

La Spectrofluorimétrie Laser Résolue en Temps

Licence Métrologie Chimique et Nucléaire

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

J. AUPIAIS CEA, DAM, DIF 91297 Arpajon

Aspects théoriques de la fluorescence

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

1852 : STOKES observe un rayonnement de plus grande longueur d'onde que le rayonnement incident dans un spath fluoré (fluorite CaF₂). Il invente le nom « **fluorescence** ».

Exemple d'un fluorspar (ou fluorite)

"I am almost inclined to coin a word and call the appearance **fluorescence** from **fluor**-spar, as the analogous term opal**escence** is derived from the name of a mineral" (Stokes, 1852)

George Gabriel Stokes (1819 – 1903)

Remarque : « Becquerel ne voulut jamais entendre parler de ce nouveau terme qui faisait selon lui double emploi avec le terme phosphorescence déjà utilisé depuis longtemps. Paradoxalement, on sait maintenant que le phénomène qui a été à l'origine de la recherche d'un nouveau nom, la différence de couleur du liquide selon la direction d'observation n'était pas dû à une fluorescence, mais à une phosphorescence de très courte durée. Ironie du sort ! » Gérard Barmarin (2009-2010), http://www.fluomin.org/histoire/XIX.php

Histoire – quelques dates clé

1919 : Relation de Stern-Volmer

1923 : Polarisation (Vavilov et Levshin)

1928 : Théorie **quantique** des interactions moléculaires (Kallmann et London)

1935 : Diagramme de Jablonski

1944 : Etat triplet (Lewis et Kasha)

1957 : Anisotropie (Jablonski)

Alexander Jablonski (1898–1980) SLRT 4

* pour ses contributions au développement de l'épitaxie par jet moléculaire et sa découverte du moment magnétique du proton.

Jablonski Energy Diagram

Le spectre d'émission de fluorescence se situe toujours dans un domaine de fréquence inférieur (ou un domaine de longueur d'onde supérieur) à celui du spectre d'absorption.

ABSORPTION FLUORESCENCE PHOSPHORESCENCE

B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH (2002) 387 p.

Commissariat à l'énergie atomique et aux énergies alternatives

Les micro-états

La configuration électronique d'un ion ne suffit donc pas à le caractériser complètement. Il faut calculer les micro-états :

$$\binom{2(2l+1)}{N} = \frac{[2(2l+1)]!}{N! [2(2l+1)-N]!}$$

N = nombre d'électrons à placer 4l + 2 = nombre maximum d'électrons dans la sous-couche

Exemple Cr^{3+} : $3d^3$

$$N = \begin{pmatrix} 2(2 \times +1) \\ l = \end{pmatrix} = \frac{[2(2 \times +1)]!}{![2(2 \times +1) -]!}$$

$$() = \frac{!}{! !}$$

$$() = \frac{! + l}{! ! !}$$

6

Notation spectroscopique – position du problème

Ex: Cr³⁺ (configuration **3***d*³)

En absence de complexation, les niveaux d'énergie des 5 orbitales *d* sont dégénérés Si par exemple complexation par 6 ligands \rightarrow champ octaédrique, les orbitales ne sont plus équivalentes $3d_{x^2-y^2}$

Commissariat à l'énergie atomique et aux énergies alternatives

La répulsion électronique

Dans un système à plusieurs électrons, il faut aussi tenir compte de la répulsion électronique dans le bilan énergétique de la molécule :

$$\widehat{H} = \sum_{i} -\frac{\hbar^2}{2m} \Delta_i - \sum_{i} \frac{Z_i e^2}{4\pi\varepsilon_0 r_i} - \sum_{i} \sum_{j>i} \frac{e^2}{4\pi\varepsilon_0 |r_i - r_j|}$$

Opérateur d'énergie cinétique pour chaque noyau et chaque électrons du système Opérateurs d'énergie potentielle de répulsions coulombiennes entre électrons

Opérateurs d'énergie potentielle entre électrons et noyaux attraction coulombienne totale dans le système

Les électrons se placent dans les orbitales selon les arrangements appelés micro-états, caractérisés par une valeur de M_L et une valeur de M_S m_l = projection de \vec{l} sur l'axe de quantification $M_L = \sum m_l$ m_s = projection de \vec{s} sur l'axe de quantification $M_S = \sum m_s$

8

SI RT

Un terme spectroscopique désigne l'ensemble des micro-états caractérisés par une série de valeurs de M_L et M_S définissant une valeur de L et de S.

