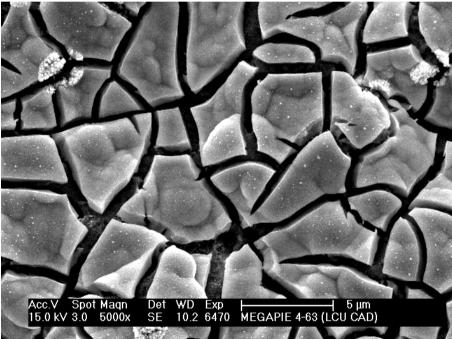
$$H_2O \to \frac{1}{2}O_2 + 2H^+ + 2e^-$$


$$NH_4^+ + e^- \rightarrow NH_3 + \frac{1}{2}H_2$$

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

L'électrodéposition des actinides – précautions

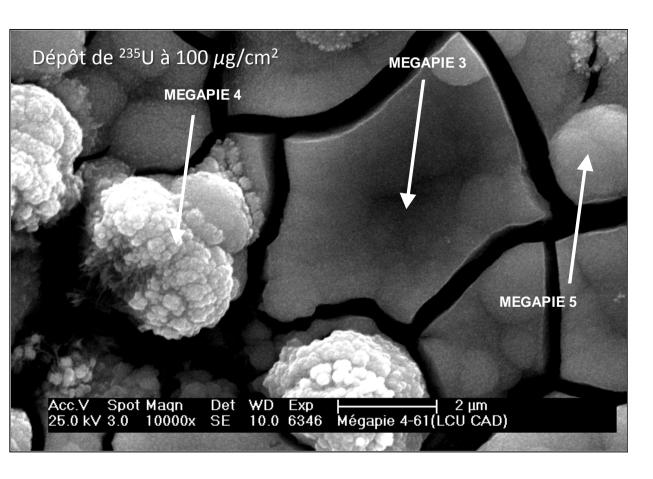

- Dépôt soluble dans l'électrolyte : ajout de soude ou d'ammoniaque avant de couper le courant.
- Production importante de gaz : remplissage à mi-hauteur, protections contre les projections.
- <u>Dépôt d'hydroxyde</u>: lavage à l'alcool car certains hydroxydes sont légèrement soluble dans l'eau à pH = 5 (équilibre avec le CO₂ atmosphérique).
- <u>Dépôt peu adhérent</u> : calcination au rouge sombre.

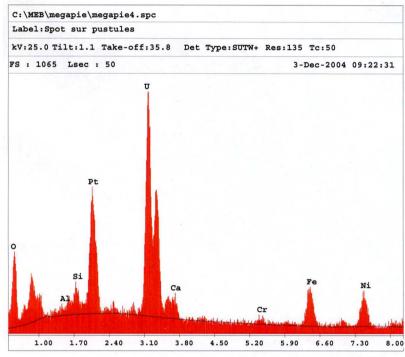


L'électroprécipitation des actinides – nature du dépôt

T = 400 °C

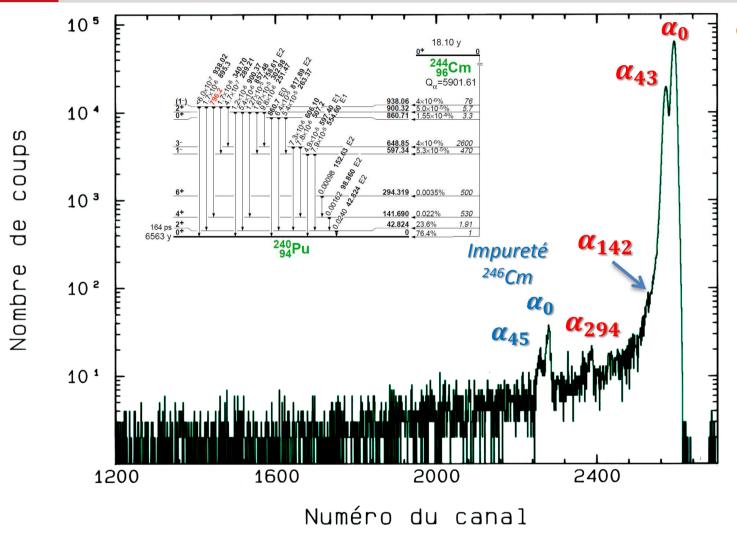
 $T = 600 \, ^{\circ}C$





Dépôt de 241 Am à $100~\mu \mathrm{g/cm^2}$

L'électroprécipitation des actinides – composition chimique du dépôt



	Normaliz e : Defa					
Element	Wt %	At %	K-Ratio	Z	A	F
ОК	19.47	66.05	0.0315	1.2025	0.1343	1.0002
AlK	0.81	1.62	0.0028	1.1205	0.3047	1.0005
SiK	1.98	3.83	0.0091	1.1530	0.3964	1.0002
PtM	22.01	6.12	0.1614	0.8931	0.8213	1.0000
UM	43.20	9.85	0.3452	0.8395	0.9517	1.0002
CaK	1.48	2.01	0.0110	1.1610	0.6356	1.0020
CrK	0.69	0.72	0.0056	1.0491	0.7633	1.0121
FeK	5.13	4.98	0.0461	1.0601	0.8351	1.0151
NiK	5.23	4.83	0.0513	1.0902	0.8849	1.0174
Total	100.00	100.00				

L'électroprécipitation des actinides – une bien meilleure résolution !

