

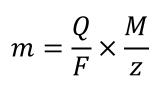
Electrophorèse Capillaire

Licence Métrologie Chimique et Nucléaire

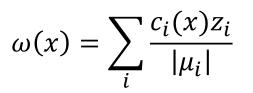
J. AUPIAIS CEA, DAM, DIF 91297 Arpajon

Historique rapide


Année	Auteur	Contribution
1791	Faraday	Loi d'électrolyse
1856	Hittorf	Définition du nombre de transport $t_{\scriptscriptstyle +\!\scriptscriptstyle j}$ $t_{\scriptscriptstyle -\!\scriptscriptstyle j}$
1897	Kohlrausch	Fonction de régulation, migration
1930	Tiselius	Electrophorèse – prix Nobel 1948
1967	Hjertén	Electrophorèse capillaire de zone
1981	Jorgenson	Electrophorèse capillaire (75 μm)
1989		Appareils commerciaux

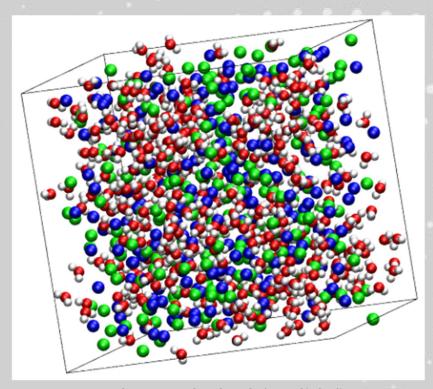

Hjertén

Tiselius


Kohlrausch

Faraday

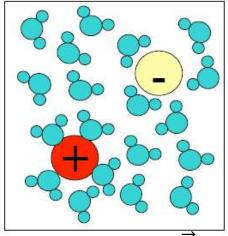
$$t_{+,-} = \frac{v_{+,-}}{v_+ + v_-}$$



Hittorf

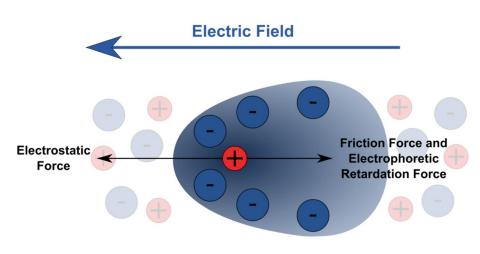
Avantages de la CE

- Capillaire 20 100 μm diamètre interne
- Tension 0 -30 kV (jusqu'à 500 V/cm)
- Effet Joule limite la tension maximale
- Très grande efficacité (N > 10⁵ 10⁶)
- Temps d'analyse court
- Détection in situ miniaturisée (DAD, LIF, Abs.) ou ex situ (MS)
- Faible quantité injectée (1 50 nL)
- Opère en phase aqueuse ou organique
- Très automatisé


Solution aqueuse de CsCl 1 mol.L⁻¹, 27 molécules d'eau pour un ion.

Aspects théoriques

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr


Aspect théorique

Sans champ \vec{E}

Onsager

Avec champ \vec{E}

Les ions sont des particules chargées entourées d'une atmosphère ionique mais ils ont aussi un mouvement brownien

Migration des ions sous \overrightarrow{E}

En appliquant une différence de potentiel V entre deux électrodes distantes de d, on crée un champ électrique:

$$E = \frac{V}{d} (V. cm^{-1})$$

La force électrique qui s'exerce sur un ion de charge $z_i e$ soumis au champ E, sera donnée par :

$$F = z_i \cdot e \cdot E$$

Dans un liquide de viscosité η , la force de frottement est donnée par la **loi de Stokes**, où r est le rayon de l'ion hydraté.

$$F = 6\pi \cdot \eta \cdot r \cdot v$$

L'équilibre est rapidement atteint entre la force de frottement et l'accélération par le champ électrique tel que l'ion atteint instantanément une vitesse uniforme v_0 :

$$z_i \cdot e \cdot E = 6\pi \cdot \eta \cdot r \cdot v_0$$

D'où :
$$v_0 = \frac{z_i \cdot e \cdot E}{6\pi \cdot \eta \cdot r_i}$$
.

Puisque la mobilité est définie comme : $\mu_i = \frac{v_0}{E}$

$$\mu_i = \frac{z_i \cdot e}{6\pi \cdot \eta \cdot r_i} \left(m^2 V^{-1} s^{-1} \right)$$

Traitement de Onsager-Fuoss

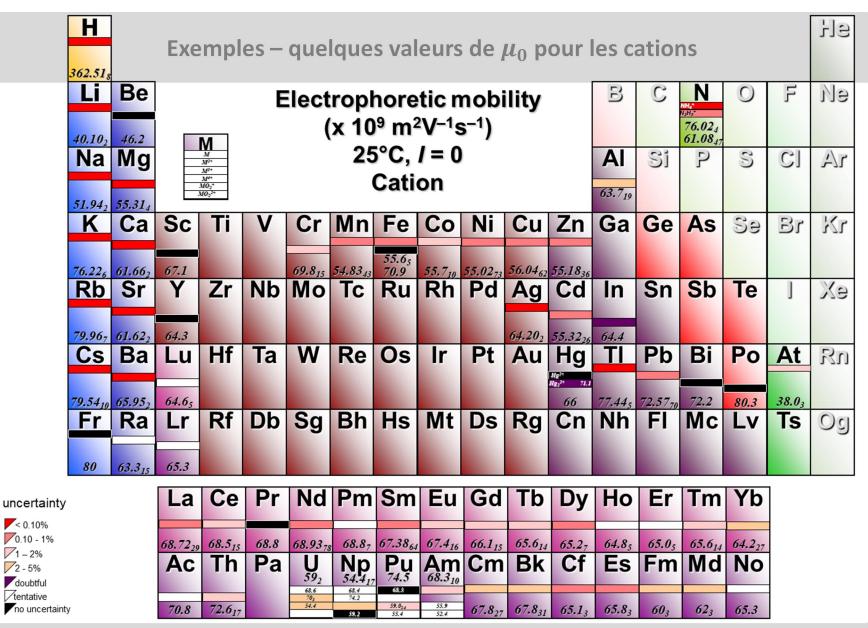
Dépendances multiples :

- force ionique, viscosité, température, permittivité électrique.

Domaine de validité pour les théories de transport des ions : I < 0,1 M, pas de formule explicite aux concentrations supérieures.

Traitement de Onsager & Fuoss (pour un nombre quelconque d'ions):

$$\mu(I) = \mu_0 + \underbrace{\left(\frac{e^3}{12\pi} \sqrt{\frac{N_{AV}}{(\varepsilon kT)^3}} \cdot z \cdot \mu_0 \sum_{n=0}^{\infty} C_n R^{(n)}\right)}_{n=0} + \underbrace{\left(\frac{e^2}{6\pi\eta} \sqrt{\frac{N_{AV}}{\varepsilon kT}} |z|\right)}_{1 + \frac{Ba}{\sqrt{2}} \sqrt{I}}$$


Effet de Relaxation (correction électrostatique)

= freinage électrostatique dû à l'atmosphère ionique

Effet Electrophorétique (correction hydrodynamique)

= freinage hydrodynamique dû à la friction

 $\sqrt{1-2\%}$

2 - 5% doubtful

Exercice – calcul d'une mobilité électrophorétique

$$v = \mu \times E (m. s^{-1})$$

μ en m².V⁻¹.s⁻¹ E en V.m⁻¹

Exemple : Na⁺ μ_0 = 51,94 10⁻⁵ cm².V⁻¹s⁻¹

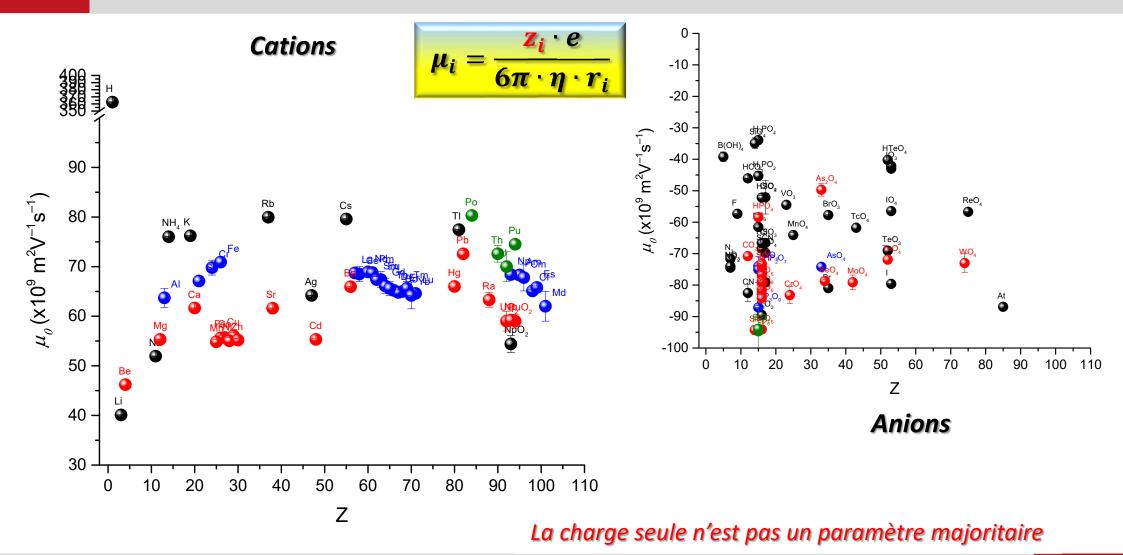
 $\Delta V = 25000 \text{ V}$

L = 60 cm


Vitesse de l'ion sodium ?

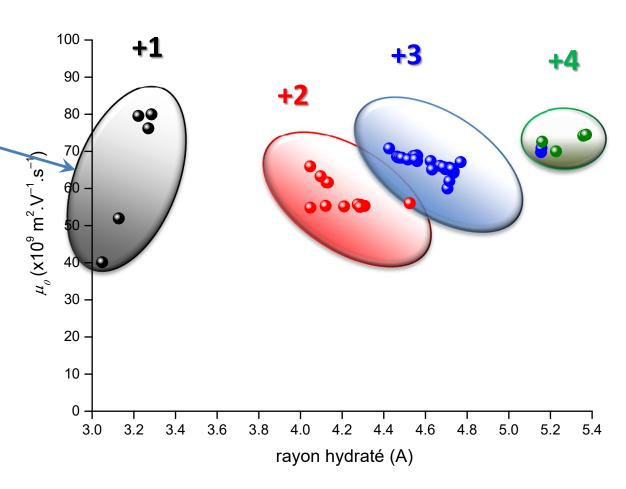
$$v =$$

$$m.s^{-1}$$


Temps de migration pour parcourir la totalité du capillaire ?

$$t = s$$

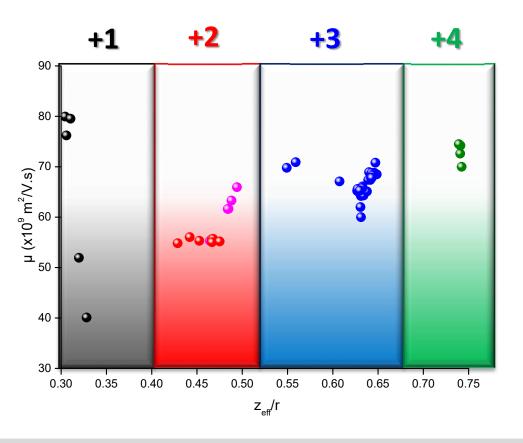
Paramètres influents sur μ_0 – la charge

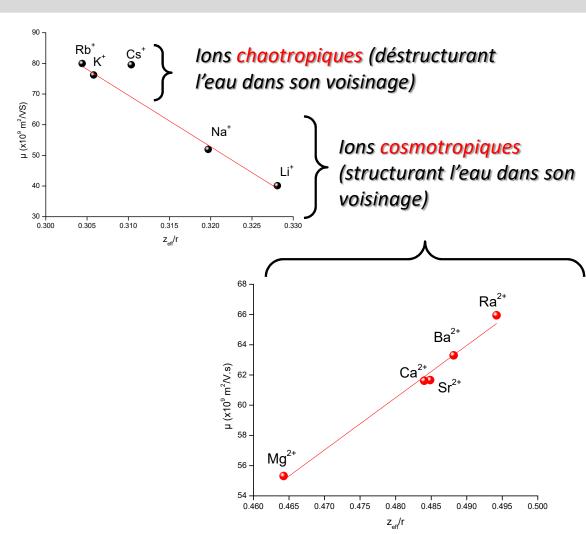

Paramètres influents sur μ_0 – la taille (rayon d'hydratation)

Exception!

Règle:

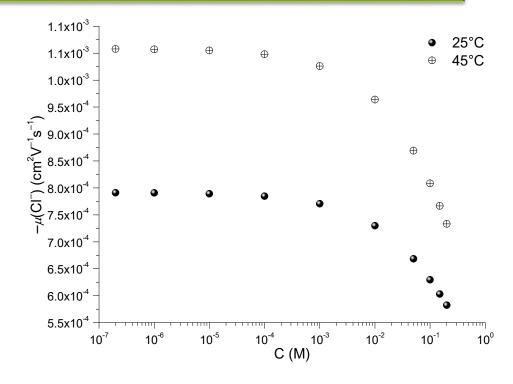
- $\mu_i \searrow \text{quand } r_i \nearrow : \text{assez vrai}$ pour z = +2 et +3
- Faux pour z = +1 (effet inverse)




Plus un ion est gros, pour une charge donnée, plus il est lent.

Paramètres influents sur μ_0 – rapport charge effective sur rayon d'hydratation





Paramètres influents sur μ_0 – les effets du milieu 1) température

$$\mu(I,T) = \mu_{\mathbf{0}}(T) - \left(\frac{e^3}{12\pi} \sqrt{\frac{\mathcal{N}_{AV}}{(\varepsilon kT)^3}} \cdot z \cdot \mu_{\mathbf{0}}(T) \sum_{n=0}^{\infty} C_n R^{(n)} + \frac{e^2}{6\pi\eta} \sqrt{\frac{\mathcal{N}_{AV}}{\varepsilon kT}} \cdot |z| \right) \frac{\sqrt{I}}{1 + \frac{Ba}{\sqrt{2}} \sqrt{I}}$$

$\Delta \mu \approx 2$ % par °C

$$\mu_{CI}(0, 25;45) = f(NaCI)$$

Paramètres influents sur μ_0 – les effets du milieu 2) permittivité

La **permittivité**, plus précisément **permittivité diélectrique**, est une propriété physique qui décrit la réponse d'un milieu donné à un <u>champ électrique</u> appliqué.

Permittivité relative (par rapport au vide)

$$\varepsilon = \varepsilon_0 \times \varepsilon_r$$

ε : permittivité du matériau, de la solution

 ε_0 : permittivité du vide ε_r : permittivité relative

$$\varepsilon_0 = 8,854187 \times 10^{-12} \ F \cdot m^{-1}$$

Permittivité relative du vide ?

Permittivité relative de l'eau = 78,54

Paramètres influents sur μ_0 – les effets du milieu 2) permittivité ...

$$\mu(I,T) = \mu_0(T) - \left(\frac{e^3}{12\pi} \sqrt{\frac{\mathcal{N}_{AV}}{(\varepsilon kT)^3}} \cdot z \cdot \mu_0(T) \sum_{n=0}^{\infty} C_n R^{(n)} + \frac{e^2}{6\pi\eta} \sqrt{\frac{\mathcal{N}_{AV}}{\varepsilon kT}} \cdot |z|\right) \frac{\sqrt{I}}{1 + \frac{Ba}{\sqrt{2}}\sqrt{I}}$$

¿ dépend de :

- La température
- La nature du sel
- La concentration

Les données sont rares!