- **S** = nombre quantique de spin total
- Γ = lettre correspondante au nombre quantique L

Dégénérescence du terme = (2L + 1)(2S + 1)

Exercices – cas trivial un seul électron sur les couches s, p ou d :

N = 1Couche s^1 Couche p^1 Couche d^1 S =L =L =L =

$$\binom{1}{1} = \mu$$
-états $\binom{1}{1} = \mu$ -états $\binom{1}{1} = \mu$ -états

Commissariat à l'énergie atomique et aux énergies alternatives

9

SI RT

cea

Termes spectroscopiques d'un ion libre de configuration l^q

lq	μ- états	Terme	lq	μ- états	Terme
<i>s</i> ¹	2	² S	d^5	252	${}^{2}S, {}^{2}P, {}^{2}D_{(3)}, {}^{2}F_{(2)}, {}^{2}G_{(2)}, {}^{2}H,$
<i>s</i> ²	1	¹ S			² <i>I</i> , ⁴ <i>P</i> , ⁴ <i>D</i> , ⁴ <i>F</i> , ⁴ <i>G</i> , ⁶ <i>S</i>
p^{1}, p^{5}	6	² P	f^{1}, f^{13}	14	² <i>F</i>
p^{2}, p^{4}	15	${}^{1}S, {}^{1}D, {}^{3}P$	f^2, f^{12}	91	¹ S, ¹ D, ¹ G, ¹ I, ³ P, ³ F, ³ H
p^3	20	$^{2}P, ^{2}D, ^{4}S$	f^3 , f^{11}	364	${}^{2}P, {}^{2}D_{(2)}, {}^{2}F_{(2)}, {}^{2}G_{(2)}, {}^{2}H_{(2)},$
d1 d9	10	2 D			$^{2}I, ^{2}K, ^{2}L, ^{4}D, ^{4}F, ^{4}G, ^{4}S, ^{4}I$
a,a	10	- D	f^{4}, f^{10}	1001	5 ₁
d^2, d^8	45	¹ S, ¹ D, ¹ G, ³ P, ³ F	<u>ب</u> ب	2002	617
$d^3 d^7$	120	$2P 2D_{(2)} 2F 2G 2H 4P 4F$	J°,J [°]	2002	*H ,
<i>a</i> , <i>a</i>	120	1, D(2), 1, 0, 11, 1, 1	f ⁶ ,f ⁸	3003	7F ,
d ⁴ , d ⁶	210	${}^{1}S_{(2)}, {}^{1}D_{(2)}, {}^{1}F, {}^{1}G_{(2)}, {}^{1}I, {}^{3}P_{(2)}, {}^{3}D, {}^{3}F_{(2)}, {}^{3}G, {}^{3}H, {}^{5}D$	<i>f</i> ⁷	3432	⁸ S,

En rouge : terme fondamental

SLRT

Commissariat à l'énergie atomique et aux énergies alternatives

Ce n'est pas fini 🤗 – couplage spin-orbite et moment angulaire total J

$$\widehat{H} = \sum_{i} -\frac{\hbar^2}{2m} \Delta_i - \sum_{i} \frac{Z_i e^2}{4\pi\varepsilon_0 r_i} - \sum_{i} \sum_{j>i} \frac{e^2}{4\pi\varepsilon_0 |r_i - r_j|} + \sum_{i} \zeta l_i s_i$$

Avec :

cea

$$\vec{J} = \vec{L} + \vec{S}$$
 et $L - S \le J \le L + S$

Les termes éclatent en 2J + 1 niveau spectroscopiques :

$$^{2S+1}\Gamma_J$$

Commissariat à l'énergie atomique et aux énergies alternatives

SLRT

 J_X

J = L + S

 J_{7}

Niveau fondamental : règle de Hund

Couche < demi-remplie $\rightarrow J = J_{min}$ Couche > demi-remplie $\rightarrow J = J_{max}$

Exemple Pr^{3+} configuration $4f^2$

m	-l +3	+2	+1	0	-1	-2	-3
L = S =	Niveau	fondamer	ntal				
$J_{min} = L - S =$ $J_{max} = L + S =$	= Ecla	Eclatement du niveau fondamental par S.O. en					
Niveau fondamental							

12

cea

Encore un effort 🔗 – le champ de ligands

$$\widehat{H} = \sum_{i} -\frac{\hbar^2}{2m} \Delta_i - \sum_{i} \frac{Z_i e^2}{4\pi\varepsilon_0 r_i} + \sum_{i} \sum_{j>i} \frac{e^2}{4\pi\varepsilon_0 |r_i - r_j|} + \sum_{i} \zeta l_i s_i + \sum_{i} \sum_{L} \frac{e_i q_L}{4\pi\varepsilon_0 r_{iL}}$$

Configuration	Répulsion électronique	Couplage spin-orbite	Champ cristallin
$3d^N$	70000	500	15000
$4d^N$	50000	1000	20000
$5d^N$	20000	2000	25000
$4f^N$	70000	1500	500
$5f^N$	50000	2500	2000

Unité : cm⁻¹

cea **Champ de ligands - Notation**

Exemple Cr^{3+} configuration $3d^{3}$ dans un champ de ligand octaédrique

Commissariat à l'énergie atomique et aux énergies alternatives

L	Terme	g _{2<i>L</i>+1}	T _d	O _h
0	S	1	A ₁	A _{1g}
1	Р	3	T ₁	T _{1g}
2	D	5	E+T ₁	E _g +T _{1g}
3	F	7	$A_2 + T_1 + T_2$	$A_{2g}+T_{1g}+T_{2g}$
4	G	9	$A_1 + E + T_1 + T_2$	$A_{1g}+E_{g}+T_{1g}+T_{2g}$
5	Н	11	$E+2T_1+T_2$	$E_g + 2T_{1g} + T_{2g}$
6	I	13	$A_1 + A_2 + E + T_1 + 2T_2$	$A_{1g} + A_{2g} + E_g + T_{1g} + 2T_{2g}$

Spectre de fluorescence de UO_2^{2+}

cea

Beitz J.V. in: Laser-induced fluorescence studies of Cm3+ complexes in solution, CONF-891120 --3 (1989).