 α from 244 Cm (18.10 y) α decay < for $I\alpha\%$ multiply by 1.0>

```
\alpha_0 5804.825 (†76.42),

\alpha_{43} 5762.703 (†23.62),

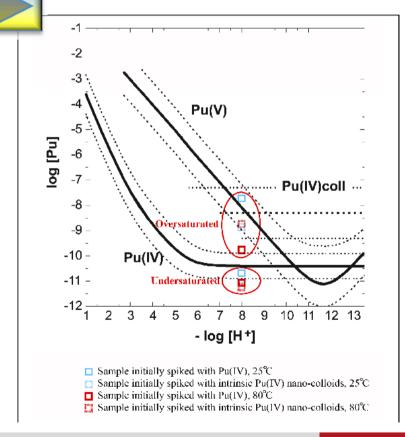
\alpha_{142} 56643 (†0.0221),

\alpha_{294} 55133 (†0.00351),

\alpha_{597} 52153 (†5.3×10<sup>-5</sup>9),

\alpha_{861} 49603 (†1.55×10<sup>-4</sup>16),

\alpha_{900} 49203 (†5.0×10<sup>-5</sup>5).
```


 α from $\,^{246}\text{Cm}$ (4730 y) α decay < for I $\alpha\%$ multiply by 0.999743>

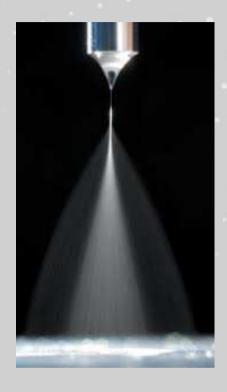
```
\alpha_0 5386.5 10 (†82.2 12), \alpha_{45} 5343.5 10 (†17.8 12), \alpha_{147} 5243 (†0.04 syst).
```


L'électroprécipitation des actinides – paramètres influents

- Densité de courant constante.
- Diapo #44
- Surface cathode et anode identiques.
- Electrodes parallèles.
- Distance inter-électrode faible (≈ 1 cm).
- Dessin de l'anode permettant l'agitation
 & l'élimination des gaz.
- Temps d'électrolyse :
 - 5 à 10 minutes milieu organique,
 - 15 à 180 minutes milieu aqueux.
- Température 50 à 80 °C.

L'électroprécipitation des actinides – les milieux d'électrolyse et les interférences

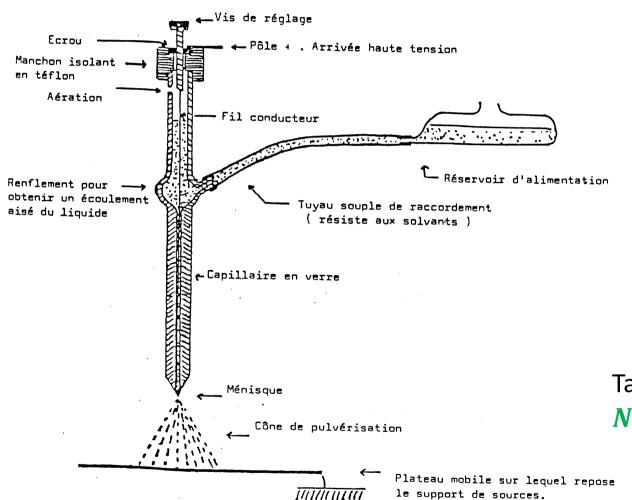
- Solutions tampons peu complexantes :
 - $NH_4Cl 5,5 M pH = 1-2$ (tous les actinides),
 - $CH_3CO_2H 0.25 M / NH_4CH_3CO_2 0.25 M$, pH = 4.5 (U, Th),
 - NaHSO₄ / Na₂SO₄ pH = 2 (Pu).
- Solutions complexantes :
 - $(NH_4)_2C_2O_4O_15 M pH = 8 (U).$
- Solutions diluées d'acides forts :
 - HNO₃ 10⁻³ M (Pu, Am, Cm, etc.).
- Solvants organiques :
 - Isopropanol ou acétone 99 % / HNO₃ 0,1 M 1 %,
 - Diméthylsulfoxyde ou diméthylformamide
 95–99 % / HNO₃ 0,1 M 1–5 %.


Quelques inhibiteurs

- Nitrates,
- Terres rares sauf si < qq μg effet positif (entraîneur),
- Al, Fe, Ca, Ba, Ti, Zr, T.R. < 0,01 mg.