Quelques expressions:

$$\varepsilon = \varepsilon_W - \delta C$$

$$\varepsilon = \varepsilon_W - \delta C + \gamma \sqrt[3]{C}$$

$$\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{\varepsilon_W - 1}{\varepsilon_W + 2} + aC$$

I < 0,2 M, la décroissance est faible (≈2,5% à 25 °C)</p>

Permittivité – quelques sels et relations empiriques

Sel	Equation	Référence
H ₂ O	$\varepsilon_W(t) = 78,54[1 - 4,579.10^{-3}(t - 25) + 1,19.10^{-5}(t - 25)^2 - 2,8.10^{-9}(t - 25)^3]$	Lileev A. et al., J. mol. Liq., 150 (2009) 4-8
NH ₄ ClO ₄	$ln\frac{\varepsilon(t,C)}{\varepsilon_W(t)} = C[-0.1282363750 - 2.6298.10^{-3}t + 1.04255.10^{-4}t^2]$	Lileev A. et al., J. mol. Liq., 150 (2009) 4-8
NaOH	$\varepsilon(25, C) = 78,33 - 19,928504C + 6,119554\sqrt[3]{C}$	Buchner R. et al., J Phys Chem B, 103 (1999) 11186-11190
NaClO ₄	$\varepsilon(25, C) = 78,33 - 14,517662C + 2,985822\sqrt[3]{C}$	Wachter W. et al., J Phys Chem A, 109 (2005) 8675-8683
Na ₂ SO ₄	$\varepsilon(25, C) = 78,33 - 41,020752C + 15,573503\sqrt[3]{C}$	Buchner R. et al., J Phys Chem B, 103 (1999) 11186-11190
KCI	$\varepsilon(26,6;0,0037) = 79,24 \pm 0,88$ $\varepsilon(26,6;0,014) = 79,01 \pm 0,33$	Drake F.H., et al., Phys. Rev., 35 (1930) 613-622
Tout sel 0 < C < 1 M	$egin{aligned} arepsilon = 78,54 - \delta \mathcal{C} \ \delta = \delta_+ + \delta \end{aligned}$	Marcus Y., J. Solution Chem. 42 (2013) 2354-2363

Valeurs expérimentales pour $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{w} - \boldsymbol{\delta}\boldsymbol{C}$

Cation	δ_+	Anion	δ
H ₃ O ⁺	16	OH-	8
Li ⁺	8	F ⁻	4
Na ⁺	7	cı-	5
K +	6	Br ⁻	6
Rb ⁺	6	<i>I</i> -	7
Cs ⁺	5	NO_3^-	5
Ag^+	1	ClO ₄	10
NH_4^+	4	BF_4^-	10
Mg^{2+}	24	HCO_2^-	4
Ca^{2+}	17	SO ₄ ²⁻	(7)
Sr ²⁺	14		
Ba^{2+}	10		
Cd ²⁺	20		
Y ³⁺	22		
La^{3+}	25		

Paramètres influents sur μ_0 – les effets du milieu 3) viscosité

$$\mu(I,T) = \mu_0(T) - \left(\frac{e^3}{12\pi}\sqrt{\frac{\mathcal{N}_{AV}}{(\varepsilon kT)^3}} \cdot z \cdot \mu_0(T) \sum_{n=0}^{\infty} C_n R^{(n)} + \frac{e^2}{6\pi \eta}\sqrt{\frac{\mathcal{N}_{AV}}{\varepsilon kT}} \cdot |z|\right) \frac{\sqrt{I}}{1 + \frac{Ba}{\sqrt{2}}\sqrt{I}}$$

η dépend de:

- La température
- La nature du sel
- La concentration

Les données sont nombreuses!

« Extended Jones-Dole equation »

$$\eta = \eta_0 \left(1 + a\sqrt{C} + bC + cC^2 \right)$$

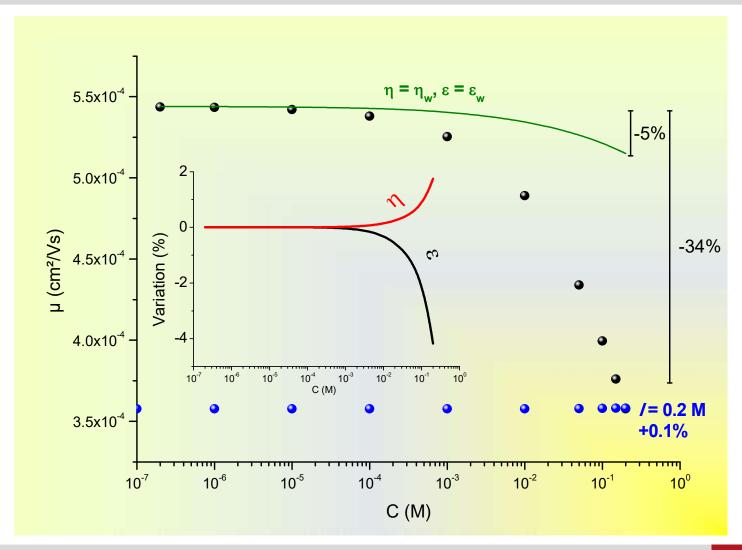
Autre modèle (T, C)

$$\ln \frac{\eta(T)}{\eta_{water}(T)} = aC + bC^2 + cC^3$$

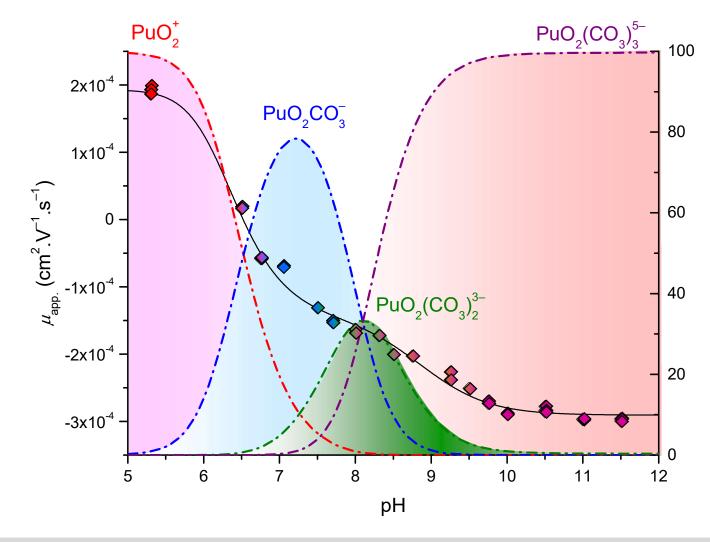
$$a = a_0 + a_1 T + a_2 T^2$$

 $b = b_0 + \cdots$

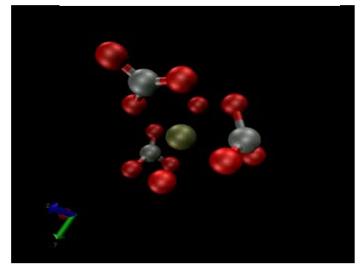
$$c = c_0 + \cdots$$


Viscosité – quelques sels et relations empiriques

Sel	Equation	Référence
H_2O $0 < t < 20$ $20 < t < 100$	$\log \eta_W = \frac{1301}{998,333 + 8,1855(t - 20) + 0,00585(t - 20)^2} - 1,30233$ $\log \frac{\eta_W}{\eta_{20}} = \frac{1,3272(20 - t) - 0,001053(t - 20)^2}{t + 105}$	Hardy R.C., Cottingto R.L., J. Res. NBS 42 (1949) 573 Swindells J.F., NBS, unpublished results
NaClO ₄	$\eta(25,C) = \eta_W \left[1 + 0.00702\sqrt{C} + 0.0151C + 0.029507C^2 \right]$	Nightingale E.R., J. Phys. Chem, 63(5) (1959) 742-743
NaCl	$\eta(25,C) = \eta_W \left[1 + 0.007271\sqrt{C} + 0.076922C + 0.011167C^2 \right]$ $ln \frac{\eta(t,C)}{\eta_W(t)} = \left[(-0.21319213 + 1.3651589.10^{-3}t - 1.2191756.10^{-6}t^2) \right.$ $\times C$ $+ (0.069161945 - 2.7292263.10^{-4}t$ $- 2.085244810^{-7}t^2) \times C^2 + (-2.5988855.10^{-3}$ $- 7.7989227.10^{-6}t) \times C^3 \right]$	Hai-Lang Z., Shi-Jun H., J. Chem. Eng. Data, 41 (1996) 516-520 Mao S., et al., Int. J. Thermophys., 30 (2009) 1510-1523
NaNO ₃	$\eta(25,C) = \eta_W \left[1 + 0.0005880\sqrt{C} - 0.039245C + 0.022416C^2 \right]$	Janz G.J. et al., J. Phys. Chem., 74(6) (1970) 1285-1289

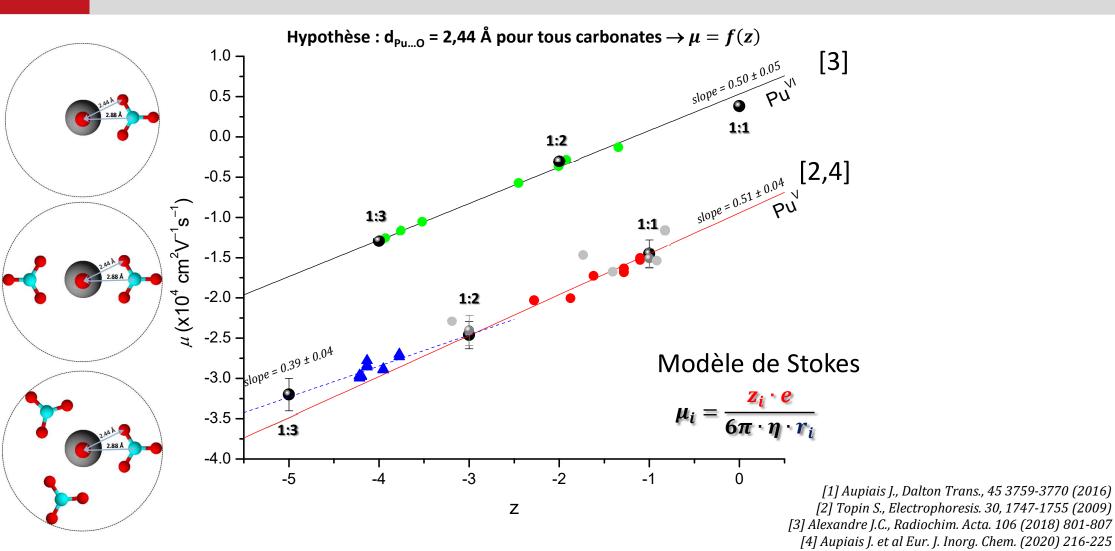

Paramètres influents sur μ_0 – exemple des effets combinés de la permittivité et de la viscosité

Variation de $\mu_{NpO_2^+}$ à 25 °C, en milieu NaCl [$10^{-7} - 0.2$].

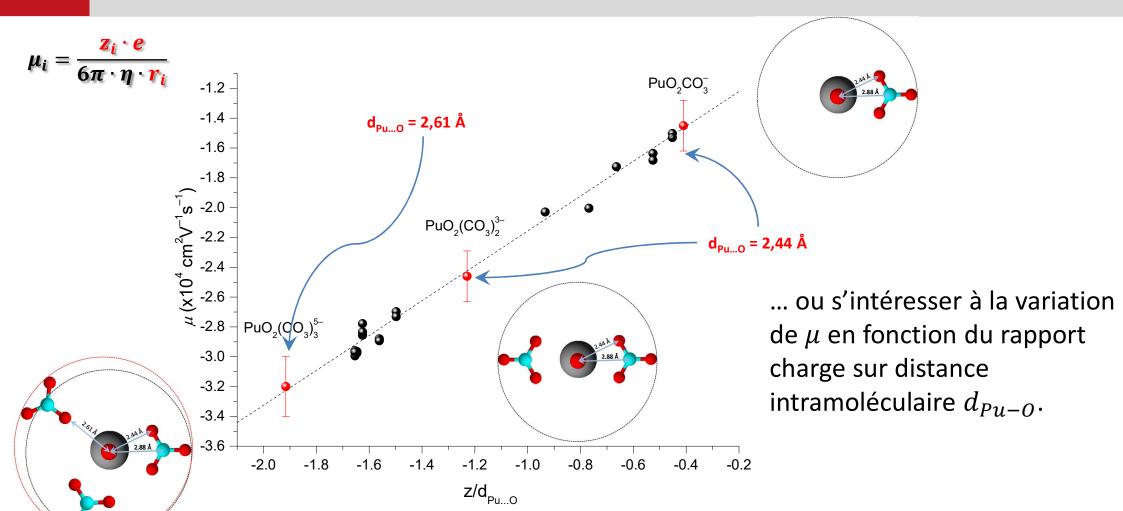

Contrôle des paramètres influents → accès à des informations structurales

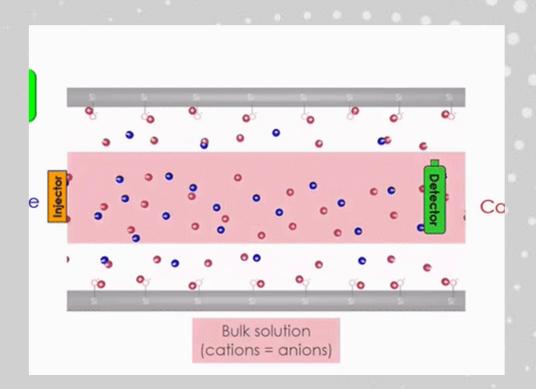
$$PuO_2^+ + nCO_3^{2-} \rightleftharpoons PuO_2(CO_3)_n^{1-2n}$$

$$\mu_i = \sum_i \alpha_i \mu_i$$

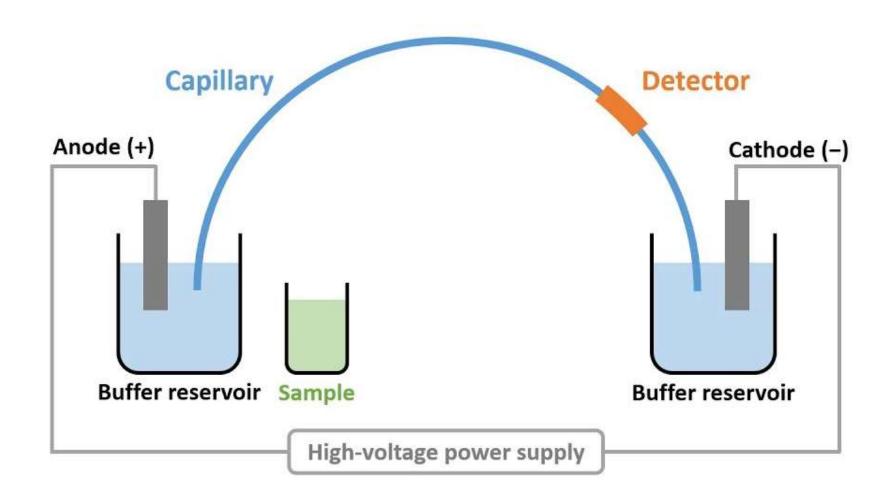

On peut aussi s'intéresser à la variation de μ en fonction d'autres paramètres comme la charge moyenne du complexe.

Dynamique moléculaire quantique (ex. en phase gazeuse)




Contrôle des paramètres influents \rightarrow accès à des informations structurales ...

Contrôle des paramètres influents \rightarrow accès à des informations structurales ...



Electrophorèse capillaire - principes

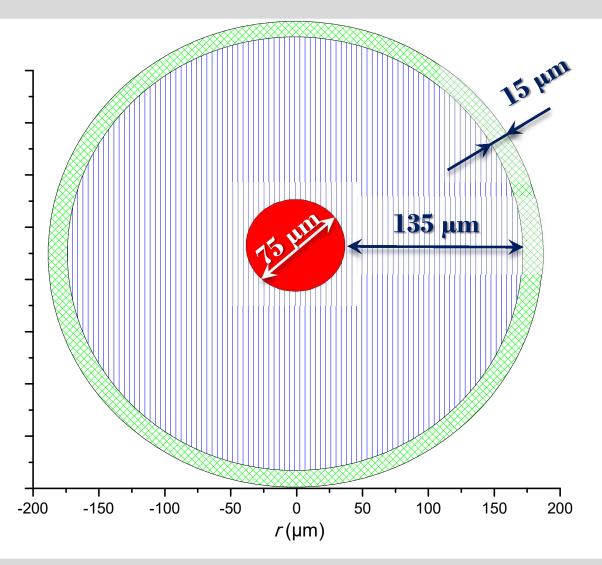

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr


Schéma simplifié d'un appareil d'électrophorèse capillaire

Capillaire en silice fondue

Caractéristiques générales

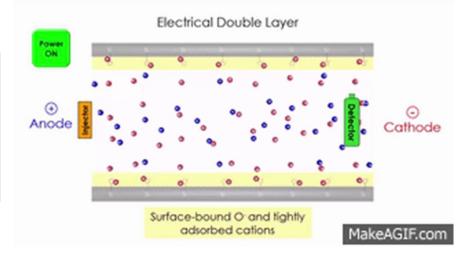
Diamètre externe = 360 μ m Diamètre interne = 20–100 μ m Polyimide = 15 μ m

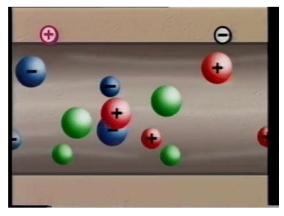
Longueur = 30-100 cm

$Si(OH)_4 \Rightarrow SiO(OH)_3^- + H^+$ pK = 9,81 ± 0,02

En pratique, plage de valeurs plutôt qu'une valeur unique ! (interactions $(d-p)\pi$ chaîne Si-O)

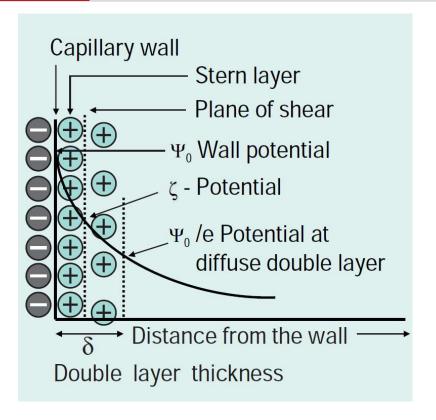
Nature : c'est un phénomène de transport des molécules de solvant dû à l'existence d'une double couche électrique à une interface solide-liquide.


$$v_{eo} = -\frac{\varepsilon_r \varepsilon_0 \zeta}{\eta} E = \mu_{eo} E$$


 μ_{eo} : mobilité électroosmotique

 ε_r et η : constante diélectrique et viscosité du solvant

 ε_0 : permittivité du vide (8,85.10⁻¹² $C^2N^{-1}m^{-2}$)


ζ: potentiel zêta

Le potentiel zêta ζ

$$oldsymbol{v_{eo}} = -rac{oldsymbol{\kappa^{-1}}oldsymbol{\sigma}}{oldsymbol{\eta}} oldsymbol{E}$$

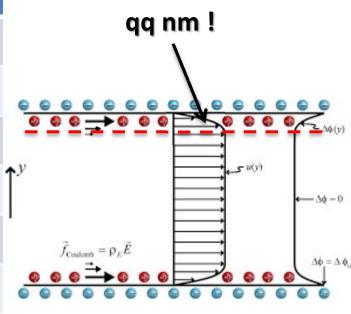
Définition potentiel ζ :

$$\zeta = \frac{\kappa^{-1}\sigma}{\varepsilon_r \varepsilon_0}$$

 δ : épaisseur de la double couche, σ : densité de charges par unité de surface.