Runde W. et al, J. Alloys Compd. 303-304 (2000) 182-190.

Commissariat à l'énergie atomique et aux énergies alternatives

740

730

SLRT

Spectre de fluorescence de Eu³⁺

Transition dipolaire électrique (hypersensible à l'environnent externe)

Transition **dipolaire magnétique** (peu sensible à l'environnent externe)

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Cea Rendement de fluorescence et temps de vie*					
Rendement de fluorescence $\Phi = \frac{k_F}{\sum_i k_i} = \frac{k_F}{k_F + k_{non radiatif}}$					
Constante cinétique de fluorescence $k_F = \Phi \sum_i k_i$ 1 1	τ_F dépend de l'espèce fluorescente au dépend de l'environnement (<u>spéciation</u>)				
Temps de vie de fluorescence naturel $\frac{1}{\tau_F} = \Phi \frac{1}{\tau}$					
Temps de vie de fluorescence $ au = \Phi au_F = \frac{1}{\sum_i k_i}$	Exemples : • Eu^{3+} 100 µs (naturel) \rightarrow 4000 µs				
Le déclin de fluorescence est : $I = I_0 e^{-\frac{t}{\tau}}$	• UU_2^2 · 2 µs (naturel) \rightarrow 250 µs • Mol. organiques 0,01 à 1 µs				

* Voir cours « Scintillation alpha » pour exercice pratique sur les calculs de Φ , τ , etc.

Commissariat à l'énergie atomique et aux énergies alternatives

cea SLRT – exemples de dispositif expérimental

SLRT – Appareillage : l'excitation

Génération d'une seconde harmonique dans un cristal non linéaire

x⁽²⁾ crystal

Lasers :

Continue (argon)

Pulsé (ns \rightarrow fs)

•Source discrète : azote (337 nm), Nd-YAG

(266, 355, **532** nm) -

•Source accordable : colorant, OPO

Avantages : puissance, accordabilité, résolution temporelle Désavantages : coûteux, parfois complexe d'emploi (OPO)

E : 10 µJ (532 nm) t : 0.5 ns n : 5 kHz div. : 5 mrad

Commissariat à l'énergie atomique et aux énergies alternatives

SLRT

 $\omega = 2\omega$

SLRT – Appareillage : la détection

Caméra CCD (charged coupled device) rétroéclairée

- Avantages : $I = f(\lambda)$, bas bruit de fond, dynamique, imagerie
- Inconvénient : saturation

George E. Smith and Willard Boyle, prix Nobel 2009 pour l'invention du capteur CCD [Bell Lab. 1970].

Commissariat à l'énergie atomique et aux énergies alternatives

Pour *i* espèces présentes, l'intensité totale de fluorescence au temps *t* et à une longueur d'émission λ est la somme des fluorescences individuelles des *i* espèces.

cea SLRT – Avantages : élimination fluorescence parasite

La résolution temporelle permet de s'affranchir de fluorescence parasite (solvant, électrolyte) à temps de vie court. Intensité de

Commissariat à l'énergie atomique et aux énergies alternatives

cea

SLRT – Avantages : discrimination des espèces

La résolution temporelle permet aussi de discriminer des espèces présentant des temps de vie différents.

Exemple : 2 espèces fluorescentes A et B avec $\tau_B \gg \tau_A$

$$I_{\lambda}(t) = I_{\lambda,B}^{0} e^{-t/\tau_{B}} + I_{\lambda,A}^{0} e^{-t/\tau_{A}}$$

Si on débute la mesure à $t=3\tau_A$

$$I_{\lambda}(3\tau_A) =$$

$$I_{\lambda}(3\tau_A) =$$

Si on débute la mesure à $t = 5\tau_A$

$$I_{\lambda}(5\tau_A) =$$

$$I_{\lambda}(5\tau_A) =$$

By Victor Claessen / Victorclaessen, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16873614

L'inhibition de la fluorescence

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Quenching statique : le métal forme avec une espèce inhibitrice Q une nouvelle espèce chimique peu ou pas fluorescente. La formation du complexe se fait à l'état fondamental. Le complexe absorbe la lumière et retourne immédiatement à l'état fondamental sans émission de photons. C'est un complexe statique et le processus est <u>indépendant du</u> <u>temps</u>.

$$\frac{I_0}{I} = 1 + K_S[Q]$$

I₀ : intensité de fluorescence en absence de quencher
 I : intensité de fluorescence en présence de quencher
 K_S : constante de complexation
 [Q] : concentration du quencher

Le temps de vie ne varie pas

Le quenching dynamique est dû à tout phénomène moléculaire se déroulant pendant la durée de vie de l'état excité et qui perturbe la fluorescence émise. La collision entre le fluorophore et le quencher, phénomène dynamique, provoque une diminution <u>à la fois de l'intensité de fluorescence et de la demi vie de l'état excité</u>.