Performances de quelques électrolytes

Elément à déposer	Electrolyte	рН	Cathode	Durée (min)	Rendement (%)
Ac(III)	$NH_4CI 0.9 M + (NH_4)_2C_2O_4 0.4 M$	4	inox	35	95
Pa(V)	$NH_4CI 0.9 M + (NH_4)_2C_2O_4 0.4 M$	4	inox	40	70-80
Th(IV)	CH ₃ CO ₂ H 0,25M + NH ₄ CH ₃ CO ₂ 0,25 M	4,5	inox	20	90
	NH₄Cl 1 M	5	Au, Pt	30	90
	(NH ₄) ₂ SO ₄ 1 M	2	inox	120	98-100
U(VI)	CH ₃ CO ₂ H 0,25M+ NH ₄ CH ₃ CO ₂ 0,25 M	4,5	inox	30	100
	$(NH_4)_2C_2O_4$ 0,15 M	8	inox	15	100
	$NH_4CI 0.9 M + (NH_4)_2C_2O_4 0.4 M$	4	inox	40	90
	NH ₄ Cl 5,5 M	2	Au, Pt	30	100
	(NH ₄) ₂ SO ₄ 1 M	2	inox	120	100
Np(V)	$NH_4CI 0.9 M + (NH_4)_2C_2O_4 0.4 M$	4	inox	40	90
Pu(IV)	NH ₄ Cl 5,5 M	2	Au, Pt	15	100
Pu(III, IV)	CH ₃ CO ₂ H 0,25M+ NH ₄ CH ₃ CO ₂ 0,25 M	4,5	inox	30	100
	(NH ₄) ₂ SO ₄ 1 M	2	inox	20	98-100
Am, Cm (III)	NH ₄ Cl 5,5 M	2	Au, Pt	30	100
	(NH ₄) ₂ SO ₄ 1 M	2	inox	120	100



L'électropulvérisation

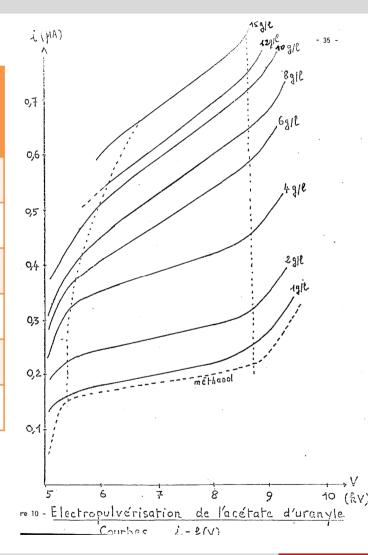
Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

L'électropulvérisation – schéma de principe

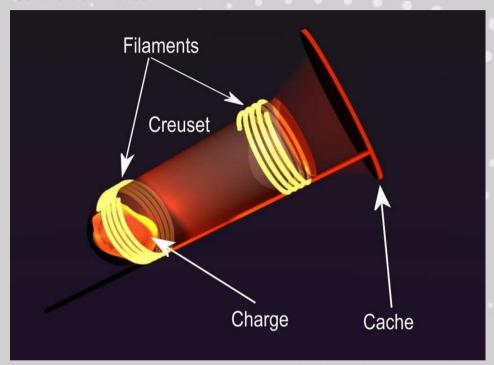
Taille d'une gouttelette

$$r = \sqrt[3]{\frac{9V^2\gamma\varepsilon_0}{Q^2}}$$

En pratique, pulvérisation d'une solution à 1 cm³/heure sous une tension de plusieurs milliers de volts délivrant une intensité de $0.5 \mu A$ donne : $r = 0.826 \mu m$.


Taux de production :

 $N = 4,25.10^{11}$ gouttelettes/cm³.

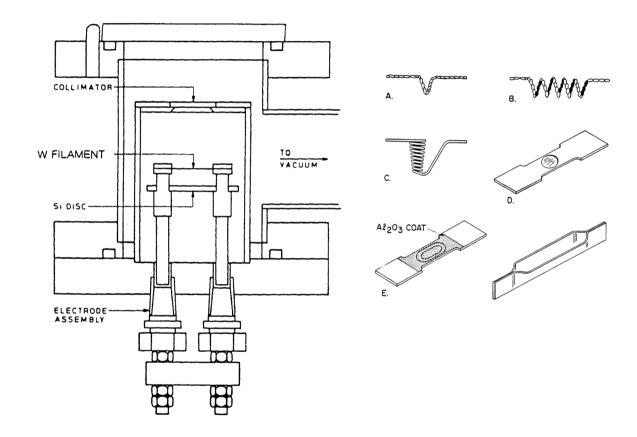


L'électropulvérisation – solvants utilisés

Solvant	Conductibilité $(\Omega^{-1}cm^{-1})$	Tension superficielle γ ($dyne.cm^{-1}$)	Constante diélectrique $arepsilon_r$	Zone de stabilité (V)
Méthanol	8.10 ⁻⁷	22,61	33	5400-8400
Ethanol	10 ⁻⁹	22,75	25,7	4500-5500
Acétone	6.10 ⁻⁸	23,7	21,4	5000-7500
Acide acétique	10 ⁻⁷	24	6,3	5800-6000
Acétate d'éthyle	3.10 ⁻⁹	23,90	6,4	5300-5700
Ether éthylique	10 ⁻¹²	17	4,33	5400-5450

Cellule de Knudsen

La déposition sous vide


La déposition sous vide — principes

Processus

- Phase condensée → phase vapeur,
- Déplacement molécule → substrat,
- Condensation vapeur sur substrat.

Paramètres

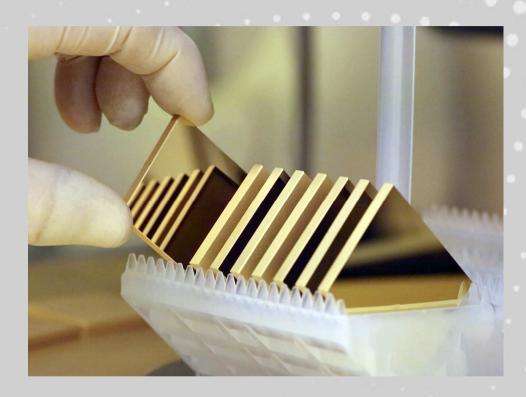
- pression de vapeur du matériau,
- vitesse d'évaporation,
- Répartition spatiale des molécules vaporisées.