Double couche κ^{-1} :

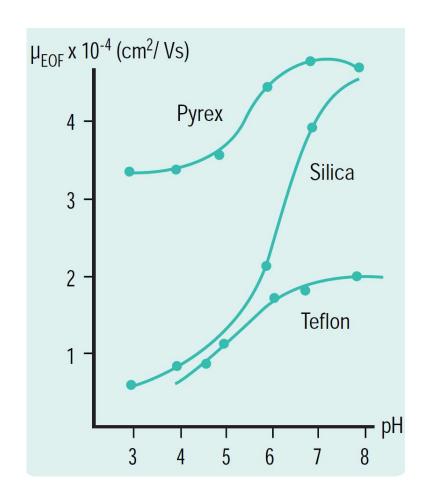
$$\kappa^{-1} = \sqrt{\frac{\varepsilon_r \varepsilon_0 RT}{2c_E z^2 F^2}}$$

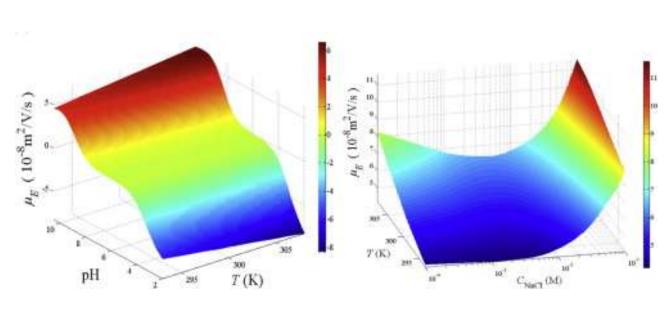

R: constante des gaz parfaits, T: température absolue, z et c_E : charge et concentration de l'électrolyte.

Valeurs typiques du potentiel zêta

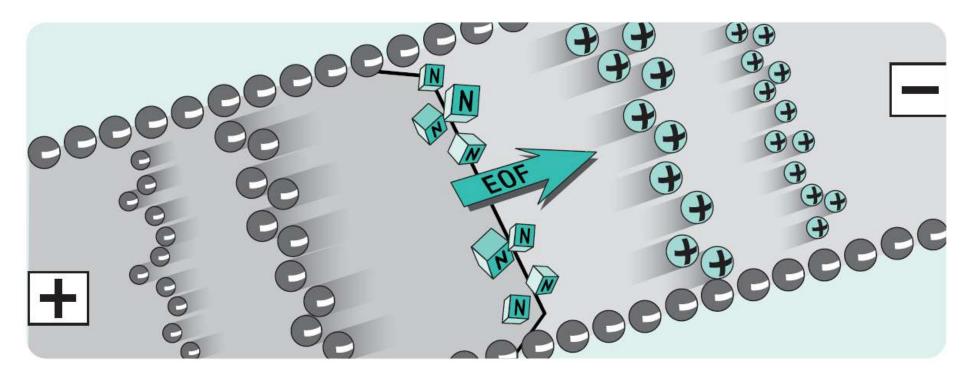
Electrolyte symétrique Electrolyte asymétrique

C _E	Z+/Z ⁻	κ^{-1} (nm)	Z+/Z ⁻	κ^{-1} (nm)
0,001	1:1	9,61	1:2, 2:1	5,56
	2:2	4,81	1:3, 3:1	3,93
	3:3	3,20	2:3, 3:2	2,49
0,01	1:1	3,04	1:2, 2:1	1,76
	2:2	1,52	1:3, 3:1	1,24
	3:3	1,01	2:3, 3:2	0,787
0,1	1:1	0,961	1:2, 2:1	0,556
	2:2	0,481	1:3, 3:1	0,393
	3:3	0,320	2:3, 3:2	0,249



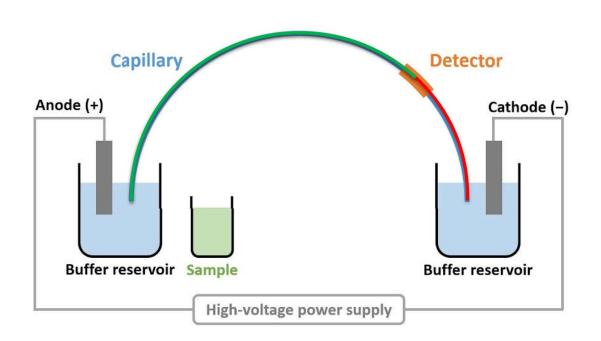

Profil de vélocité du flux électroosmotique indépendant du diamètre (jusqu'à 200-300 µM)

Variation de μ_{eo} en fonction du pH et de la température


Tseng S. et al, Theoretical study of temperature influence on the electrophoresis of a pH-regulated polyelectrolyte, Analytica Chimica Acta, 847 (2014) 80-89.

Avantage d'avoir un flux électroosmotique

Le flux eo met en mouvement toutes les espèces (neutres comprises), indépendamment de la charge dans une même direction.

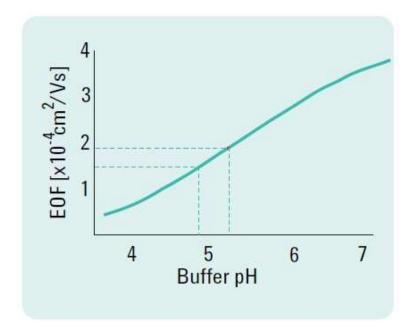


Sans traitement de la surface interne du capillaire, le flux eo est toujours dirigé vers la cathode.

Le temps de migration avec des appareils commerciaux

Longueur totale du capillaire dans lequel est appliqué une tension V : L Longueur jusqu'à la fenêtre du détecteur : L

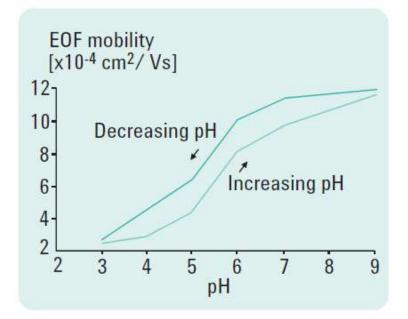
$$t_i = \frac{l}{v_i} = \frac{l \times L}{(\mu_{eo} + \mu_i) \times V}$$


$$\mu_{ep} = \frac{L \cdot l}{V} \left(\frac{1}{t_i} - \frac{1}{t_{eo}} \right)$$

l : distance entre le point d'injection et le point de détection,

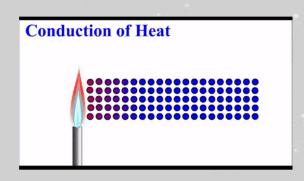
L: longueur totale du capillaire,

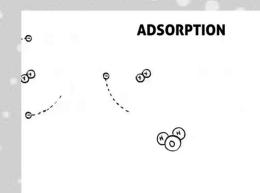
V : tension appliquée.

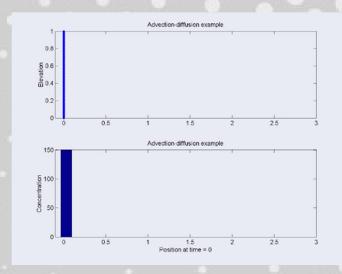


pH 5
$$\rightarrow$$
 5,18 : $\mu_{eo} = +25\%$

- Electrolyte tampon obligatoire
- Si analyte possède un pKa, alors l'électrolyte doit tamponner à


$$pKa - 1 < pH < pKa + 1$$


pH Effet mémoire


Ne pas utiliser le même capillaire pour des expériences à pH très acide et à pH très basique.

De préférence, utiliser un capillaire par méthode

Effets dispersifs

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Efficacité:

Hauteur de plateaux théoriques :

$$H = \frac{\sigma_l^2}{l}$$

 σ_l^2 : variance spatiale après un parcours l

Nombre de plateaux théoriques :

$$N = \frac{1}{H}$$

$$\begin{split} \sigma_l^2 &= \sigma_{Diffusion}^2 \\ &+ \sigma_{injection}^2 \\ &+ \sigma_{Température}^2 \\ &+ \sigma_{Adsorption}^2 \\ &+ \sigma_{D\acute{e}tection}^2 \\ &+ \sigma_{Electrodispersion}^2 \\ &+ \cdots \end{split}$$

Particularité des capillaires : pas ou peu de diffusion radiale, ni de convection (longitudinale)

Dispersion – diffusion

Rappel:

$$\sigma_D^2 = 2Dt$$

Dans le cas de l'électrophorèse capillaire :

$$D = \frac{RT}{zF} \mu_{ep}$$

$$\sigma_D^2 = 2Dt = \frac{2D \times lL}{\mu_{app}V}$$

$$\sigma_D^2 = \frac{2D \times lL}{\mu_{app} V} = \frac{2Dl}{\mu_{app} E}$$

$$N = \frac{1}{H} = \frac{l}{\sigma_D^2}$$

$$N = rac{\mu_{app} E}{2D}$$

 σ_{l}^{2} $= \sigma_{Diffusion}^{2}$ $+ \sigma_{injection}^{2}$ $+ \sigma_{Température}^{2}$ $+ \sigma_{Adsorption}^{2}$ $+ \sigma_{Détection}^{2}$ $+ \sigma_{Electrodispersion}^{2}$ $+ \cdots$

 $D (x 10^{-5} cm^2/s)$

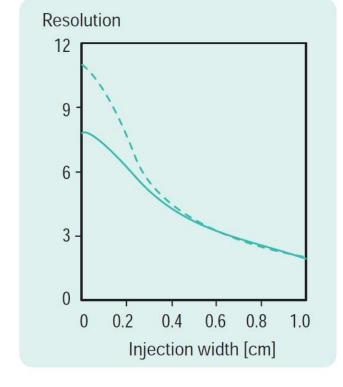
3.05
3.05
1.48
1.06
0.66
0.11
0.069
0.0046

Table 1.2 Diffusion coefficients of selected molecules (in water, 25 °C).

Conséquences:

- Application de champ électrique élevé (E)
- Les grosses molécules auront une grande résolution (D ou μ_{ep})

Dispersion – injection

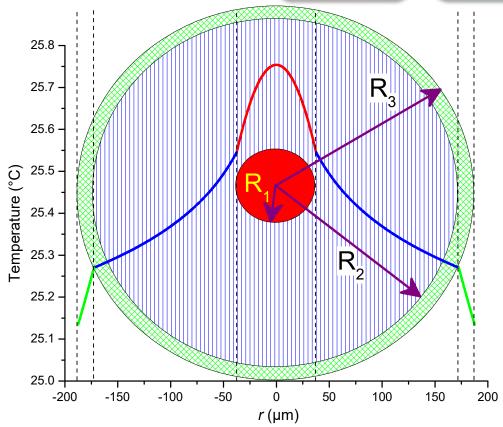

$$\sigma_{Inj}^2 = \frac{\omega_i^2}{12}$$

Injection length (mm)	N (D=10 ⁻⁵ cm ² /s)	$N (D=10^{-6} cm^2/s)$
1	238,000	1,400,000
2	164,000	385,000
10	81,000	112,000

 σ_{l}^{2} $= \sigma_{Diffusion}^{2}$ $+ \sigma_{injection}^{2}$ $+ \sigma_{Température}^{2}$ $+ \sigma_{Adsorption}^{2}$ $+ \sigma_{Détection}^{2}$ $+ \sigma_{Electrodispersion}^{2}$ $+ \cdots$

Idéalement, la longueur de l'injection (plug) devrait être inférieure à celle de la diffusion soit $\sqrt{2Dt}$.

En pratique, la largeur du plug d'injection doit être inférieur à 1-2 % de la longueur totale du capillaire



Calculation using: Upper curve = 20 kV, lower curve = 10 kV, $\mu_{e1} = 3.0 \times 10^{-4} \text{ cm}^2/\text{Vs},$ $\mu_{e2} = 3.15 \text{ cm}^2/\text{Vs},$ $\mu_{EOF} = 3.0 \times 10^{-4} \text{ cm}^2/\text{Vs},$ diffusion coefficients = $7 \times 10^{-5} \text{ cm}^2/\text{s}$.

Dispersion – température

$$T_0 - T_a = \frac{SeR_1^2}{2} \left(\frac{1}{2k_b} + \frac{1}{k_g} \ln \left(\frac{R_2}{R_1} \right) + \frac{1}{k_p} \ln \left(\frac{R_3}{R_2} \right) + \frac{1}{R_3 h} \right)$$

 T_0 température interne capillaire

 T_a température externe au capillaire

 $Se = I^2/k_e$; I densité de courant,

k_e conductivité électrique de l'électrolyte

k_h conductivité thermique de l'eau*

 k_a conductivité thermique du verre

 k_n conductivité thermique du polyimide

h coefficient de transfert de chaleur

σ_l^2
$=\sigma_{Diffusion}^{2}$
$+ \sigma_{injection}^2$
$+\sigma_{Température}^2$
$+ \sigma_{Adsorption}^{2}$
$+\sigma_{D\text{\'etection}}^2$
$+\sigma_{Electrodispersion}^{2}$
+

Quelques exemples de conductivité thermique

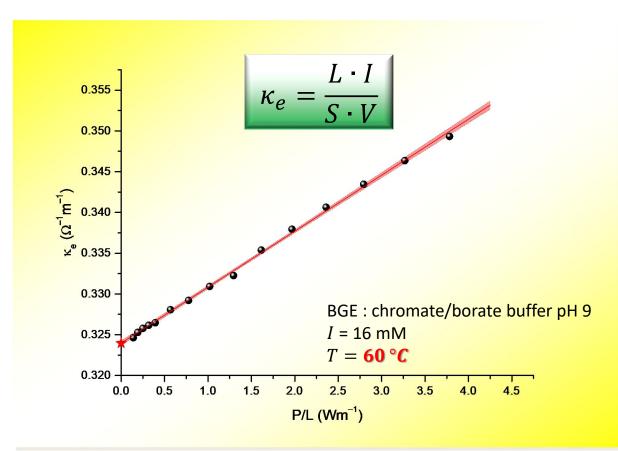
Matériau	Conductivité thermique
QUARTZ	1,4 W m ⁻¹ K ⁻¹
VERRE	1,0 W m ⁻¹ K ⁻¹
BOROSILICATE	
POLYIMIDE	0,15 W m ⁻¹ K ⁻¹
EAU	0,6 W m ⁻¹ K ⁻¹
METHANOL	0,2 W m ⁻¹ K ⁻¹
AIR	0,025 W m ⁻¹ K ⁻¹

*Eau (*T* en °C):

$$k_b = 0.5605 + 1.998.10^{-3}T - 7.765.10^{-6}T^2$$

Température – calcul de l'élévation de température

Méthode d'Evenhuis

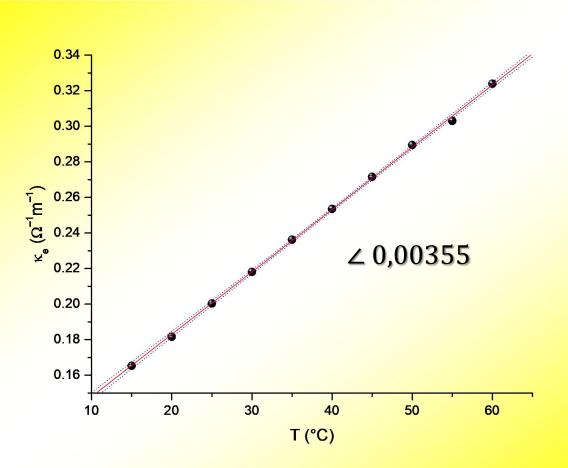

$$\Delta T = \frac{G_T - G_0}{\gamma G_0}$$

Avec:

 $G_T = \frac{I}{V}$: conductance de la solution subissant un effet Joule,

 G_0 : conductance de cette même solution sans effet Joule,

 ΔT : différence de température entre l'intérieur du capillaire et du système de refroidissement, γ : coefficient thermique de la conductivité électrique qui peut être déterminé expérimentalement à partir de la conductivité électrique κ_e de l'électrolyte extrapolée à une puissance nulle.


La conductivité électrique s'exprime en Siemens par mètre : $S.m^{-1} = \Omega^{-1}.m^{-1}$.