Relation de Stern-Volmer :

$$\frac{\phi_0}{\phi} = \frac{I_0}{I} = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$

 ϕ_0 : rendement quantique de fluorescence en absence de quencher ϕ : rendement quantique de fluorescence en présence de quencher $K_{SV} = k_q \tau_0$: constante de Stern-Volmer k_q : constante de vitesse (peut-être déterminée si τ_0 est connu) τ_0 : temps de vie de fluorescence en absence de quencher

SI RT

Cea

Exemple d'application de la loi de Stern-Volmer

Commissariat à l'énergie atomique et aux énergies alternatives

Quenching dynamique – deux mécanismes

Inhibition par transfert de charge

Inhibition par transfert d'énergie

$$\begin{array}{cccc} 1 & 2 & 3 \\ M^* + Q \rightarrow M + Q^* \rightarrow M + Q \end{array}$$

Commissariat à l'énergie atomique et aux énergies alternatives

Cereal Comparaison entre quenching dynamique et statique

Pour le transfert d'énergie par résonance (Förster) – voir le cours de scintillation pour plus de détails.

Cea

Exemple de transfert non radiatif Tb(III) \rightarrow Eu(III) dans SrTiO₃

Condition : recouvrement des spectres d'absorption de l'accepteur et d'émission du donneur

Commissariat à l'énergie atomique et aux énergies alternatives

Conséquence sur la fluorescence du Tb(III)

Garcia-Rosales G. et al, J. Luminescence 132(5) (2012) 1299-1306.
Effet préfiltre : certaines espèces chimiques présentes dans le milieu de mesure peuvent absorber le rayonnement d'excitation.

Effet postfiltre : certaines espèces chimiques présentes dans le milieu de mesure peuvent absorber le rayonnement de fluorescence.

Dans le cas d'une excitation pulsée, le signal de fluorescence s'écrit alors :

$$I(t) = kI_0 t_{irr} \varepsilon_u C_u e^{-\Delta t/\tau_u} \times \frac{1 - e^{-\varepsilon_w C_w l}}{\varepsilon_w C_w} \times e^{-\varepsilon_v C_v l}$$

k : facteur d'appareillage

*I*₀ : intensité du laser

 $\varepsilon_u, C_u, \tau_u$: coefficient d'absorption molaire, concentration et temps de vie de l'espèce d'intérêt Δt : retard

l : parcours optique \bigwedge vrai si cuve carrée, sinon le parcours optique peut être différent entre pré- et postfiltre ε_v, C_v : coefficient d'absorption molaire et concentration de l'espèce v absorbant à la longueur d'onde d'excitation ε_w, C_w : coefficient d'absorption molaire et concentration de l'espèce w absorbant à la longueur d'onde d'émission

37

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Analyse des espèces inorganiques

Cas des espèces directement fluorescentes

•Lanthanides (Eu, Dy, Sm, Ce, Gd,...)

•Actinides (U, Am, Cm)

Méthode directe en reliant l'intensité de fluorescence à la concentration I = kC

 soit par comparaison directe avec un étalon de même type

- soit par la méthode des ajouts dosés
- Grande sensibilité
- Triple sélectivité (excitation, émission, résolution temporelle)
- Rapidité

Commissariat à l'énergie atomique et aux énergies alternatives

Milieu exaltant la fluorescence \downarrow

Elément	$ au_0\left(\mu s ight)$	Limite de détection (M)	Milieu
Ce(III)	0,07	10 ⁻⁹	H ₂ SO ₄
Sm(III)	80	10 ⁻¹⁰	TTA
Eu(III)	900	10 ⁻¹²	TTA
Gd(III)	3000	5.10 ⁻⁸	H_2SO_4
Tb(III)	2100	10 ⁻⁹	EDTA
Dy(III)	20	10 ⁻¹⁰	EDTA
U(VI)	200	5.10 ⁻¹³	H ₃ PO ₄
Cm(III)	200	5.10 ⁻¹³	TTA
Am(III)	0,03	5.10 ⁻⁹	K ₂ CO ₃

39

La détermination du nombre d'espèces

Deux temps de vie mesurés \rightarrow deux espèces différentes d'un même élément (environnements différents)

40

La détermination du nombre d'hydratation

Exemple : la fluorescence de Eu³⁺

La variation du temps de vie dépend de *n* molécules H_2O et (9 - n) molécules D_2O

les oscillateurs O-D se montrent nettement moins efficaces que les oscillateurs O-H pour inhiber la fluorescence de Eu(III) (*l'intensité et le temps de vie de fluorescence de Eu(III) sont plus importants dans D*₂O que dans H₂O).

$$n_{H_20} = \frac{1,07}{\tau_{H_20} \,(ms)} - 0,62$$

Application : $\tau_{Eu,H_20} = 113 \pm 5 \ \mu s$

 $n_{H_20} =$

Kimura T. et al, Journal of Alloys and Compounds 271 (1998) 719-722.

cea

La détermination du nombre d'hydratation – cations métalliques

L'analyse de spéciation est l'activité analytique pour identifier et quantifier une ou plusieurs espèces chimiques d'un élément présent dans un échantillon.

Intérêt de la spéciation ?

La forme physico-chimique d'un élément peut impacter

- sur l'aspect environnemental : MIGRATION
- sur l'aspect procédé : EXTRACTION
- sur l'aspect biologique : **TOXICITE**

43

SI RT

Spéciation de l'ion uranyle dans l'eau par SLRT

Moulin C. et al, Appl. Spectroscopy 52(4) (1998) 528-535.