La déposition sous vide — Quelques rappels théoriques

Pression de vapeur $p^*: log P^*_{atm} = -\frac{\Delta G^0(T)}{4,575 \cdot T}$

Vitesse d'évaporation (loi de Hertz-Knudsen $dN_e = \frac{(p^*-p)}{\sqrt{2\pi mkT}}$) :

$$\Gamma = 5,834.\,10^{-2} \sqrt{\frac{M}{T}} p^*$$

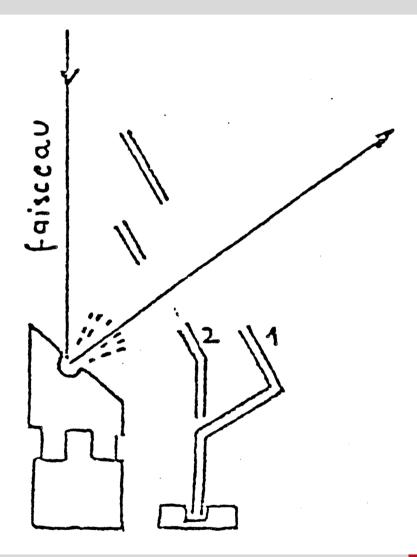


Martin Knudsen 1871-1949

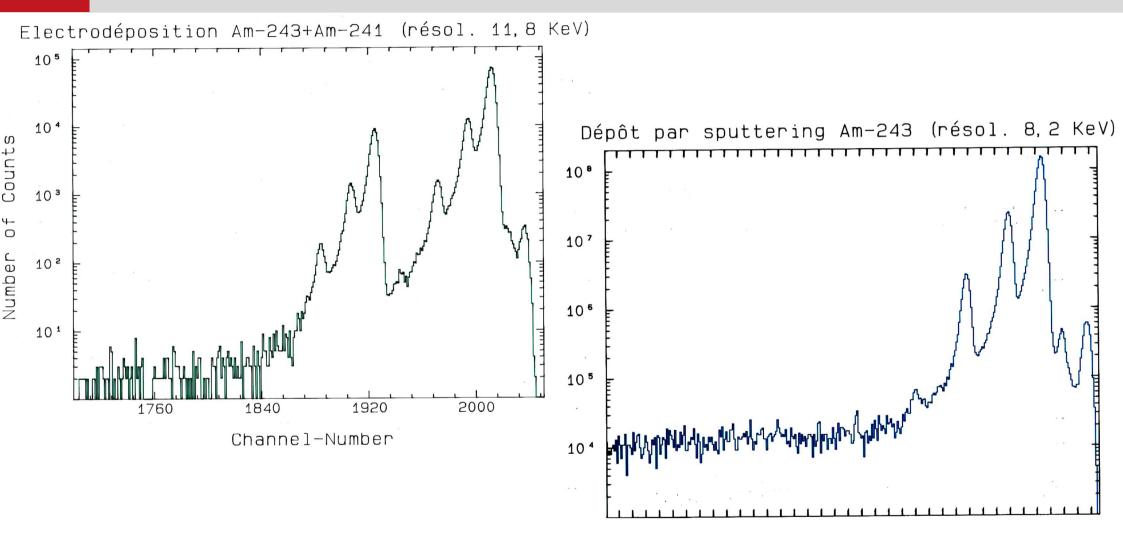
Pour $p^* = 10^{-2}$ torr, Γ est de l'ordre de 10^{-4} g.cm⁻².s⁻¹ pour la plupart des éléments.

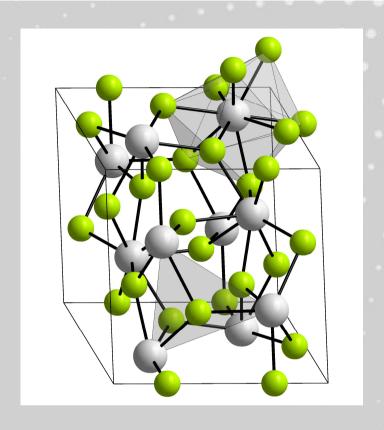
M = masse moléculaire du constituant

T = temp'erature


La pulvérisation ionique

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr


La pulvérisation ionique – schéma de principe


- Dans certains cas, l'évaporation classique ne permet pas de réaliser des dépôts de matière radioactives :
 - peu de matière,
 - matériau très réfractaire (oxyde).
- « Sputtering » : faisceau d'ions (Ar+) focalisé sous un potentiel de 10 kV.

La pulvérisation ionique – résolution maximale

La coprécipitation

By Orci - Eigenes Werk (own work), data source: A. Zalkin and D. H. Templeton: Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data. In: Acta Cryst. (1985). B41, 91-93, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7304047

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

La coprécipitation – mécanismes

Phénomènes liés à l'ajout d'un <u>entraîneur</u> (macrocomposant) à une solution d'un élément en traces (microcomposant).