Evenhuis, C.J., Guijt, R.M., Macka, M., Marriott, P.J., Haddad, P.R.: Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis. Electrophoresis 26, 4333–4344 (2005)

Température – dépendance de la conductivité électrique à la température

$$\gamma = \frac{1}{\kappa_e} \frac{\partial \kappa_e}{\partial T}$$

Exemple:

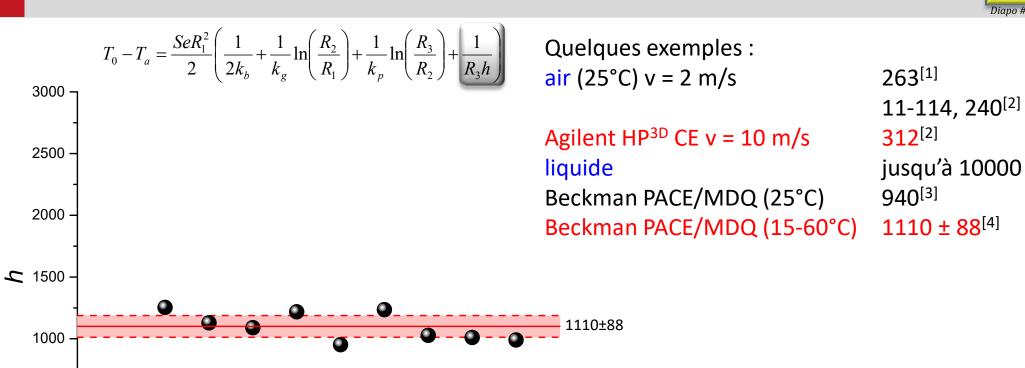
@ 25 °C
$$\kappa_e = 0.20036 \ \Omega^{-1} m^{-1}$$

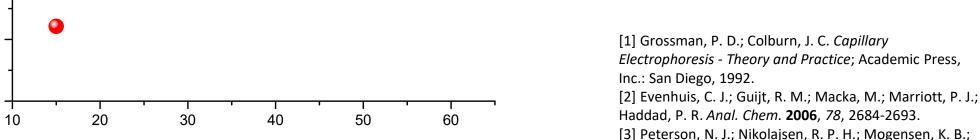
$$\gamma =$$

@ 50 °C
$$\kappa_e = 0.28949 \ \Omega^{-1} m^{-1}$$

$$\gamma =$$

 γ n'est pas une constante!





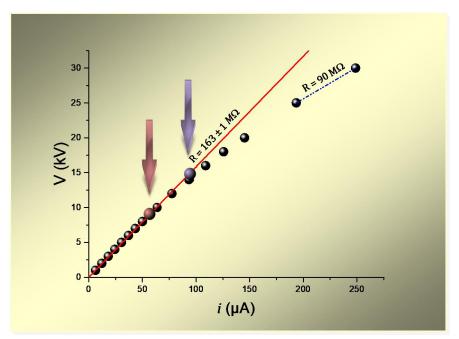
Température – le coefficient de transfert de chaleur

T (°C)

500

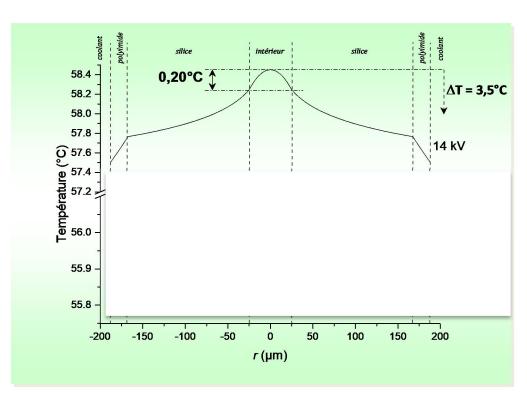
Kutter, J. P. Electrophoresis 2004, 25, 253-269

[4] Aupiais, J., J. Solution Chem. **2011**, 40, 1629-1644.



Température – optimisation et effet de la température

Exemple: capillaire 50 μ m x 360 μ m, NaNO₃ 0,1 M, « coolant » : T = 55 °C

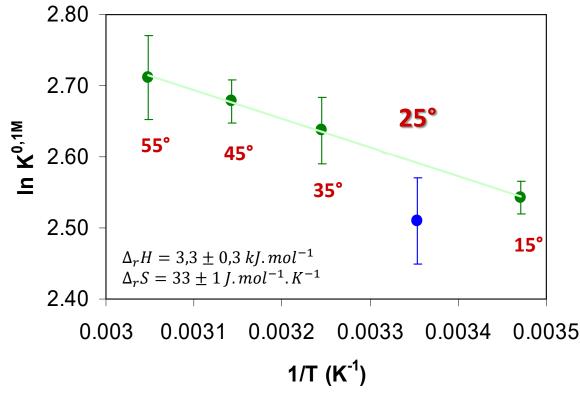

Vérification de la loi d'Ohm

$$V = Ri$$

 $V = 15 \, kV$, tension optimale en terme de temps de séparation (effet Joule contrôlé par le système de refroidissement).

Calcul de ΔT

V = 8 kV, tension optimale en terme de contrôle de l'élévation de température ($\Delta T \leq 1 \, {}^{\circ}C$).



Température – effet externe

détection U.V. zone non 4 cm thermostatée injection

Complexation de Ca²⁺ par SeO₄²⁻

I=0,1~M, pH=3,5, U=8~kV, $T=(15\pm0,2)^{\circ}C$, $(35\pm0,3)^{\circ}C$, $(45\pm0,3)^{\circ}C$, $(55\pm0,3)^{\circ}C$

Loi de van't Hoff :

$$lnK = -\frac{\Delta_r H}{RT} + \frac{\Delta_r S}{R}$$

Dispersion – adsorption

Dispersion – adsorption
$$\sigma_{AdS}^2 = \frac{k'v_{eof}l}{(1+k')^2} \left(\frac{r^2k'}{4D} + \frac{2}{K_d}\right)$$

$$= \sigma_{Diffusion}^2 + \sigma_{injection}^2 + \sigma_{injection}^2 + \sigma_{Completed}^2 + \sigma_{Adsorption}^2 + \sigma_{Completed}^2 + \sigma_{Com$$

k' = capacity factor

 v_{EOF} = electroosmotic flow velocity

= solute diffusion coefficient

= capillary effective length

K_d = first order desorption rate constant

= capillary inner radius

$$k' = \frac{t_r - t_0}{t_0}$$

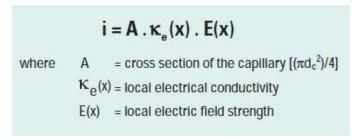
t_r = elution time of a retained solute

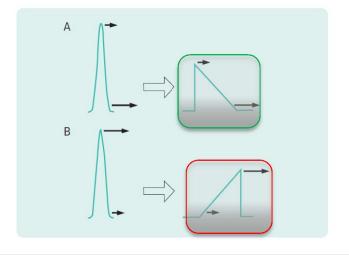
t_o = elution time of an unretained solute

Dispersion – électrodispersion

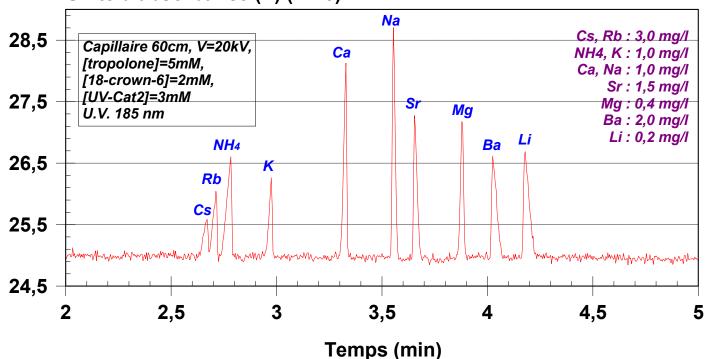
 $=\sigma_{Diffusion}^2$

 $+ \sigma_{injection}^2$


 $+ \sigma_{Temp\'erature}^2$


 $+ \sigma_{Electrodispersion}^{z}$

 $+ \sigma_{Adsorption}^2$


 $+ \sigma_{D\text{\'etection}}^2$

- ⇒ Perturbation locale du champ électrique par le passage d'une zone solutée
- ⇒ Dispersion de la vitesse de migration
- ⇒ Profil dissymétrique du pic

Unité d'absorbance (V) (1E-3)

Electrodispersion – fonction de régulation de Kohlrausch

L'électrodispersion (mais aussi le stacking et la détection photométrique) peut être prédite théoriquement en solutionnant les équations de déplacement aux limites. Friedrich Kohlrausch trouva une solution élégante en 1897. Elle est désormais appelée « fonction de régulation de Kohlrausch » (KRF).

$$\omega(x) = \sum_{i} \frac{|z_{i}|c_{i}(x)}{\mu_{i}}$$

A retenir : $\omega(x)$ est dépendant de la distance mais indépendant du temps.

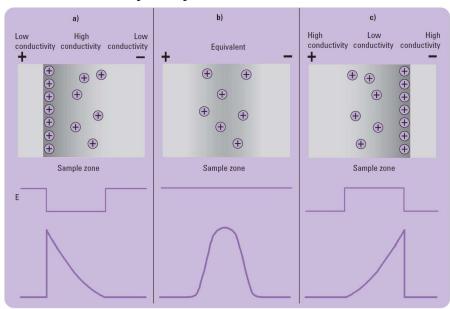
Electrodispersion – fonction de régulation de Kohlrausch ...

Conductance

$$\kappa^S = \kappa^{BGE} + \sum_j b_j C_j^z$$

$$\kappa^{S} = \kappa^{BGE} + \sum_{i} b_{j} C_{j}^{Z} \qquad b_{j} = F \mu_{A} \left(\mu_{j} - \mu_{B} \right) \left(1 - \frac{1}{\mu_{j}} \right)$$

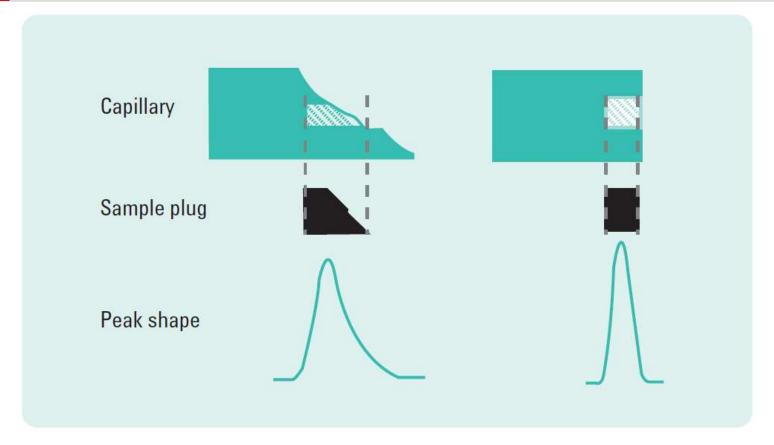
BGE: Cation A + Anion B


Echantillon: ions j μ_i : mobilité réduite

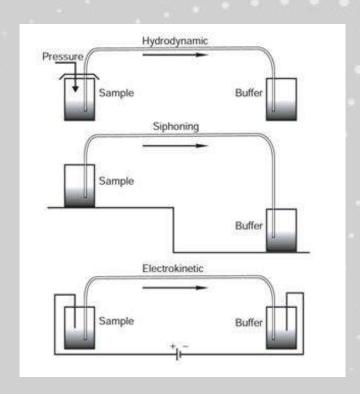
Champ électrique

$$E^S = \frac{E^{BGE}}{1 - \sum_j a_j C_j^z}$$

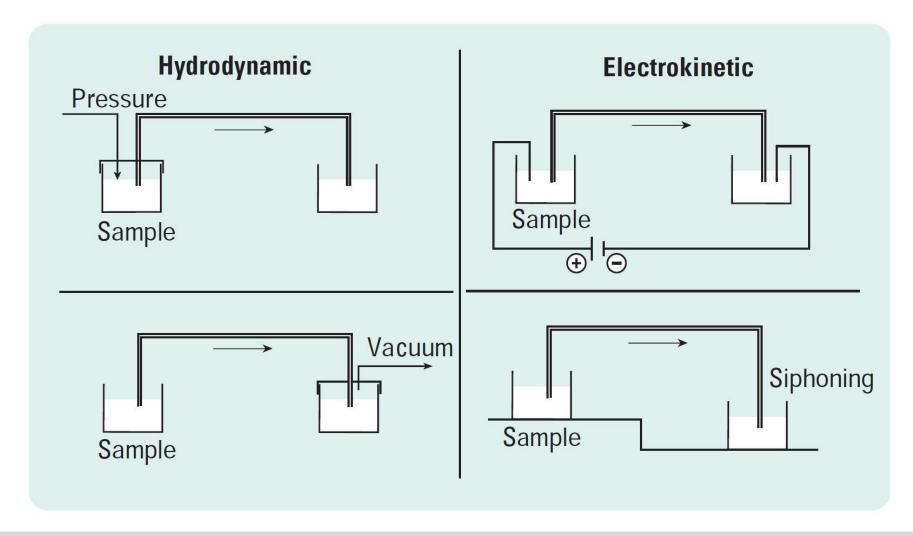
$$a_j = \frac{k_j}{C_j^S} (1 - \mu_j)$$


$$a_j = \frac{k_j}{C_i^S} (1 - \mu_j) \qquad \text{et} \qquad k_j = \frac{1}{\mu_j} \times \frac{\mu_j - \mu_B}{1 - \mu_B}$$

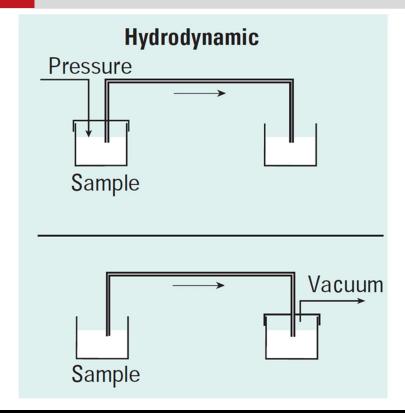
- si μ_i > 1 alors E^s < E^{BGE} traîne à l'arrière du pic
- si μ_j = 1 alors E^S = E^{BGE} pic symétrique
 si μ_j < 1 alors E^S > E^{BGE} traîne à l'avant du pic


Dispersion – extrémité du capillaire

à la coupe

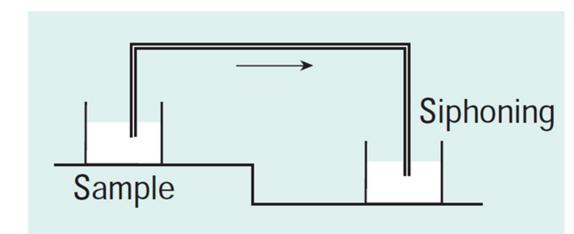

 σ_{l}^{2} $= \sigma_{Diffusion}^{2}$ $+ \sigma_{injection}^{2}$ $+ \sigma_{Température}^{2}$ $+ \sigma_{Adsorption}^{2}$ $+ \sigma_{Détection}^{2}$ $+ \sigma_{Electrodispersion}^{2}$ + autres

Les modes d'injection


Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Trois modes d'injection sont disponibles

Mode d'injection – hydrodynamique


Injection par ΔP

$$V_{inj} = \frac{\Delta P d^4 \pi t_{inj}}{128 \eta L}$$

△P : différence de pression appliquée d : diamètre interne du capillaire

 t_{ini} : temps d'injection

η : viscosité de l'électrolyte L : longueur totale du capillaire

Il suffit de d'exprimer ΔP en fonction de Δh

Injection par Δh

 ρ : densité de l'électrolyte

 $g: 9,807 \text{ m/s}^2$

∆h : hauteur entre les réservoirs

Injection hydrodynamique – performances

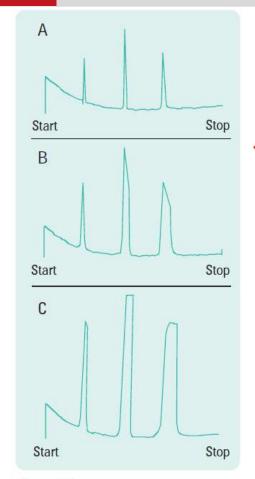
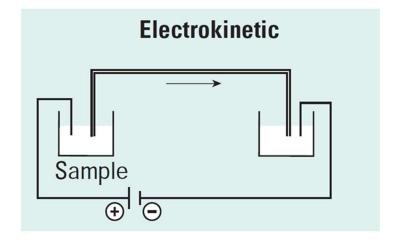



Figure 3.1
Effect of sample overloading on peak shape. Starting zone widths:
A = 0.6 cm, B = 2.0 cm, C = 3.0 cm.