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives

45

Spéciation de l'ion uranyle dans l'eau par SLRT

Déplacement de +10 nm des raies par rapport à UO_2^{2+}

Pollution par UO_2^{2+} ($\tau = 2 \ \mu s$) ou non ?

Moulin C. et al, Appl. Spectroscopy 52(4) (1998) 528-535.

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Spéciation de l'ion uranyle dans l'eau par SLRT

Moulin C. et al, Appl. Spectroscopy 52(4) (1998) 528-535.

Commissariat à l'énergie atomique et aux énergies alternatives

En 1998, le complexe 4:7 n'était pas bien défini thermodynamiquement. Aujourd'hui, on peut dire que c'est soit le complexe 4:7 qui a été détecté, soit un mélange des complexes 3:5 & 4:7

cea

Spéciation de l'ion uranyle dans l'acide nitrique

Hypothèse : déplacement bathochrome

Trait continu : données thermodynamiques OCDE

$$UO_2^{2+} + NO_3^- \rightleftharpoons UO_2NO_3^+$$
$$log\beta_1 = -0,47$$

 $UO_2^{2+} + 2NO_3^- \rightleftharpoons UO_2(NO_3)_2$ $log\beta_2 = -1,43$

Commissariat à l'énergie atomique et aux énergies alternatives

48

Ω

Spéciation de l'ion uranyle dans l'acide nitrique

⁵⁹⁰λ (nm)⁶¹⁰

$$I(\lambda) = \alpha \Phi^{UO_2}(\lambda) + \sum_i \alpha^i \Phi^{UO_2}(\lambda + \alpha^i \lambda)$$

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Le déplacement bathochrome – Am(III)/Carbonate

Le **déplacement bathochrome*** est une modification de la position de la bande spectrale d'une molécule vers les plus grandes longueurs d'onde (*la forme du spectre n'est pas changée*) dû au solvant ou en raison de la présence de substituants chimiques.

Espèce	λ (nm)	τ (ns)	n _{H20} (± 0, 5)		
Am^{3+}	685	20,4	11,1		
$Am(CO_3)_3^{3-}$	693	34,5	6,0		
$Am(OH)CO_{3(s)}$	698	-			
$NaAm(CO_3)_{2(s)}$	702	_			

* Appelé improprement « red shift » car il n'est pas question d'effet Doppler ici.

SLRT 50

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Le déplacement bathochrome – Cm(III)/carbonate

Commissariat à l'énergie atomique et aux énergies alternatives

cea

Le déplacement bathochrome – U(VI)/Phosphate

Scapolan S. et al, J. Alloys Compd. 271-273 (1998) 106-111.

Commissariat à l'énergie atomique et aux énergies alternatives

Absence de déplacement bathochrome – Eu(III)/carbonate

Cea Stœchiométrie des complexes

Exemple : complexation de l'europium par l'acide diéthylènediaminepentaacétique

 $Eu^{3+}(H_2O)_9 + DTPA^{5-} \rightleftharpoons EuDTPA(H_2O)_1$

Effet de la température sur la spéciation

Détection des espèces mixtes

Détermination d'une constante de complexation

Etude de la complexation de Eu^{3+} par un ligand polyazoté cyclique (2,4,6-tri-(pyridin-2-yl)-1,3,5-triazine)

$$\int_{590} \propto x \cdot [Eu]_{libre} + \sum_{i} x \cdot [EuL_{i}]$$
$$\int_{616} \propto y \cdot [Eu]_{libre} + \sum_{i} y \cdot T \cdot [EuL_{i}]$$

x, y: contribution à la fluorescence pour les bandes à 590 et 616 nm. $[EuL_i]$: concentration de chaque complexe métallique formé.T: contribution hypersensible (> 1).

$$R = \frac{I_{590}}{I_{616}} = \frac{x \cdot [Eu]_{libre} + \sum_{i} x \cdot [EuL_i]}{y \cdot [Eu]_{libre} + \sum_{i} y \cdot T \cdot [EuL_i]}$$

* Symétrie brisée → symétrie plus basse

SLRT

François N., thèse, université Nancy I (1999).

Commissariat à l'énergie atomique et aux énergies alternatives

Détermination d'une constante de complexation – formalisme mathématique

Cea

Cea

Détermination d'une constante de complexation – détermination du nombre d'espèces

2 temps de vie \rightarrow 2 espèces $\tau_{Eu} = 118 \ \mu s$ $n_{H_2O} = 8,6$ $\tau_{EuTPTZ} = 177 \ \mu s$ $n_{H_2O} = 5,6$

Détermination d'une constante de complexation – étude variationnelle I = f([TPTZ])

Porte-clé contenant du tritium + photophore (AliExpress)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

ralei u=

Annexes

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Exercice – déterminer tous les micro-états d'un ion libre de configuration p^2

	$m_s = +1/2$			m	$l_s = -1$			
$m_l =$	+1	0	-1	+1	0	-1	M _L	M _S
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								

Nombre d'électrons à placer : N =

Moment orbital d'une couche p: l =

Nombre total de micro-états ?