Deux types d'entraînement (coprécipitation)

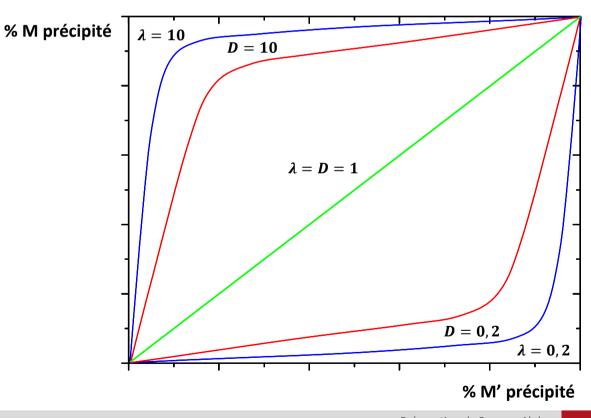
- Syncristallisation
- Adsorption

Loi de Berthelot-Nernst

$$\frac{x}{y} = \mathbf{D} \frac{a - x}{b - y}$$

Loi de Doerner-Hoskins	$\log\left(\frac{a}{a-x}\right) = \lambda \log\left(\frac{a}{a-x}\right)$	$\left(\frac{b}{b-y}\right)$
	i X	(D y)

Entraîneurs	M^{2+}	M^{3+}	M^{4+}	MO_2^+	MO_2^{2+}
Fluorure de La	_	+	+	+	_
Phosphate de Zr		$\overline{}$	+	_	_
Phosphate de Bi		+	+	_	_
Oxalate de La		+	+		_
Oxalate de U(IV)		+	+		_
Oxalate de Th		+	+		_
Oxalate de Bi		+	+		_
Iodate de Zr		_	+		_
Iodate de Th		_	+		_
Iodate de Ce(IV)		_	+		_
Uranyle acétate de Na			_	+/-	+
Peroxyde de Th		_	+	_	_
Sulfate de Ba	+	_	+		_
Sulfate double de La & K		+	+	_	_
Hydroxydes insolubles	+/-	+	+	+	+


La coprécipitation – syncristallisation ou adsorption ?

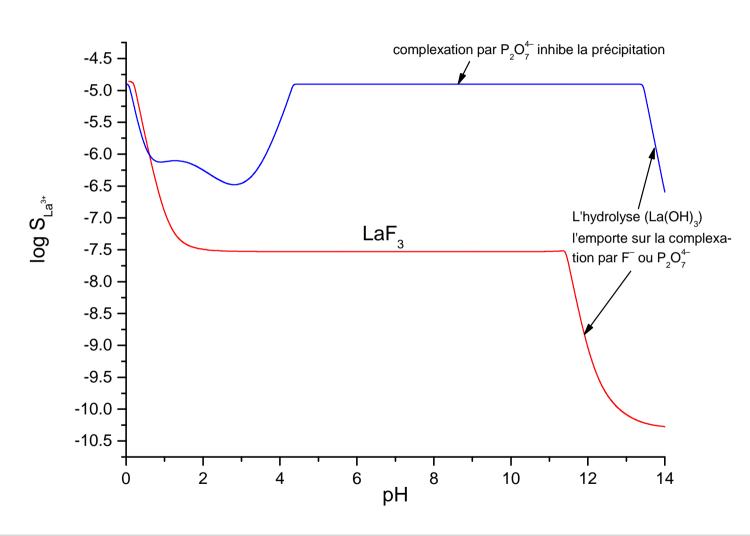
La signification pratique de λ est identique à D. Lorsqu'on veut coprécipiter un radionucléide, on a intérêt à choisir le système qui à le D ou le λ le plus élevé. C'est la distribution logarithmique qui conduit au meilleur résultat.

Il vaut théoriquement mieux utiliser l'adsorption que la syncristallisation.

SrSO ₄	340
PbSO ₄	11
Ba(CH ₃ CO ₂) ₂	0,25
BaCrO ₄	15
BaCl ₂	5
BaBr ₂	10
BaNO ₃	1,6

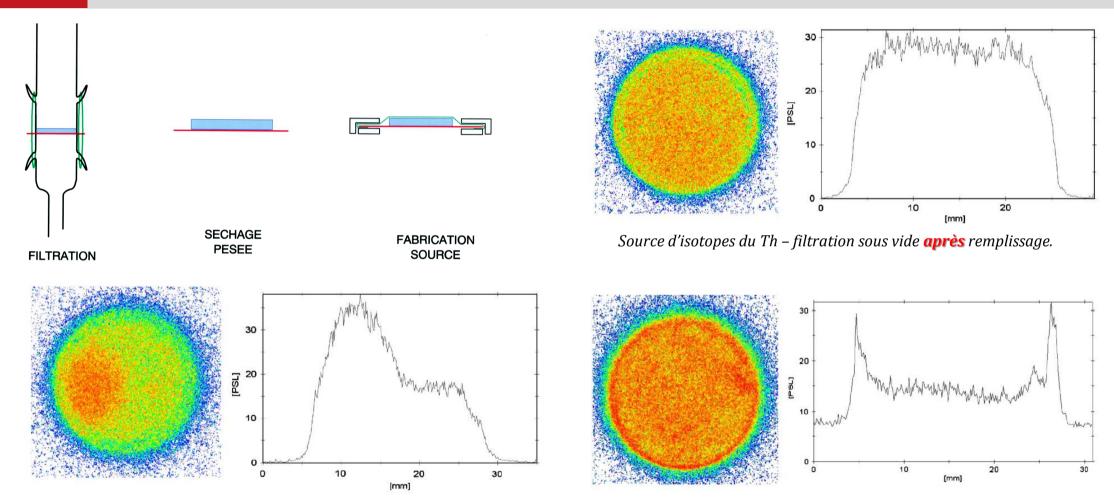
Exemples de constantes **D** de fractionnement pour le radium et divers sels.