- Répétabilité inférieure à 3 %
- Volume injecté qq nL (< 1-2 % volume total)
- Diamètre minimum (méthode Δh) = 30 μm
- Méthode ΔP moins bonne que Δh
- Composition injectée <u>identique</u> à la composition initiale de l'échantillon

Mode d'injection – électrocinétique

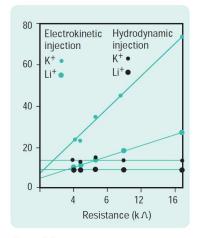


Figure 3.3
Quantity of sample loaded as a function of sample resistance for hydrodynamic and electrokinetic injection.³²

$$Q = \frac{(\mu_i + \mu_{eof})Vr^2\pi Ct_{inj}}{L}$$

μ_i : mobilité de l'ion i

 μ_{eof} : mobilité électroosmotique

 t_{inj} : temps d'injection

V: tension

C : concentration de l'ion i r : rayon interne du capillaire

Tension d'injection : 3-5 fois moindre que la tension d'analyse

Temps d'injection: 10-30 s

la composition injectée est <u>différente</u> de la composition initiale de l'échantillon

Injection électrocinétique – FASS (Field Amplified Sample Stacking)

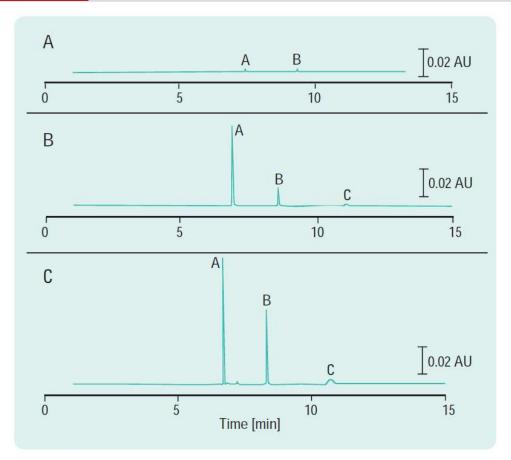
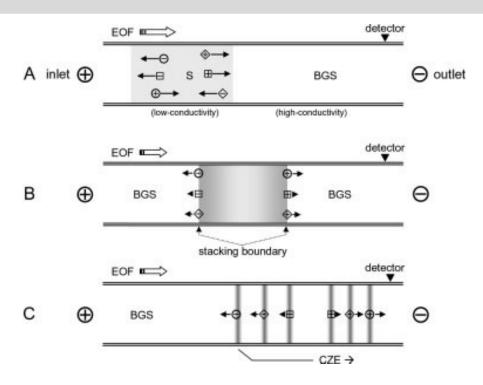
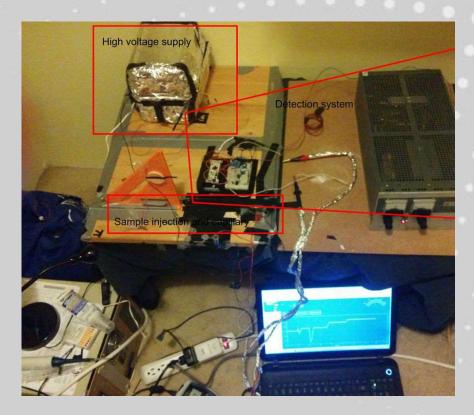




Figure 3.4
Field amplified sample injection.³³ A) sample dissolved in buffer; B) sample dissolved in water; C) short plug of water injected before sample in B.

La zone contenant l'analyte doit avoir une concentration plus faible. Lors de l'application du champ électrique, ce dernier est localement plus important dans la zone contenant l'analyte (donc \vec{v} \nearrow)

Systèmes de détection

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

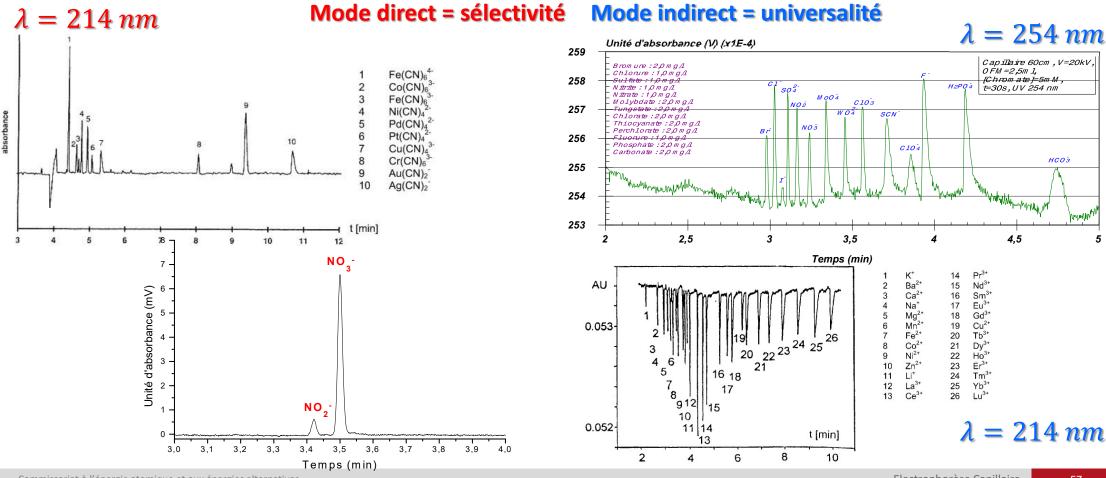
Les systèmes de détection

Absorptiométrie

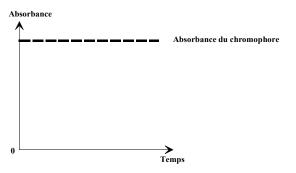
 Longueur d'onde fixe, barrette de diodes, absorption directe (chromophore), inverse

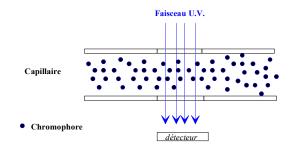
Fluorimétrie

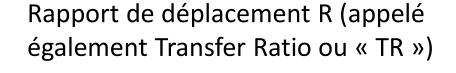
• Fluorescence inverse (luminophore), directe

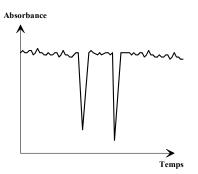

Conductométrie

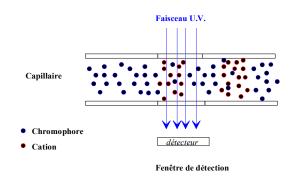
- Ampérométrie, potentiométrie, conductivité
- Electrochimie
- Les techniques couplées
 - ICPMS, ICPOES, RIMS


Détection – absorptiométrie

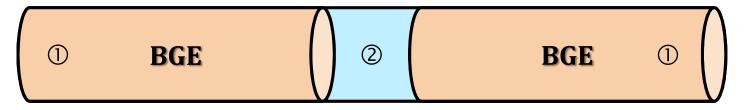

Principe : détecter l'analyte au moyen de photons de longueur d'onde calibrée utilisant les phénomènes d'absorption (mode direct) ou de transfert d'un chromophore par l'analyte (mode indirect).




Absorptiométrie – principe



Fenêtre de détection


$$TR = -\frac{\Delta C_{BGE}}{C_i}$$

 ΔC_{BGE} : Changement de concentration de BGE dans la zone contenant l'analyte C_i : concentration de l'analyte

Absorptiométrie – théorie

Fonction de régulation de Kohlrausch et rapport de déplacement

Anion: A

Cation: C

Anion : B

Cation : C

Anion: A

Cation : C

Zone ①
$$\omega_1 = \frac{c_A z_A}{\mu_A} + \frac{c_C z_C}{\mu_C}$$

Electroneutralité $c_A z_A = c_C z_C$

Commissariat à l'énergie atomique et aux énergies alternatives

$$\mu_C$$

Zone ②
$$\omega_2 = \frac{c_A' z_A}{\mu_A} + \frac{c_B z_B}{\mu_B} + \frac{c_C' z_C}{\mu_C}$$

Electroneutralité
$$c'_A z_A + c_B z_B = c'_C z_C$$

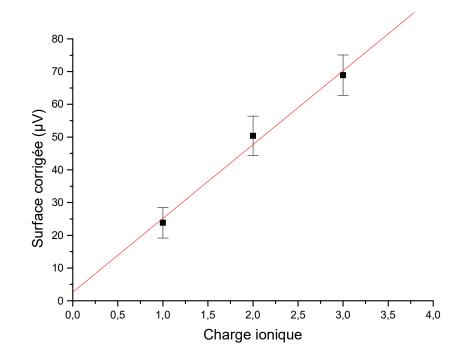
$$\omega_2 = \frac{c_A' z_A}{\mu_A} + \frac{c_B z_B}{\mu_B} + \frac{c_A' z_A}{\mu_C} + \frac{c_B z_B}{\mu_C}$$

$$\omega_{1} = c_{A} z_{A} \left[\frac{1}{\mu_{A}} + \frac{1}{\mu_{C}} \right] = \frac{c_{A} z_{A}}{\mu_{A} \mu_{C}} (\mu_{A} + \mu_{C}) \qquad \omega_{2} = c'_{A} z_{A} \left[\frac{1}{\mu_{A}} + \frac{1}{\mu_{C}} \right] + c_{B} z_{B} \left[\frac{1}{\mu_{B}} + \frac{1}{\mu_{C}} \right]$$

Absorptiométrie – théorie ...

$$\omega_1 = \omega_2$$

$$\frac{c_A z_A}{\mu_A \mu_C} (\mu_A + \mu_C) = c'_A z_A \left[\frac{1}{\mu_A} + \frac{1}{\mu_C} \right] + c_B z_B \left[\frac{1}{\mu_B} + \frac{1}{\mu_C} \right]$$


Posons
$$\Delta c_A = c_A - c_A'$$

$$\frac{\Delta c_A}{c_B} = \frac{z_B}{z_A} \frac{\left(\frac{1}{\mu_B} + \frac{1}{\mu_C}\right)}{\left(\frac{1}{\mu_A} + \frac{1}{\mu_C}\right)}$$

$$\frac{\Delta c_A}{c_B} = \frac{z_B}{z_A} \frac{\mu_A(\mu_B + \mu_C)}{\mu_B(\mu_A + \mu_C)} = TR$$

Pour augmenter le rapport signal/bruit :

- •Eviter la complexation (charge ionique la plus élevée possible) car TR → avec la charge ionique moyenne.
- •Augmenter TR : ⇒ les mobilités du chromophore et de l'analyte doivent être les plus proches possibles.
- •Travailler avec un chromophore à $arepsilon_c$ élevé

Absorptiométrie – sensibilité

$$\Delta A = (TR \times \varepsilon_c - \varepsilon_i)bc_i$$

 ΔA : variation d'absorbance lors du passage de l'analyte i

TR : rapport de déplacement

 ε_c : coefficient d'extinction molaire du chromophore/BGE

 ε_i : coefficient d'extinction molaire de l'analyte i

b : trajet optique

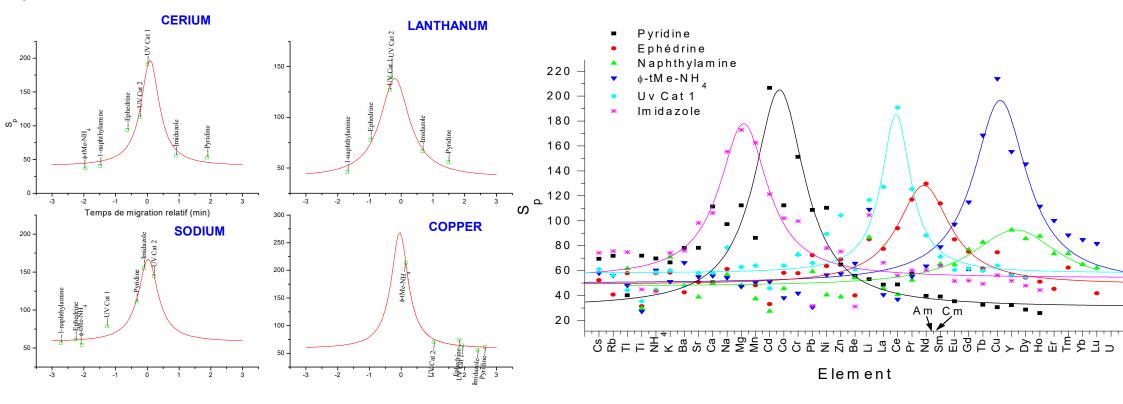
 c_i : concentration de l'analyte

Limite de détection en absorptiométrie EC :

 $C_{det} = \frac{c_C}{TR \times D_R}$

 C_{det} : concentration minimale détectable

TR : rapport de déplacement


$$DR$$
: facteur de réserve défini par $DR = \frac{A_c (= \varepsilon_c b c_c)}{fluctuation ligne de base}$

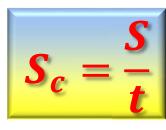
En pratique, pour un DR =
$$10^4$$
, $c_c = 10^{-2}$ M, $TR = 1$, $C_{det} \approx 10^{-6}$ M

Absorptiométrie – effet du rapport de déplacement TR avec les mobilités

Idéalement, les mobilités du chromophore et de l'analyte doivent être les plus proches possibles.

 $Aupiais, \textit{J., Optimization of cation detection by capillary zone electrophores is with indirect \textit{UV} absorbance. \textit{Chromatographia 1997, } 44 (5/6), 303-312.$

$$S_p = \frac{H \times t}{S}$$



Absorptiométrie – normalisation des surfaces

$$t_i = \frac{l}{v_i} = \frac{lL}{(\mu_{eo} + \mu_i)V}$$

La surface du pic est dépendante de la vitesse à échantillonnage constant!

(pour une même concentration, un ion lent aura une surface plus grande qu'un ion rapide)

Fréquence échantillonnage signal = 2 – 32 Hz

Fluorimétrie – principes et applications

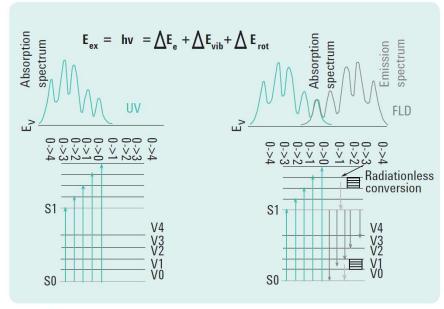


Figure 3.30 UV absorption spectrum of a molecule in solution and its emitted fluorescence spectrum (V0 through V4 are vibrational energy levels of the electronic ground state (S0), or of the next higher singlet electron energy level: S1).

k: efficacité de collection lumière I_0 : intensité d'excitation V_{cell} : volume illuminée dans la cellule Φ_i = rendement quantique de fluorescence ε_i : coefficient d'absorption molaire C_i : concentration de l'analyte i

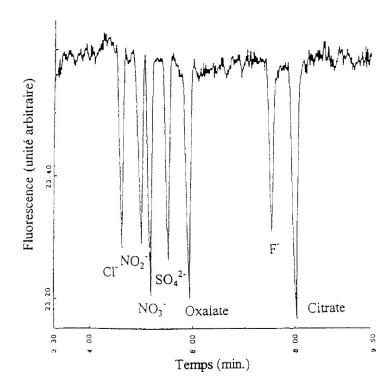


Figure 9. Analyse par électrophorèse capillaire d'un mélange d'anions inorganiques contenant également les ions oxalate et citrate avec une détection fluorimétrique indirecte [23]. Conditions opératoires : capillaire de silice fondue (57 cm \times 50 μ m, longueur utile 50 cm) ; tampon : H $_3$ BO $_3$ 100 mM, Na $_2$ B $_4$ O $_7$ 20 mM, fluorescéine 80 μ M, TTAB 10 μ M ; température : 25 °C ; tension appliquée : –20 kV ; injection hydrodynamique : 4 s ; détection fluorimétrique λ_{exc} = 488 nm, λ_{em} = 520 nm.

Conductimétrie – quelques applications

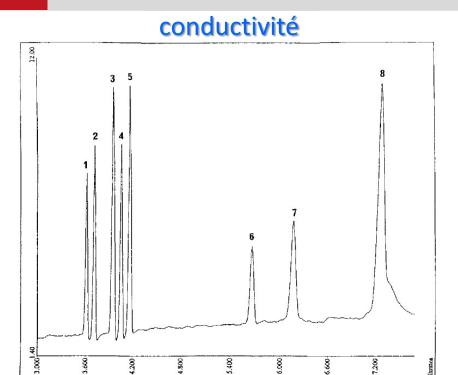


Figure 10. Analyse par électrophorèse capillaire d'un mélange d'anions inorganiques avec une détection conductométrique [17]. Conditions opératoires : capillaire de silice fondue (60 cm \times 50 $\mu m)$; tampon : CHES 50 mM, LiOH 10 mM, 0,03 % Triton X-100 ; conditionnement : CTAB 1 mM (0,4 min) ; tension appliquée : –25 kV ; courant : 10 μA ; injection : 8 nL ; anions : 1. bromure ; 2. chlorure ; 3. nitrite ; 4. sulfate ; 5. nitrate ; 6. fluorure ; 7. phosphate ; 8 carbonate.