$$\left(\begin{array}{c} \\ \end{array}\right) = - \qquad \left(\begin{array}{c} \\ \end{array}\right) =$$

Procédure pour N > 1

- 1. Ecrire tous les μ -états,
- 2. Calculer les M_L et M_S pour chaque μ -état,
- 3. Reconnaître les ensembles de μ états pour *L* et *S* donnés, avec :

$$-L \le M_L \le +L$$

$$-S \le M_S \le +S$$

Commissariat à l'énergie atomique et aux énergies alternatives

62

Trier les micro-états identiques pour un L et S donnés

$M_L \setminus M_S$	+1	0	-1
+2		1	
+1	1	2	1
0	1	3	1
-1	1	2	1
-2		1	

cea

Décompte des micro-états pour *L* = 2

Rappel : $-L \le M_L \le +L$

$M_L \setminus M_S$	+1		-1
+2			
+1	1	2	1
0	1	3	1
-1	1	2	1
-2		1	

Terme spectroscopique pour L = 2 ?

 $S = \rightarrow 2S+1\Gamma =$

Combien de µ-états ?

il n'y a aucune raison que le moment cinétique orbital de cet état soit orienté uniquement dans l'axe choisi pour faire la mesure. Le terme spectroscopique ¹D se décline donc également avec des valeurs de m_L égales à 2, 1, 0, −1, −2, ce qui nous fait ____ micro-états en tout.

64

$C 2 \mathcal{D}$ Décompte des micro-états pour L = 1

D'abord, on enlève les 5 μ -états pour L = 2 du tableau, soit 10 μ -états restants.

$M_L \setminus M_S$	+1	0	-1
+2			
+1	1	1	1
0	1	2	1
-1	1	1	1
-2			

Terme spectroscopique pour L = 1?

$$S = \rightarrow 2S+1\Gamma =$$

Combien de µ-états ?

Si on applique le même raisonnement que précédemment, il est clair qu'un état (L = 1, S = 1) peut apparaître sous la forme de plusieurs micro-états avec m_L prenant toutes les valeurs entières possibles entre -1 et +1 et m_s toutes les valeurs entières entre -1 et +1. Ceci nous fait ___ micro-états en tout. SLRT

65

D'abord, on enlève les 9 μ -états pour L = 1 du tableau, soit 1 μ -état restant.

$M_L \setminus M_S$	+1	0	-1
+2			
+1			
0		1	
-1			
-2			

Terme spectroscopique pour L = 0?

 $S = \rightarrow 2S + 1\Gamma =$

Combien de µ-états ?

Ceci nous fait ___ micro-état restant.

Règle empirique de Hund :

Plus grande multiplicité de spin

> Si plusieurs termes de même multiplicité : plus grande dégénérescence orbitale Exemple : configuration p^2

3 termes spectroscopiques : ¹D, ³P, ¹S

$$S_{max} = \rightarrow 2S + 1 =$$

$$L_{max} = \rightarrow$$

Terme fondamental :

Couplage spin-orbite – Pr³⁺

Energie des niveaux par rapport à

$$E_{s.o.} = \frac{\xi}{2} [J(J+1) - L(L+1) - S(S+1)]$$

Commissariat à l'énergie atomique et aux énergies alternatives

cea

Les orbitales *nf*

Effets relativistes

Cea

Ú

Effet relativiste direct : pour U, la vitesse radiale de l'électron 1*s* est **0**, **67***c*, et donc sa masse **1**, **35***me* \rightarrow **contraction des orbitales 1***s* **et de manière générale les** *ns***. Effets similaires sur les orbitales** *np***. Effet relativiste indirect** : en conséquence, écrantage plus grand des orbitales *nd* et *nf* \rightarrow **extension radiale**.

Peu d'effet relativiste sur les orbitales 4f

Contraction (stabilisation) des orbitales 7s & 7p Extension (déstabilisation) des orbitales 5f et 6d

Augmentation de la covalence des orbitales 5f par rapport aux orbitales 4f.

Clark D.L., Los Alamos Science, 26 (2000) 364-381.

cea

Exemple de remplissage dans orbitale *d* en champ de ligand

e _g	d^1	<i>d</i> ²	<i>d</i> ³					
					L	Terme	g _{2<i>L</i>+1}	T _d
					0	S	1	A ₁
t _{2g}					1	Р	3	T ₁
	097			1 (167)	2	D	5	E+T ₁
					3	F	7	$A_2+T_1+T_2$
2 ^{ème} état excité		³ 4	⁴ T.		4	G	9	A ₁ +E+T ₁ +T ₂
					5	Н	11	E+2T ₁ +T ₂
		${}^{3}T_{1}$	⁴ <i>T</i> ₁		6	I	13	$A_1 + A_2 + E + T_1 + 2T_2$
1 ^{er} état excité	² E	³ T ₂	⁴ T ₂	⁵ T ₂		$\rightarrow Di$	agrar	nme de
Etat fondamental	² T ₂	³ T ₁	⁴ A ₂	⁵ <i>E</i>		Tana	abé-S	Sugano
Terme fondamental de l'ion libre	² D	³ F	⁴ F	⁵ D				