La coprécipitation – paramètres influents


	Cristaux mixtes	Adsorption
Forte sursaturation	0	+
Précipitation rapide	+	+
Agitation	_	_
Chauffage	0	_
Attente prolongée	_	_
Lavage	0	_

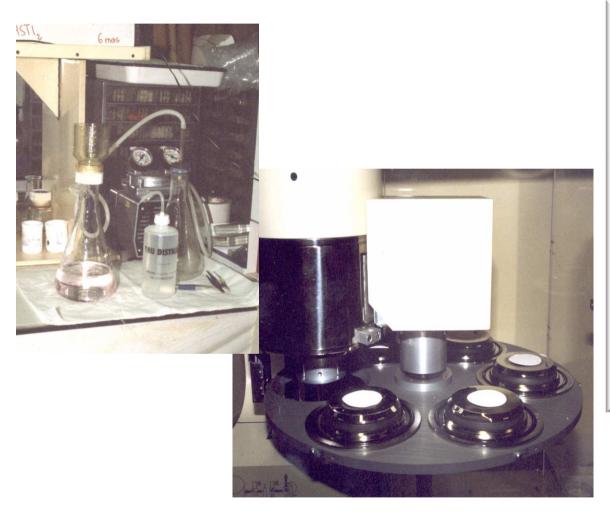
^{+ :} favorise la coprécipitation ; – : défavorise la coprécipitation ; 0 : sans influence

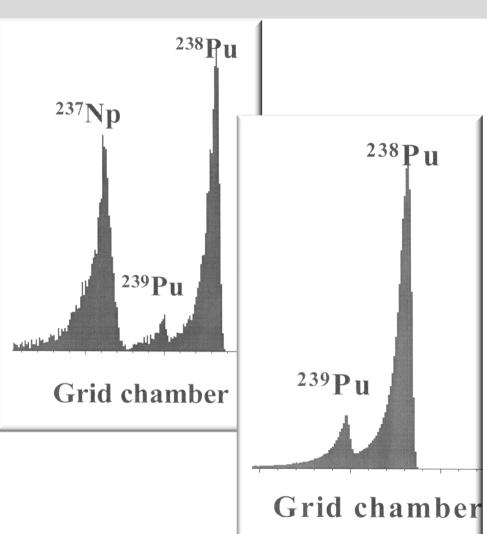
La coprécipitation – conditions de précipitation de LaF₃



Solubilité du La³⁺ en fonction du pH pour $C_{La} = 0.0138$ mM, en présence de fluorure $C_F = 430$ mM, et d'acide oxalique $C_{oxalique} = 19$ mM (courbe rouge), avec en plus des pyrophosphates $C_{pyro.} = 20$ mM (courbe bleue).

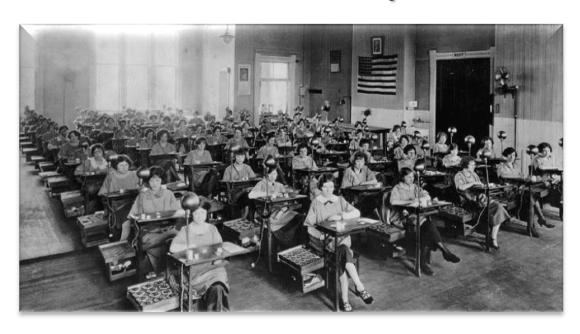
La coprécipitation – procédure simplifiée




Source d'isotopes du Th – filtration sous vide **avant** remplissage (x2).

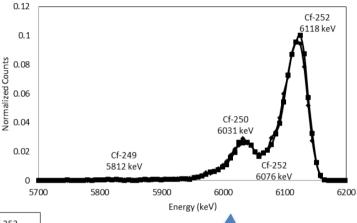
Jobbagy V. et al, Electrodeposition source preparation for 238 *U alpha source: parameter settings, EUR* 25353 (2012) *doi:*10.2787/61226.

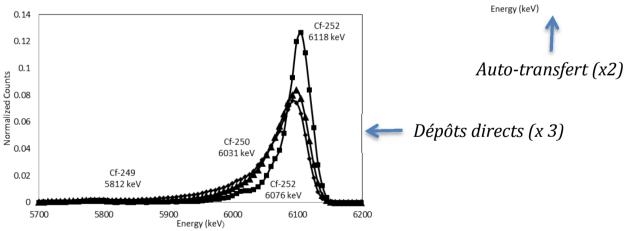
La coprécipitation – matériel et performances


Autres Techniques

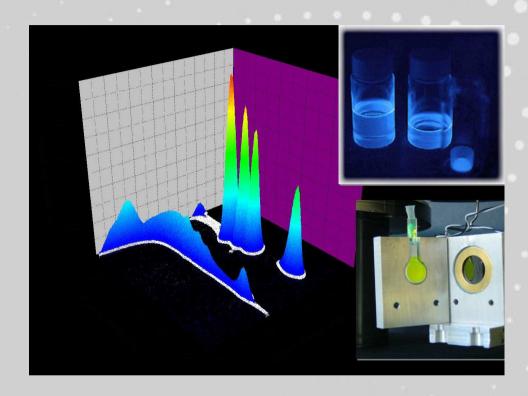
La peinture

- Laque diluée + actinides,
- Calcination,
- Plusieurs couches possible.