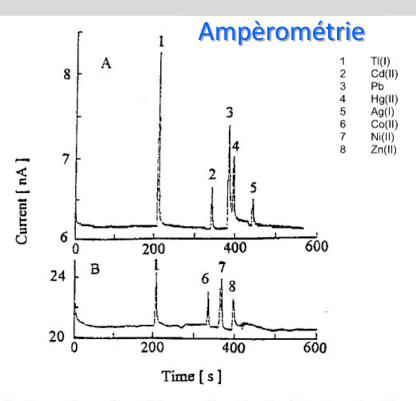


Fig. 5 Separation of metal ions with cathodic detection at a 25- μ m Au electrode (relative to SCE). (A) Pulse conditions, –700 mV for 96 ms, with data collected over the last 48 ms, and 0 mV for 96 ms; analyte concentration 200 μ mol L⁻¹. (B) Pulse conditions, –1100 mV for 96 ms and 0 mV for 96 ms. Separation conditions: electromigration injection, 5 kV for 10 s; U = 20 kV; capillary 60 cm × 25 μ m; buffer, 35 mmol L⁻¹ creatinine, 8 mmol L⁻¹ HIBA pH 4.8. Reproduced from Ref. [74], with permission

Détection – couplage à un spectromètre de masse (ICPMS)

Difficulté : l'interfaçage !

$$\mu_{eo} = 3,4.10^{-8} (m^2 V^{-1} s^{-1})$$

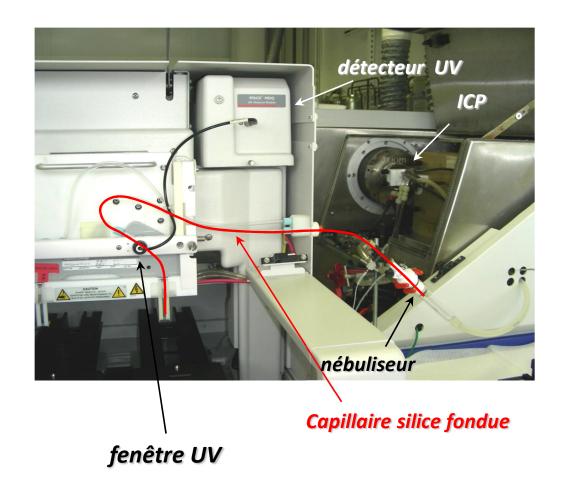
On prendra $d = 50 \mu m$, V = 20 kV, longueur totale du capillaire = 60 cm

$$v_{eo} = \mu_{eo}E =$$

m/s

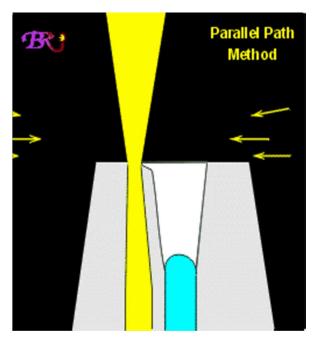
Calcul du volume d'un cylindre (t = 1 s)

$$V_{cyl} = \pi r^2 \times x$$

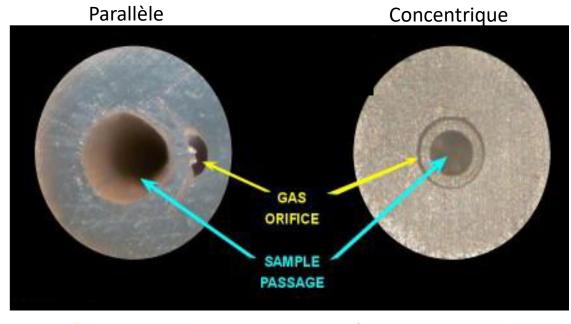

$$V_{cyl} =$$

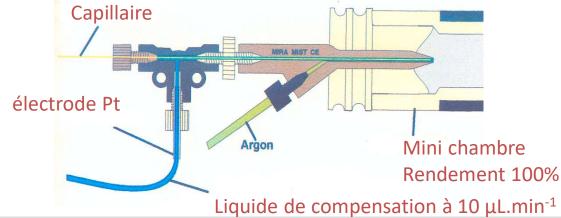
 m^3/s

D =

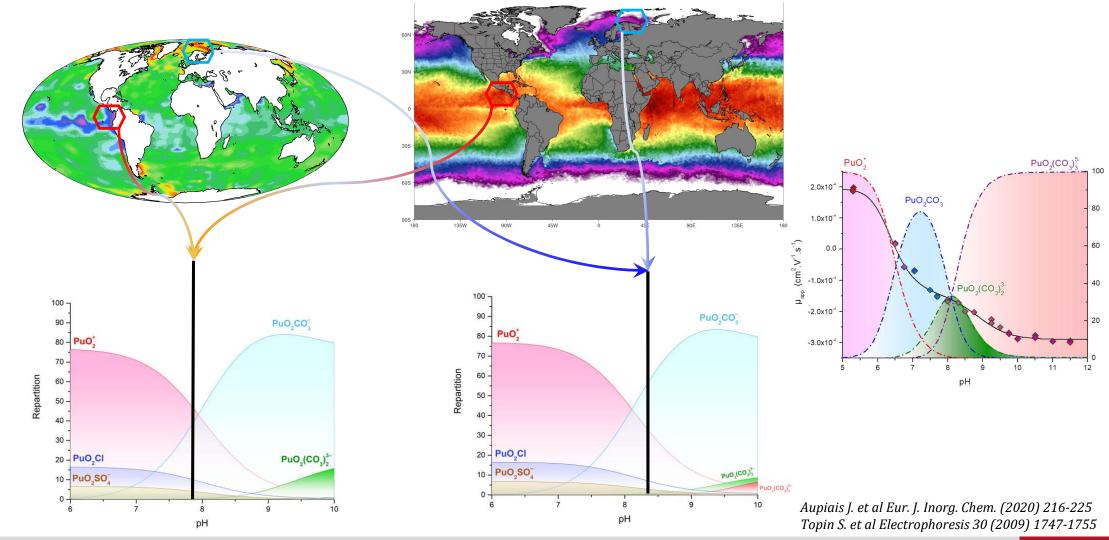


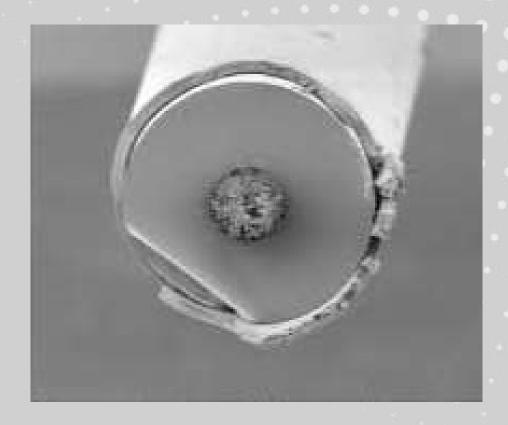
μL/min





CE-ICPMS – micro nébuliseur (2 < D < 10 μ L/min)





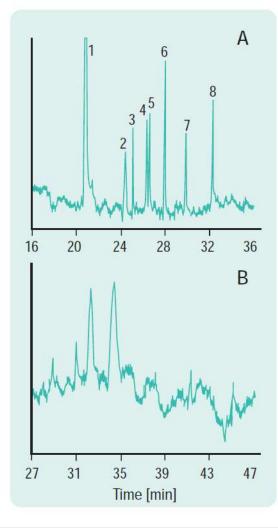
© Burgener Research, Canada

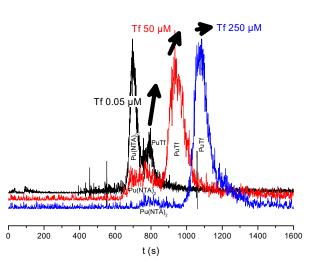
CE-ICPMS – application : spéciation du plutonium dans l'eau de mer

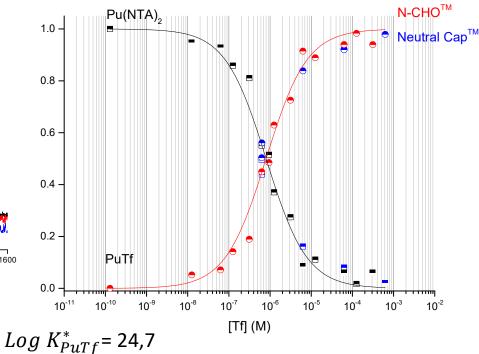
Traitement des capillaires

Modification de la surface/volume des capillaires

La séparation des anions n'est pas favorisée pour les capillaires en silice fondue en raison de l'apparition de charges négatives à pH > 2 et donc de la présence d'un flux électroosmotique dirigée vers la cathode.


Dans ce cas, on peut accélérer la séparation en inversant le flux électroosmotique, c'està-dire en modifiant la surface interne par adsorption de molécules cationiques.


D'une manière générale, le traitement des capillaires est requis pour :


- Supprimer les interactions des protéines avec la surface en silice,
- Contrôler finement la magnitude du flux électroosmotique.
- Ces traitements sont réalisés soit par :
 - Liaisons chimiques ou adsorption traitement permanent,
 - Interactions chimiques/physiques réversibles traitement dynamique (dans ce cas la molécule modifiant l'état de surface doit être présente dans l'électrolyte pendant toute la séparation).

Exemples – le « coating » permanent

Aryl pentafluoro-coated capillary to improve protein separations. Coated capillary top, bare fused silica bottom. Peaks: 1, hen egg white lysozyme; 2, DMSO (EOF marker); 3, bovine ribonuclease A; 4, bovine pancreatic trypsinogen; 5, whale myoglobin; 6, horse myoglobin; 7, human carbonic anhydrase; 8, bovine carbonic anhydrase.

Conditions: Buffer: 200 mM phosphate pH 7.0 + 100 mM KCl; effective length: 100 cm; id:

20 µm; electric field: 250 V/cm; detection: 219 nm.

Affinité de la transferrine pour le plutonium.

N- CHO^{TM} : alcool polyvinylique Neutral Cap^{TM} : polyacrilamide

Exemple – le « coating » dynamique

Avantages:

- Facile à mettre en œuvre (ajout d'un agent supplémentaire dans l'électrolyte),
- Utilisation de capillaires standards et bon marché,
- Peu coûteux,
- Applicable à des électrolytes variés.

Précautions:

 Ne doit pas interférer avec la détection (transparent en optique ou pas d'interférences isobariques pour la masse),

Les plus connus : les surfactants, en dessous de la CMC (concentration micellaire critique) s'adsorbent à la surface. Ils peuvent être :

- Anioniques
- ✓ Cationiques
- ✓ Zwitterioniques
- ✓ non ioniques

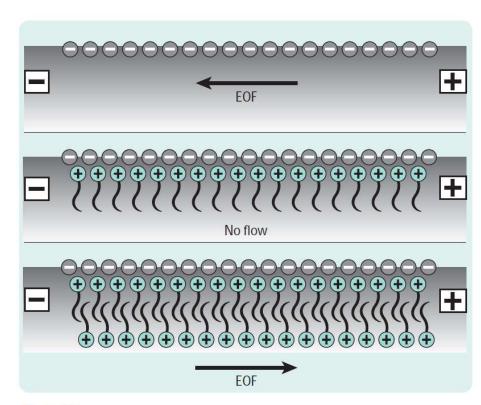
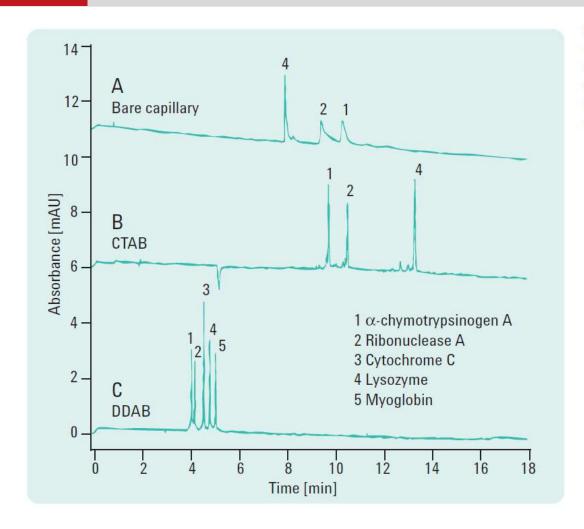



Figure 4.4 Elimination and reversal of electroosmotic flow using a cationic surfactant.

Exemple – le « coating » dynamique ...

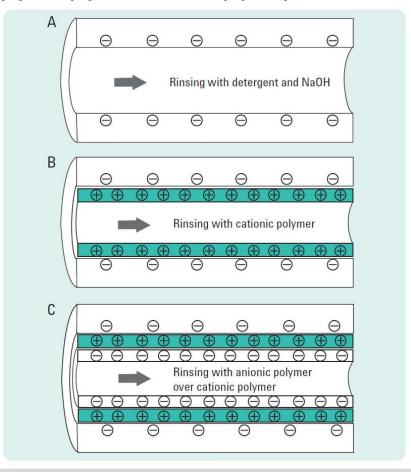
Separation of five basic proteins at pH 3.0, using (A) bare fused silica capillary; (B) CTAB-coated capillary; (C) DDAB-coated capillary.⁷⁵

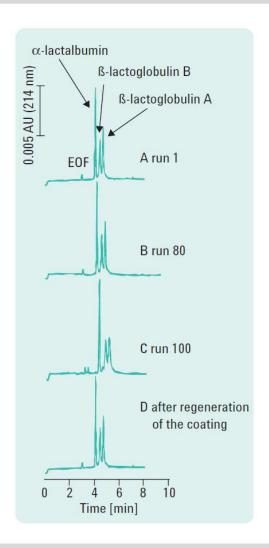
Conditions: $50 \text{ cm x } 50 \text{ } \mu\text{m} \text{ id capillary (40 cm to detector); UV detection at } 214 \text{ nm; } +15 \text{ kV applied voltage (A), } -1.5 \text{ kV applied voltage (B, C); BGE, } 25 \text{ mM phosphate at pH } 3.0 \text{ containing (A) no surfactant; (B) } 0.5 \text{ mM CTAB, or (C) } 0.1 \text{ mM DDAB.}$

Note that the myoglobin peak was not observed after a 40-min run time in (B).

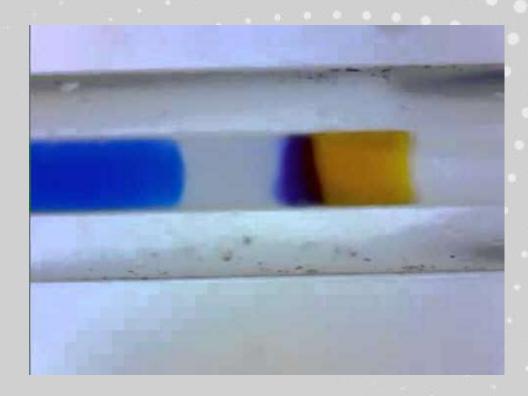
CTAB = dynamique (présent dans électrolyte)

DDAB = semi-permanent (non présent dans électrolyte)


CTAB partiellement efficace contre adsorption des protéines (3 détectées)


DDAB efficace contre adsorption des protéines (5 détectées)

Variante – le multi-coating (plus stable)


Coating procedure for polycationic polymer coatings (steps A-B) and successive multiple ionic-polymer layer (SMIL) coatings (steps A-C). A) Activation of the silanol groups; B) adsorption of polycationic polymer layer; C) adsorption of a polyanionic polymer as a second ionic-polymer layer.

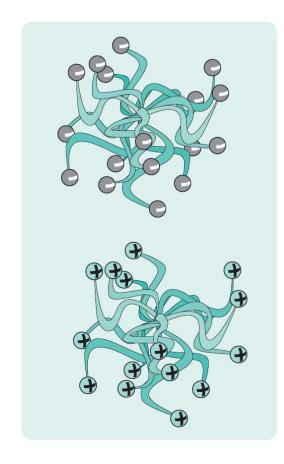
Separation of acidic proteins on a SMIL-DS coated capillary.⁷⁶

Conditions: 27 cm x 75 μ m id capillary (20 cm to detector); buffer: phosphate pH 7.0 (I = 0.05); +7 kV; temperature: 25 °C; sample: 0.1 mg/mL protein; injection: 140 mbar x s; regeneration solution: 0.1 M HCI.

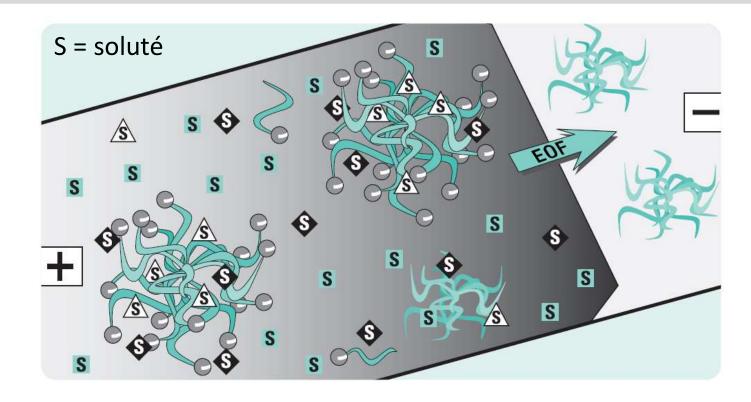
Méthodes séparatives

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Méthodes de séparation par EC


- Electrophorèse capillaire de zone (CZE)
- Chromatographie électrocinétique micellaire (MEKC)
- Electrochromatographie capillaire (CEC)
- Electrophorèse capillaire sur gel (CGE)
- Isotachophorèse capillaire (CITP)
- Focalisation isoélectique capillaire (CIEF)

CEC = HPLC sur capillaire rempli d'une phase inverse + champ électrique.


CGE = EC sur capillaire rempli par un polymère (exclusion stérique).