Commissariat à l'énergie atomique et aux énergies alternatives
Cea

Diagramme de Tanabé-Sugano

Orbitale $5f_{z^3}$

Soit la réaction de complexation : $M + Q \rightleftharpoons MQ$

La constante de complexation de la réaction est : $K_S = \frac{[MQ]}{[M][O]}$

La loi de conservation de la masse impose : $[M]_0 = [M] + [MQ]$

Ainsi, la fraction non complexée s'écrit :

$$\frac{[M]}{[M]_0} = \frac{1}{1 + K_s[Q]}$$

En considérant que l'intensité de fluorescence est proportionnelle à la concentration (vrai en solution diluée), la relation précédente peut donc s'écrire :

$$\frac{I_0}{I} = 1 + K_s[Q]$$

SI RT

Cea

Le quenching dynamique – démonstration de la relation

En supposant que la constante cinétique k_q est indépendante du temps, la variation de la concentration de l'espèce excitée M^* obéit à l'équation différentielle suivante :

$$\frac{d[M^*]}{dt} = -\left(k_M + k_q[Q]\right)[M^*]$$
$$\frac{d[M^*]}{dt} = -\left(\frac{1}{\tau_0} + k_q[Q]\right)[M^*]$$

L'intégration de cette relation avec les conditions aux limites $[M^*] = [M^*]_{t=0}$ donne :

$$[M^*] = [M^*]_0 e^{-(1/\tau_0 + k_q[Q])t}$$

L'intensité de fluorescence de M^* est donc : $i(t) = i(0)e^{-(1/\tau_0 + k_q[Q])t}$

Le temps de vie de fluorescence est donc :

$$\tau = \frac{1}{\frac{1}{\tau_0} + k_q[Q]} = \frac{\tau_0}{1 + k_q[Q]}$$

Commissariat à l'énergie atomique et aux énergies alternatives

SI RT

Le rendement de fluorescence en présence de quencher est :

En l'absence de quencher, $\Phi_0 = k_F \tau_0$

Donc :

$$\frac{\phi_0}{\phi} = \frac{I_0}{I} = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$

Autre formulation de la loi !

$$\Phi = \frac{k_F}{k_F + k_{nr} + k_q[Q]}$$

77

SLRT

$$\Phi = \frac{k_F}{1/\tau_0 + k_q[Q]}$$

 $\frac{\tau_0}{2} = 1 + k_q \tau_0[Q]$

$$Eu^{3+} + DTPA^{5-} \rightleftharpoons EuDTPA^{2-}$$

 $Eu^{3+}(H_2O)_9: \tau_{H_2O} = 110 \ \mu s$

 $EuDTPA^{2-}(H_2O)_n: \tau_{H_2O} = 550 \ \mu s$

Combien de molécules d'eau ?

 $n_{H_20} = \frac{1,07}{\tau_{H_20\ (ms)}} - 0,62$

 $n_{H_20} =$

$$n_{H_20} =$$

(transition hypersensible) F(u.a.) ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ λ (nm)

Modification de la symétrie symétrique → dissymétrique

78

C'est la modification des états électroniques sous l'action d'un champ électrique (ici le champ de ligand) qui se traduit par l'éclatement et le décalage de raies spectrales en (2J + 1) états.

Effet Stark

Summater	Doint groups	I = 0	<i>I</i> = 1	I = 2	1-2	I = A	1 - 5	1-6		
Symmetry	Point groups	5-0	J = 1	J – 2	5-5	<i>J</i> – 4	J = 5	J = 0	16000 -	
class										
		_		_		-				A
Icosahedral	I _h , I	1	1	1	2	2	3	4	12000 -	
Cubic	O_h,O,T_d,T_h,T	1	1	2	3	4	4	6		$\operatorname{Eu}(\operatorname{CO}_3)_3^{3-}$
Octagonal	$D_{8}, C_{8v}, S_{8,} D_{4d}$	1	2	3	4	6	7	8	8000 -	
Hexagonal	$D_{6h}, D_6, C_{6v}, C_{6h},$	1	2	3	5	6	7	9		
	$\mathrm{C}_{6},\mathrm{D}_{3h},\mathrm{C}_{3h}$								4000 -	
Pentagonal	$D_{5h}, D_5, C_{5v}, C_{5h}, C_5$	1	2	3	4	5	7	8		$I \longrightarrow I$
Tetragonal	$D_{4h}, D_4, C_{4v}, C_{4h}, \\$	1	2	4	5	7	8	10	0 -	λ (nm)
	C_4,S_4,D_{2d}			_					5′	70 580 590 600 610 620 630 640
Trigonal	$D_{3d}, D_{3}, C_{3v}, \\$	1	2	3	5	6	7	9		
	$C_{3i} (= S_6), C_3$									
0111		.	-			~		10		A posteriori (2021), il aurait fallu ajouter un 3 ^e pic
Orthorhombic	D_{2h}, D_2, C_{2v}		3	2	7	9	11	13		à la transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ si on accepte 2 pics pour
Monoclinic	C_{2h},C_2,C_s	1	3	5	7	9	11	13		la transition ${}^5D_0 \rightarrow {}^7F_1$!
Triclinic	C_1, C_i	1	3	5	7	9	11	13		
										Plancke G. et al, Anal. Chim. Acta 478 (2003) 11-22.