Auto-transfert (cas du ²⁵²Cf, ²³¹Pa)

 enceinte sous vide et substrat (source secondaire) en regard de la source principale

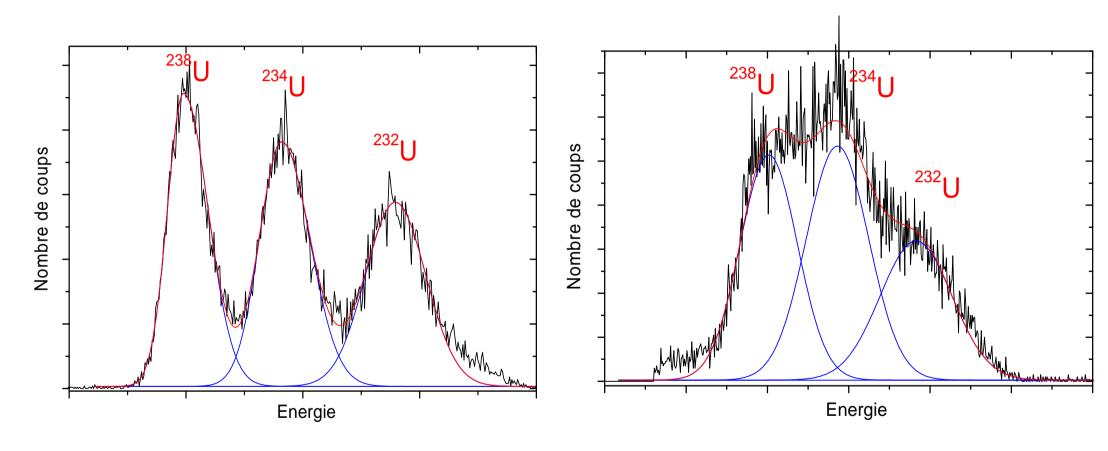

Rendement 252 Cf = (2,9 ± 0,5).10 $^{-3}$ %!

Conditions*: $A \approx 100 \, Bq$, $d = 75 \, \mu m$, $p = 160 \, mm \, Hg \, (0,2 \, atm.)$, $t = 24 - 65 \, h$.

Pauker, S., Steiger-Shafrir, N. H., 1971. Transfer Properties of 252Cf and their Use for Source Preparation. Nuclear Instruments and Methods, 91, pp. 557-563 * Algutifan N.J. et al, Comparison of Cf-252 thin-film sources prepared by evaporation or self-transfer, Oak Ridge.

La scintillation liquide alpha

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr



La scintillation liquide alpha – principes

- Principe: conversion de l'énergie cinétique de la particule chargée en photons de lumière.
 - Nécessite des molécules aromatiques généralement non miscibles à l'eau.
 - Suppose une méthode d'incorporation des émetteurs alpha dans le cocktail scintillant.
 - ⇒ fabrication d'une source liquide.

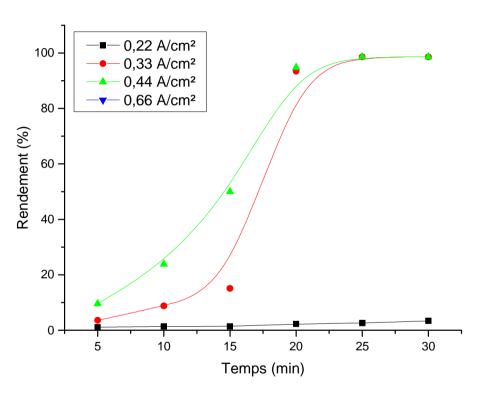
- Par extraction liquide-liquide
 - meilleure résolution
 - nombreuses manipulations
 (ajustement milieu, extraction, centrifugation, dégazage)
- Par mélange direct incluant un émulsifiant
 - simplicité
 - très mauvaise résolution, large quantité de cocktail

La scintillation liquide alpha – exemples de résolution

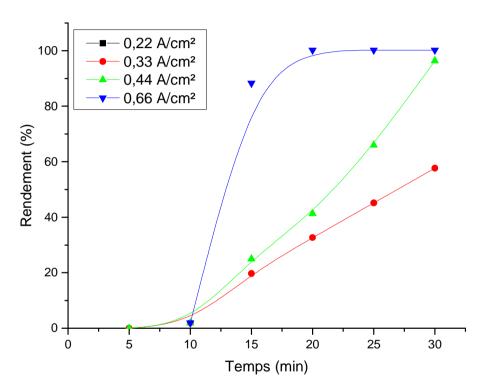
Cocktail non miscible à l'eau \rightarrow faible quenching

Cocktail miscible à l'eau → fort quenching

Remarque : les détails théorique et pratique de cette technique sont donnés dans un autre cours.



Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

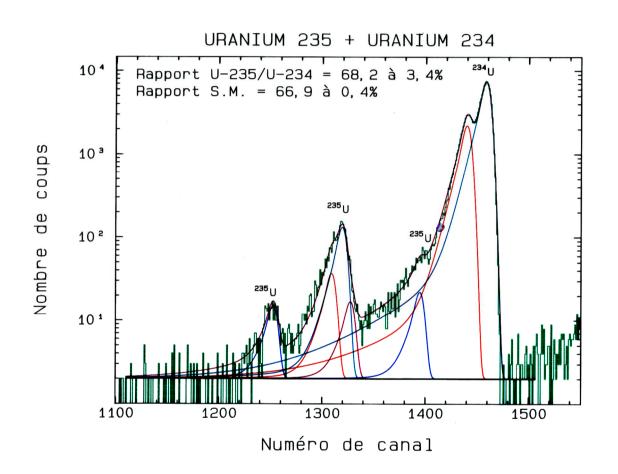


L'électroprécipitation des actinides – effet de la densité de courant

Oxalate d'ammonium 0,30 M volume 6 ml surface 4,5 cm²

Oxalate d'ammonium 0,45 M volume 6 ml surface 4,5 cm²

L'électroprécipitation des actinides – géométrie des anodes



Klemencic H. et al, Alpha-spectrometric thin source preparation with emphasis on homogeneity, Appl. Radiat. Isot. 68 (2010) 1247-1251

L'électroprécipitation des actinides – traitements mathématiques des spectres

Ex : méthode de Gauss-Newton

On cherche les solutions de Δx (minimisation des k paramètres des fonctions Gauss + traînes) en résolvant :

$$\Delta x^{(k)} = -\left[\nabla^2 f(x^{(k)})\right]^{-1} \cdot \nabla f(x^{(k)})$$

$$\Delta b_{j}^{(k)} = p^{(k)} \frac{\sum_{i=1}^{M} \frac{\partial Y_{i}^{(k-1)}}{\partial b_{j}} \cdot \frac{e_{i}^{(k-1)}}{y_{i}}}{\sum_{i=1}^{M} \left(\frac{\partial Y_{i}^{(k-1)}}{\partial b_{j}}\right)^{2} \cdot \frac{1}{y_{i}}}$$

Ansoborlo, E.; Aupiais, J.; Baglan, N., Mesure du rayonnement alpha. TEC & DOC: Paris, 2012; p 186.

La coprécipitation – données thermodynamiques pour le système LaF₃

Objectif : $La^{3+} + 3F^- \rightarrow LaF_3 \downarrow$

Réaction parasites :
$$La^{3+} + 3C_2O_4^{2-} \rightarrow La(C_2O_4)_3^{3-}$$

$$La^{3+} + 2P_2O_7^{4-} \longrightarrow La(P_2O_7)_2^{5-}$$

Complexation	Constante	Acidité	Constante
$La^{3+} + F^- \rightleftharpoons LaF^{2+}$	$logK_1 = 2,68$	$La^{3+} + H_2O \rightleftharpoons LaOH^{2+} + H^+$	$logK_1^* = -8,81$
$La^{3+} + 2F^- \rightleftharpoons LaF_2^+$	$log\beta_2 = 5,17$	$La^{3+} + 2H_2O \rightleftharpoons La(OH)_2^+ + 2H^+$	$log\beta_2^* = -17,5$
$La^{3+} + 3F^- \rightleftharpoons LaF_3$	$log\beta_3 = 7,85$	$La^{3+} + 3H_2O \rightleftharpoons La(OH)_3 + 3H^+$	$log\beta_3^* = -30,3$
	$logK_s = -15,38$		$logK_s = -22$
		$HF \rightleftharpoons H^+ + F^-$	$log K_a = -3,178$
$La^{3+} + C_2O_4^{2-} \rightleftharpoons LaC_2O_4^+$	$logK_1 = 3,91$	$H_2C_2O_4 \rightleftharpoons HC_2O_4^- + H^+$	$logK_{a_1} = -3,55$
$La^{3+} + 2C_2O_4^{2-} \rightleftharpoons La(C_2O_4)_2^{-}$	$log\beta_2 = 7,39$	$H_2C_2O_4 \rightleftharpoons C_2O_4^{2-} + 2H^+$	$log\beta_{a_2} = -4,57$
$La^{3+} + 3C_2O_4^{2-} \rightleftharpoons La(C_2O_4)_3^{3-}$	$log\beta_3 = 9,91$		
$La^{3+} + P_2O_7^{4-} \rightleftharpoons LaP_2O_7^{-}$	$logK_1 = 16,72$	$H_4P_2O_7 \rightleftharpoons H_3P_2O_7^- + H^+$	$logK_{a_1} = -8,37$
$La^{3+} + 2P_2O_7^{4-} \rightleftharpoons La(P_2O_7)_2^{5-}$	$log\beta_2 = 18,57$	$H_4 P_2 O_7 \rightleftharpoons H_2 P_2 O_7^{2-} + 2H^+$	$log\beta_{a_2} = -14,41$
		$H_4 P_2 O_7 \rightleftharpoons H P_2 O_7^{3-} + 3H^+$	$\log \beta_{a_3} = -16,21$
		$H_4 P_2 O_7 \rightleftharpoons P_2 O_7^{4-} + 4H^+$	$log\beta_{a_4} = -17,01$