Méthodes de séparation par EC – MEKC

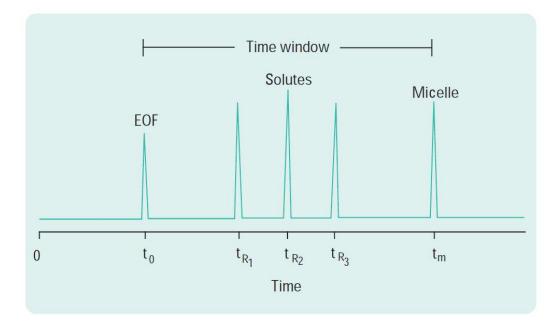
Représentation de micelle anionique et cationique.

Utilisation de surfactants (cationique ou anionique) au dessus de leur CMC (concentration micellaire critique).

Puisque les micelles sont chargées, elles migrent sous un champ électrique.

MEKC – temps de migration

1) Composé neutre (M) dans micelle (*):

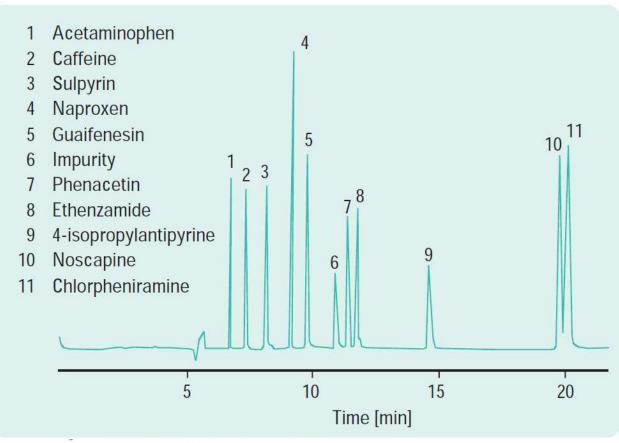

$$v_{M}^{*} = \frac{1}{1+k'}v_{eof} + \frac{k'}{1+k'}v^{*} \qquad t_{M}^{*} = \frac{(1+k')t_{eof}}{1+k'\frac{t_{eof}}{t^{*}}}$$

$$v_{M}^{*} = \frac{l}{t_{M}^{*}} \quad v_{eof} = \frac{l}{t_{eof}} \quad v^{*} = \frac{l}{t^{*}}$$

2) Composé chargé (M) dans micelle (*):

$$v_M^* = \frac{1}{1+k'} (v_{eof} + v_M) + \frac{k'}{1+k'} v^*$$

$$v_{eof} + v_M = \frac{l}{t_M} \qquad t_M^* = \frac{(1+k')t_M}{1+k'\frac{t_M}{t^*}}$$



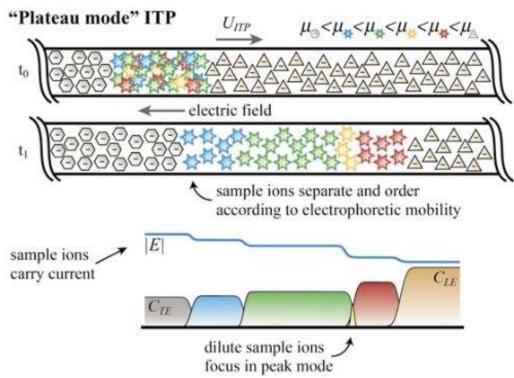
MEKC – applications

	Biological detergents	CMC (mM)	Aggregation number
Anionic	SDS	8.2	62
Cationic	DTAB	14 50	
	CTAB	1.3	78
Non ionic	Octylglucoside	_	-
	n-Dodecyl-β-D-maltoside	0.16	_
	Triton X-100	0.24	140
Zwitterionic	CHAPS	8	10
	CHAPSO	8	11
Bile salt	Cholic acid	14	2 – 4
	Deoxycholic acid	5	4 –10
	Taurocholic acid	10 –15	4

SDS = Sodium Dodecyl Sulfate.

MEKC separation of cold-relief medicine constituents.

Conditions: 20 mM phosphate-borate, 100 mM SDS, pH 9.0, V = 20 kV, L = 65 cm, id = 50 μ m, λ = 210 nm.


Méthodes de séparation par EC – CITP

CITP = Capillary IsoTachoPhoresis (isotachophorèse capillaire).

Principe:

Cette méthode est fondée exclusivement sur la séparation des molécules suivant leur mobilité électrophorétique. Les ions se déplacent tous à la même vitesse, les plus mobiles en tête et les plus lents en queue.

Un tube capillaire est rempli d'un électrolyte constitué d'un ion ayant une mobilité supérieure à celle de tous les ions à séparer (appelé ion pilote). L'extrémité du capillaire où est placée l'électrode de même signe que ceux des ions à séparer (cathode pour des anions, anode pour des cations) est remplie d'un électrolyte constitué d'un ion ayant une mobilité inférieure à celle de tous les ions à séparer (ion dit terminal).

Champ électrique faible dans l'électrolyte « leader » \rightarrow ralentissement Champ électrique fort dans l'électrolyte « terminal » \rightarrow accélération

L'isotachophorèse est régit par la fonction de régulation de Kohlrausch.

CITP - théorie

1) Absence d'électroosmose – courant imposé

2) Loi d'Ohm – conservation du flux de charges :

$$J = \frac{i}{S} = \kappa E = Cste (A.m^{-2})$$
$$\kappa_{LE} E_{LE} = \kappa_i E_i = \kappa_{TE} E_{TE}$$

3) Etat stationnaire

$$v_{LE} = v_i = v_{TE} \\ \mu_{LE} E_{LE} = \mu_i E_i = \mu_{TE} E_{TE}$$

$$\frac{\kappa_{LE}}{\mu_{LE}} = \frac{\kappa_i}{\mu_i} = \frac{\kappa_{TE}}{\mu_{TE}}$$

4) Conservation du contre-ion

$$[C]_{t}^{i} = [C]_{t}^{LE} \frac{1 - \frac{\mu_{C}^{LE}}{\mu_{LE}}}{1 - \frac{\mu_{C}^{i}}{\mu_{i}}}$$

5) Adaptation des concentrations des solutés (relation approchée)

$$[i]_{t} = \frac{z_{LE}}{z_{i}} [LE] \frac{1 - \frac{\mu_{C}^{0}}{\mu_{LE}^{0}}}{1 - \frac{\mu_{C}^{0}}{\mu_{i}^{0}}}$$

Premier constat:

les ions LE et TE vont migrer à la même vitesse et encadrer la zone de présence des espèces avec $v_{LE} = \mu_{LE} E_{LE} = \mu_{TE} E_{TE} = v_{TE}$

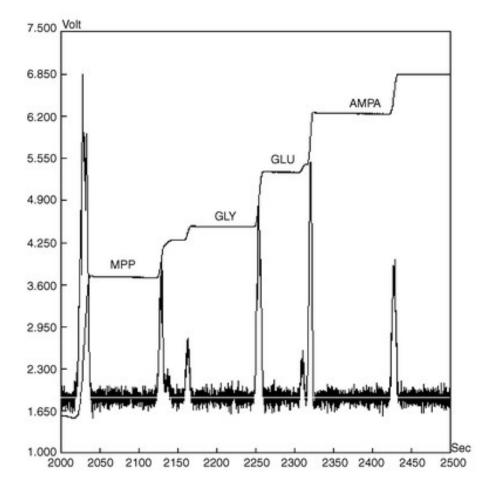
 E_{LE} et E_{TE} sont différents et compensent μ_{LE} et μ_{TE} .

Deuxième constat :

les ions à analyser vont se séparer petit à petit jusqu'à satisfaire $v_A=v_B=v_C=\cdots$

 $E_{TE}>E_A>E_B>E_C>\cdots>E_{LE}$. Les champs locaux compensent les μ_i

Entre zone d'une espèce ionique, il existe un gradient de champ électrique qui dépend de la différence de mobilité avec les ions voisins. Un ion qui sort de son domaine y est forcément ramené puisqu'il passe dans une zone de champ plus fort ou plus faible.


Troisième constat :

L'intensité du courant est la même dans tout le capillaire

si on utilise des solutions d'ions de tête (LE) et de queue (TE) concentrées (donc favorisant une intensité de courant élevée), elles vont conduire à la concentration des ions i au sein de leurs domaines respectifs.

CITP – application

NB : la concentration des ions au sein de chaque zone est rigoureusement constante.

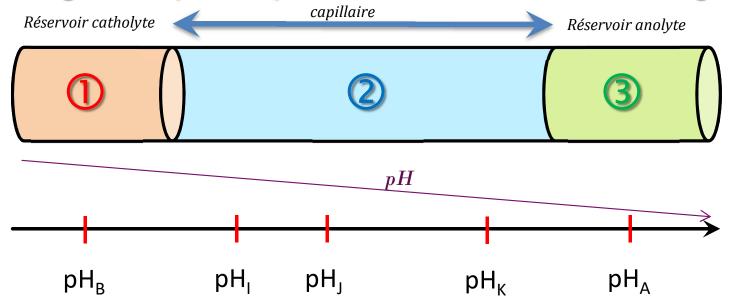
Analyse par conductimétrie, à gradient de potentiel : hauteur des paliers (analyse qualitative)

Signal dérivé : longueur des paliers (analyse quantitative)

Etalement d'une frontière entre 2 zones i et j:

$$\Delta x = \frac{4RT}{Fv_{LE}} \frac{\mu_i \mu_j}{|\mu_i - \mu_j|}$$

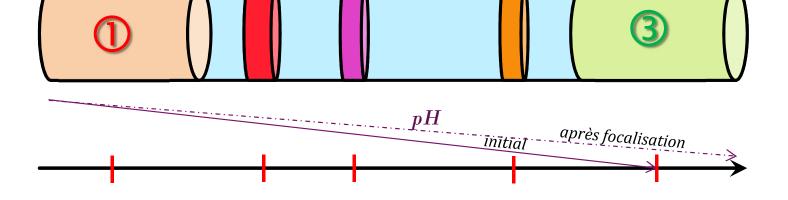
choix des électrolytes


ITP	Anionique	Cationique	
Ion meneur LE	Cl ⁻	K ⁺	
Contre-ion	Base faible pK _c > pk _i – 1	Acide faible pK _c < pk _i + 1	
Ion terminal TE	OH ⁻ Acide faible $\mu = 5-10.10^{-5}$ cm ² /Vs	H^+ Base faible μ = 5-10.10 ⁻⁵ cm^2/Vs	

- > Utilisation : séparation d'ampholytes (protéines, peptides) par migration dans un gradient de pH en absence d'électroosmose.
- > Limitations:
- Instabilité du gradient de pH (instable dans le temps et l'espace)
- Convection
- \triangleright Résolution : $\Delta(pI) = 0.05 pH$

1 – Remplissage du capillaire par l'échantillon dans un mélange d'ampholytes

- ① Catholyte basique (ex: NaOH)
- ② Echantillon dans un mélange d'ampholyte (ex: LKB, pH 3,5-10 à 4 % ; Biolyte 5/7 ; etc.)
- 3 Anolyte acide (ex: H₃PO₄)

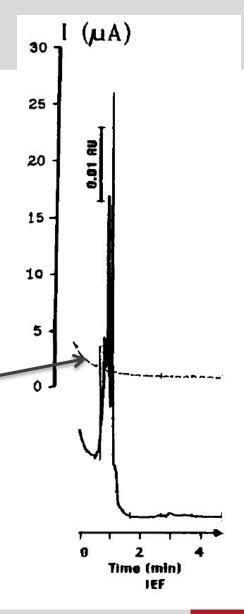


cIEF - principe (focalisation)

 pH_1

i \ à V constant

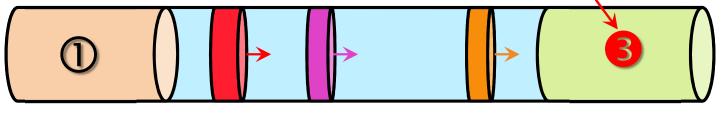
 pH_B

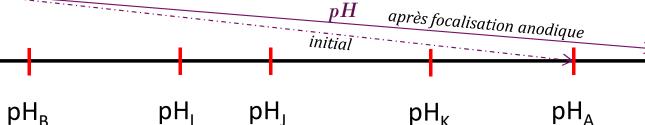


 pH_A

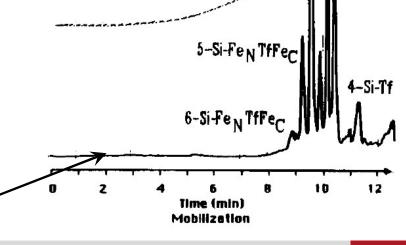
 pH_K

Quand le courant se stabilise, les substances sont immobilisées dans le gradient de pH \rightarrow état stationnaire

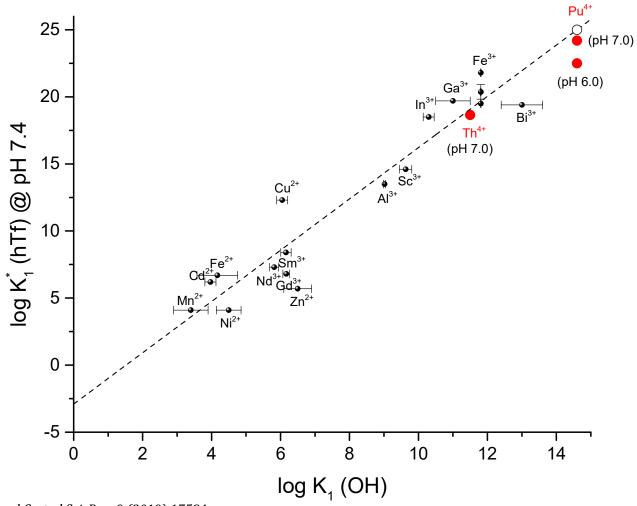

 pH_1

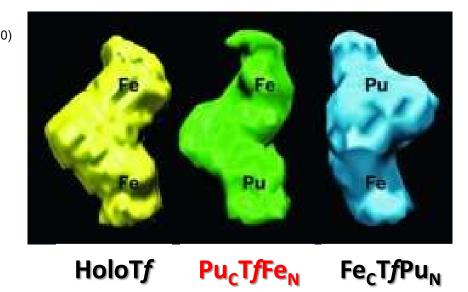


clEF – principe (mobilisation)


i / à V constant On change l'anolyte si mobilisation anodique

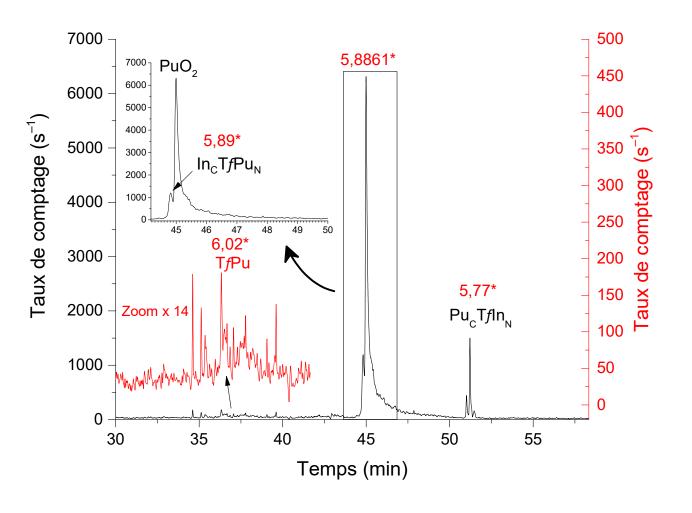
Si mobilisation cathodique, alors c'est le compartiment ① qui est changé avec $A^- \neq OH^-$ et ③ reste inchangé et la courbe de pH est inversée.

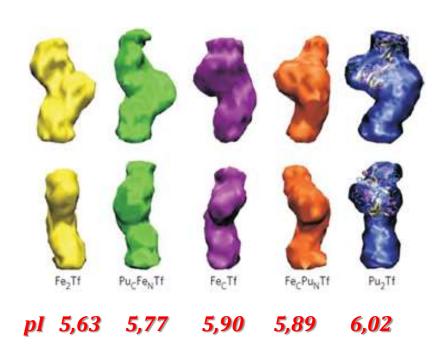



4-Si-Fe N TfFeC

4-Si-TfFe-

cIEF – application




Vidaud C. et al Sci. Rep. 9 (2019) 17584 Sauge-Merle S. et al Dalton Trans. 46(5) (2017) 1389-1396

Mark P Jensen et al.. Nature Chemical Biology, Vol 7, 560-565, (2011)

cIEF – application

Brulfert F. et al Dalton Trans. 47(30) (2018) 9994-10001

Annexes

Exercice – calcul de μ_{eo}

$$v_{eo} = -\frac{\kappa^{-1}\sigma}{\eta}E$$

$$\mu_{eo} = \frac{\kappa^{-1}\sigma}{\eta}$$

Estimation de μ_{eo} dans NaClO₄ 0,01 M ?

$$\sigma$$
 = 0,01 C.m⁻²

$$\eta$$
? $\eta(25,C) = \eta_W \left[1 + 0.00702\sqrt{C} + 0.0151C + 0.029507C^2 \right] (cp)$
 $\eta_W = 0.88991 (cp)$
 $\eta(25,0,01) = (cp) \quad 1 \text{ P} = 0.1 \text{ Pa.s}$
 $\eta(25,0,01) = Pa.s$
 κ^{-1} ? $\kappa^{-1} = nm$

$$\mu_{PO} = (m^2V^{-1}s^{-1})$$

Exercice – calcul de ζ

$$\zeta = \frac{\kappa^{-1}\sigma}{\varepsilon_r \varepsilon_0}$$

Permittivité dans NaClO₄ 0,01 M?

$$\varepsilon = \varepsilon_W - \delta C$$

$$\delta_{Na^+} = \delta_{ClO_4^-} =$$

$$\varepsilon_{NaClO_4}^{0,1} =$$

$$\varepsilon_0 = 8,854187 \times 10^{-12} \ F \cdot m^{-1}$$

$$\kappa^{-1}$$
 ? $\kappa^{-1} =$

$$\sigma$$
 = 0,01 C.m⁻²

$$\zeta =$$

$$\zeta = \frac{\kappa^{-1}\sigma}{\varepsilon_r \varepsilon_0}$$

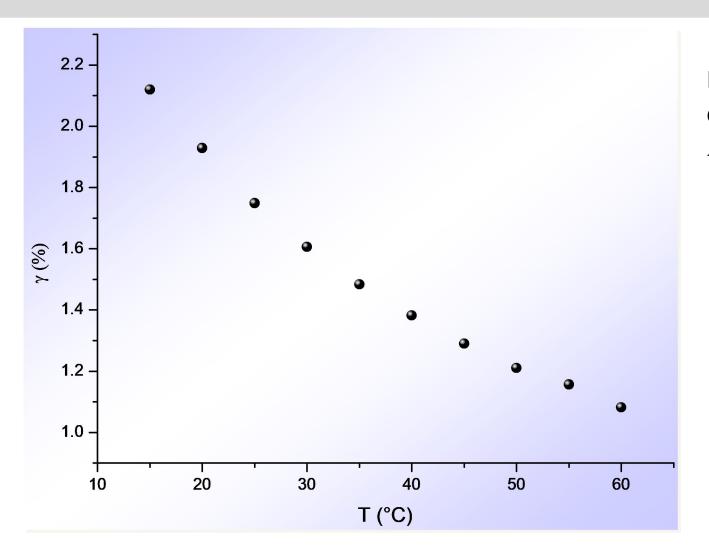
 κ^{-1} ? m

 σ ? C.m⁻² \Rightarrow A.s

 $\zeta =$

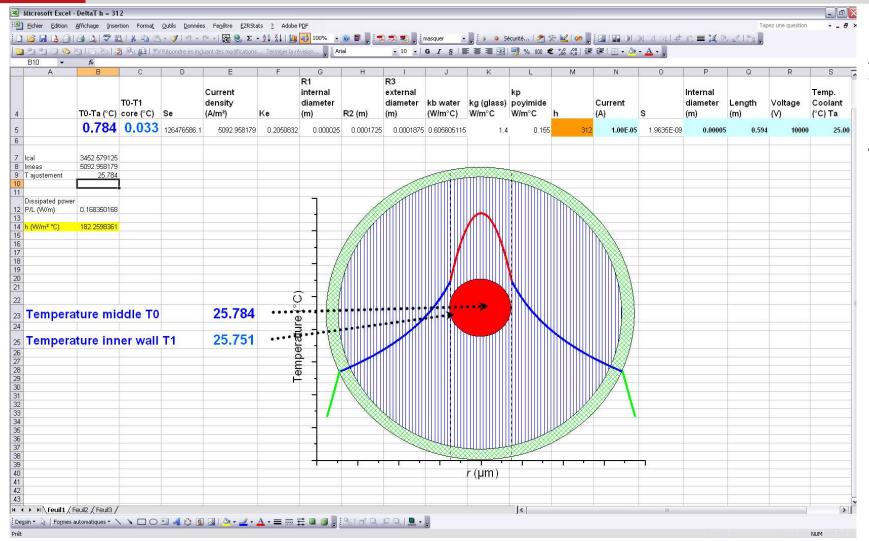
 ε_r ? Pas d'unité

 ε_0 ? F. m⁻¹ \Rightarrow C². J⁻¹ \Rightarrow m². kg.s⁻²


 $\zeta =$

 $\zeta =$

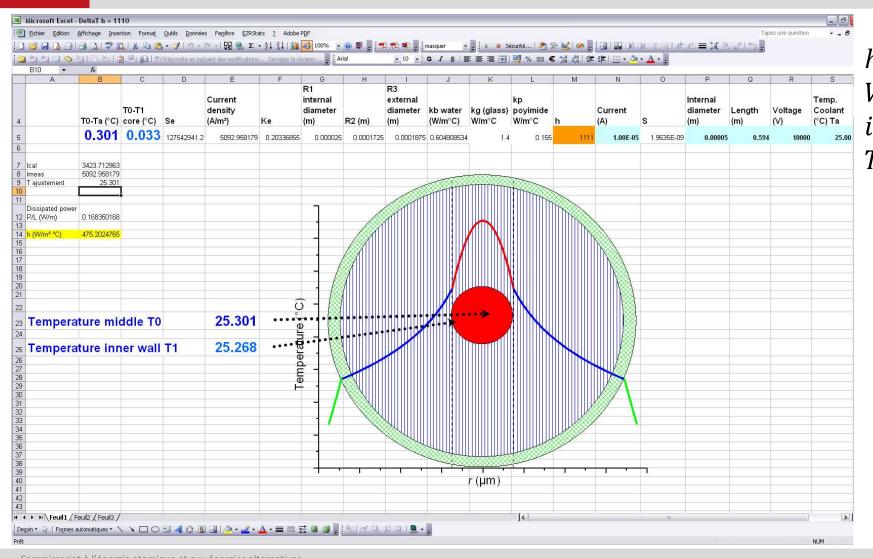
Exemple de variation de γ en fonction de la température



Electrolyte chromate/borate à pH 9, I = 16 mM.

Influence du système de refroidissement – air

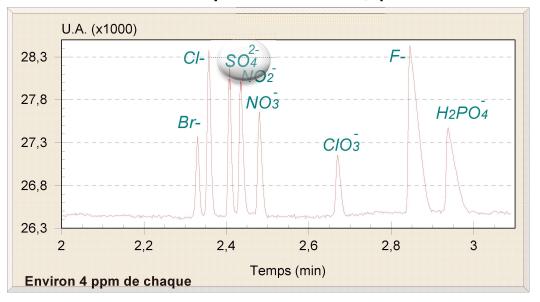
 $h = 312 Wm^{-2} °C^{-1}$ V = 10 kV $i = 10 \mu A$ T = 25 °C


$$\Delta T = 0, 8 \, {}^{\circ}C$$

$$\Delta T_{liq} = 0,03 \, {}^{\circ}C$$

Influence du système de refroidissement – liquide

 $h = 1111 Wm^{-2} °C^{-1}$ V = 10 kV $i = 10 \mu A$ T = 25 °C


 $\Delta T = 0, 3 \, {}^{\circ}C$

 $\Delta T_{liq} = 0,03 \, ^{\circ}C$

Electrodispersion – exemple pour la séparation des anions

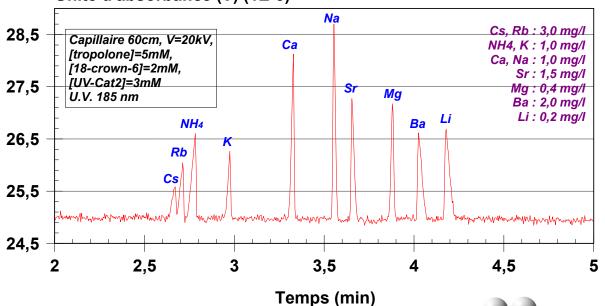
Electrolyte **chromate**, pH = 8

$$\mu_{Cl^{-}} < \mu_{SO_{4}^{2-}} < \mu_{NO_{2}^{-}}$$

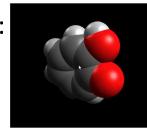
$$-79,11 < \mu_{SO_{4}^{2-}} < -74,48$$

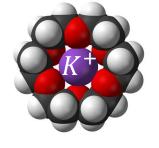
$$pK_{a}(SO_{4}^{2-}) = 7,22 \rightarrow \alpha_{pH=8} = \frac{[SO_{4}^{2-}]}{[HSO_{4}^{-}]} \approx 0,85$$

$$\mu_{sulfate} \approx$$


anions	μ_0	asymétrie
Cr0 ₄ ²⁻	-83,2	-
Br ⁻	-80,98	± 0
Cl^-	-79,11	< 0
HSO_4^-	- 52 , 18	< 0
SO_4^{2-}	-82,88	< 0
NO_2^-	-74,48	< 0
NO_3^-	-74, 05	< 0
ClO_3^-	-66,60	<< 0
F^-	- 57,34	<<< 0
$H_2PO_4^-$	-33,94	<<< 0

Electrodispersion – exemple pour la séparation des cations





Séparation K^+/NH_4^+ : 18C6

Séparation Ca^{2+}/Sr^{2+} : tropolone

μ_0	asymétrie
+79,60; +79,96	>> 0
+76,02	>> 0
+76,22	>> 0
+61,66	> 0
+64	-
+51,94	< 0
+61,62	< 0
+55,31	<< 0
+65,95	<< 0
+40,10	<< 0
	+79,60; +79,96 +76,02 +76,22 +61,66 +64 +51,94 +61,62 +55,31 +65,95

EXERCICES

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Exercice – calcul de mobilité apparente

$$v = \mu_{apparent} \cdot E$$
$$v = (\mu_{ep} + \mu_{eo}) \cdot E$$

Cations	Na^+	Li ⁺	<i>K</i> ⁺	Mg^{2+}	<i>Sr</i> ²⁺
μ_{ep}	51,94	40,10	76,22	55,31	61,62
Anions	Cl ⁻	F^-	HCO_3^-	ClO_4^-	HS ⁻
μ_{ep}	-79,11	-57,34	-46,08	-69,71	-66,6

Conditions de séparation :

$$\mu_{eo} = +66,6.10^{-9} \, m^2 V^{-1} s^{-1}$$

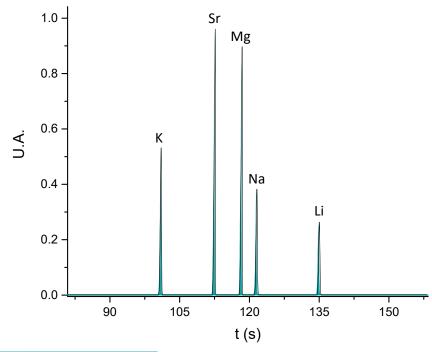
$$L = 60 cm$$

$$E = 25000 V$$

- 1) Calculer le temps de migration pour 1 cation de votre choix
- 2) Quels sont les anions co-détectés avec les cations ?
- 3) Pour les anions co-détectés, calculer leur temps de migration

Exercice – calcul de mobilité apparente – cas des cations

1) Mobilité apparente des cations : $\mu_{app} = \mu_{ep} + \mu_{eo}$


Exemple pour Li⁺ : $\mu_{app,Li} = \mu_{ep,Li} + \mu_{eo}$

$$\mu_{app,Li} =$$

$$v_{Li} = \mu_{app} \cdot E =$$

$$v_{Li} = ms^{-1}$$

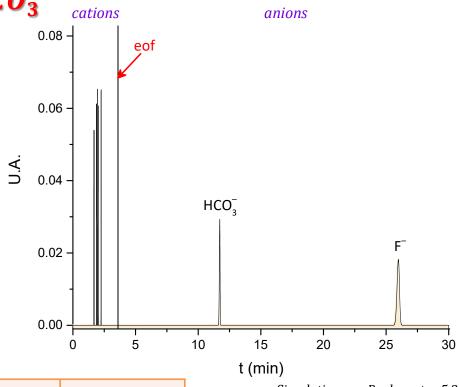
$$t = \frac{L}{v_{Li}} =$$

Simulation par Peakmaster 5.3

Cations	Na^+	Li ⁺	<i>K</i> ⁺	Mg^{2+}	<i>Sr</i> ²⁺
t(s)					

Exercice – calcul de mobilité apparente – cas des anions

- 2) Conditions $\mu_{app} = \mu_{ep} + \mu_{eo} > 0$, soit **F**⁻ & **HCO**₃
- 3) Mobilité apparente des anions :


Exemple pour F⁻ :
$$\mu_{app,F} = \mu_{ep,F} + \mu_{eo}$$

$$\mu_{app,F} =$$

$$v_F = \mu_{app} \cdot E =$$

$$v_F = ms^{-1}$$

$$t =$$

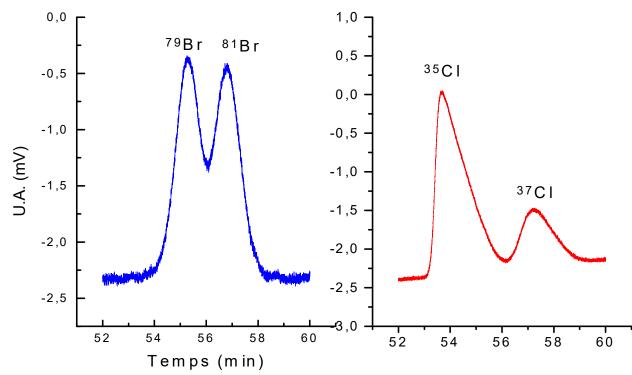
Simulation par Peakmaster 5.3

Anions	Cl ⁻	F^-	HCO_3^-	ClO_4^-	HS ⁻
μ_{ep}					

Contrôle du flux électroosmotique pour augmenter la résolution

$$R = \frac{2(t_2 - t_1)}{\omega_1 + \omega_2} = \frac{t_2 - t_1}{4\sigma}$$

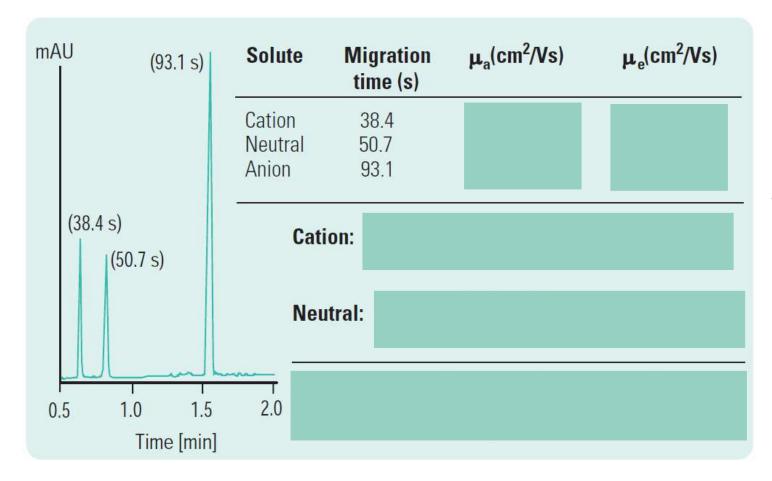
On peut également exprimer la résolution en fonction de l'efficacité.


$$m{R} = rac{1}{4} \sqrt{N} \left(rac{\Delta \mu}{\overline{\mu}}
ight) \qquad \qquad \Delta \mu = \mu_2 - \mu_1 \ ar{\mu} = rac{\mu_1 + \mu_2}{2}$$

$$R = \frac{1}{4\sqrt{2}} \Delta \mu \sqrt{\frac{V}{D(\overline{\mu} + \mu_{eof})}}$$

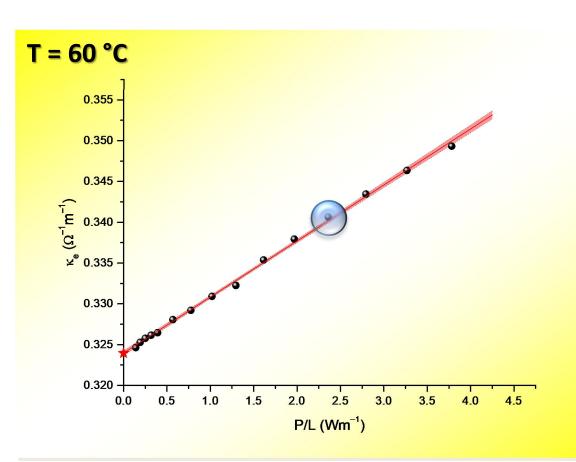
D: coefficient de diffusion

R \nearrow avec \sqrt{V} (il faut quadrupler la tension pour doubler la résolution 8)



Aupiais, J., Electrophoretic mobilities of the isotopes of chloride and bromide ions in aqueous solution at 25 °C and infinite dilution. J. Solution Chem. **2011**, 40, 1629-1644.

Exercice



- 1) Calculer les 3 μ_{a} ($\equiv \mu_{app}$)
- 2) Calculer les 3 μ_e ($\equiv \mu_{ep}$)

$$\kappa_e = \frac{L \cdot I}{S \cdot V} = \frac{L}{S} G$$

$$\Delta T =$$

Conditions:

$$P = 2.4 \ Wm^{-1} \rightarrow \kappa_e = 0.34064 \ \Omega^{-1}m^{-1}$$

 $\kappa_e(P = 0) = 0.32396 \ \Omega^{-1}m^{-1}$

$$\Delta T =$$

On doit déterminer γ à 60 °C

$$\gamma = \frac{1}{\kappa_e} \frac{\partial \kappa_e}{\partial T}$$

$$\gamma =$$

$$\Delta T =$$