Commissariat à l'énergie atomique et aux énergies alternatives

Exercice – Calcul des écarts d'énergie des niveaux Stark

$$E(cm^{-1}) = \frac{0.01}{E(m)}$$
⁷F₀ \rightarrow combien de niveaux Stark?

2) ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$: Ecart entre les 2 niveaux Stark ?

$$E_1(cm^{-1}) =$$

1) ${}^5D_0 \rightarrow$

 $E_2(cm^{-1}) =$

2) ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$: Ecart entre les 2 niveaux Stark ? $E_{1}(cm^{-1}) =$ $E_{2}(cm^{-1}) =$

81

119 termes ${}^{2S+1}\Gamma \rightarrow$ soit 295 configurations !

Energie des niveaux j

7 F	${}^{3}K(6)$	³ F(8)	¹ I(6)	$^{2S+1}L_J$	$E_{calc} (\mathrm{cm}^{-1})$		
۶ٍT	${}^{3}I(1)$	${}^{3}F(9)$	${}^{1}I(7)$	-/E-	0		
K	³ I(2)	³ D(1)	¹ H(1)	F0 7E	0	~F4	33513
JI(1)	³ I(3)	$^{3}D(2)$	¹ H(2)	F1 7E	379	°F₅	34040
JI(2)	³ I(4)	$^{3}D(3)$	¹ H(3)	F_{2}	1043	⁵ I4	34057
² H(1)	$^{3}I(5)$	$^{3}D(4)$	¹ H(4)	F ₃	1896	⁵ I ₅	34388
3 H(2)	³ I(6)	$^{3}D(5)$	¹ G(1)	Έ ₄ 7_	2869	⁵ I ₆	34966
G(1)	$^{3}H(1)$	$^{3}P(1)$	¹ G(2)	'F5	3912	⁵ I ₇	35429
⁵ G(2)	$^{3}H(2)$	$^{3}P(2)$	¹ G(3)	Έ ₆	4992	5 ₁₀	35453
⁵ G(3)	³ H(3)	$^{3}P(3)$	¹ G(4)	$^{2}D_{0}$	17227	5 ¹⁸	26169
⁵ F(1)	³ H(4)	$^{3}P(4)$	$^{1}G(5)$	$^{5}D_{1}$	18973	5 ₁₇	36168
⁵ F(2)	³ H(5)	³ P(5)	G(6)	$^{5}D_{2}$	21445	<u></u> ∧6 3⊐	37320
⁵ D(1)	³ H(6)	² P(6)	G(7)	⁵ D ₃	24335	• P ₁	38132
² D(2)	² H(7)	⁻ Q	¹ G(8)	⁵ L ₆	25125	${}^{5}K_{7}$	38247
⁵ D(3)	³ H(8)	$^{1}N(1)$	$^{1}F(1)$	⁵ L ₇	26177	${}^{5}G_{2}$	38616
50	H(9)	N(2)	F(2)	⁵ G ₂	26269	⁵ K ₈	38667
30	$^{3}C(2)$	$^{1}M(1)$	F(3)	⁵ G ₃	26493	${}^{3}K_{6}, {}^{3}I_{6}$	38780
3N	$^{3}C(2)$	$^{1}T(1)$	$^{1}D(1)$	${}^{5}G_{4}$	26611	⁵ G ₃	39143
${}^{1}N$ ${}^{3}M(1)$	${}^{3}G(4)$	$^{1}L(1)$	$^{1}D(2)$	${}^{5}G_{5}, {}^{5}G_{6}$	26642	⁵ K ₂	20519
${}^{3}M(2)$	$^{3}G(5)$	$^{1}L(2)$	$^{1}D(3)$	⁵ L ₈	27095	5G.	20726
${}^{3}M(3)$	³ G(6)	$^{1}L(3)$	$^{1}D(4)$	⁵ D ₄	27583	04	39726
${}^{3}L(1)$	${}^{3}G(7)$	${}^{1}K(1)$	${}^{1}D(5)$	⁵ L9	27844		
${}^{3}L(2)$	${}^{3}F(1)$	${}^{1}K(2)$	¹ D(6)	⁵ L10	28341		
${}^{3}L(3)$	${}^{3}F(2)$	${}^{1}K(3)$	¹ p	5H2	20341		
${}^{3}K(1)$	${}^{3}F(3)$	${}^{1}I(1)$	¹ S(1)	5H2	31070		
${}^{3}K(2)$	${}^{3}F(4)$	${}^{1}I(2)$	${}^{1}S(2)$	5H.	31070		
${}^{3}K(3)$	${}^{3}F(5)$	${}^{1}I(3)$	${}^{1}S(3)$	¹¹⁴ ⁵ ц. ⁵ ц.	31292		
${}^{3}K(4)$	${}^{3}F(6)$	${}^{1}I(4)$	¹ S(4)	¹¹⁶ , 11 ₅ ³ D.	31511		
${}^{3}K(5)$	${}^{3}F(7)$	¹ I(5)	-(.)	۲0 ⁵ т	32790		
	- (')	-(*)		F2	33055		
				-F3	33092		
nana V. Coordi	nation Cham	Day 205 (2)	15) 1 45	F_1	33366		

Binnemans K., Coordination Chem. Rev., 295 (2015) 1-45.

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr