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Abstract  
Recommender systems are being increasingly adopted in various e-commerce applications. A wide range 
of recommendation approaches have been developed to analyze past consumer-product interactions, 
consumer attributes, and product attributes to predict future sales. In this paper we propose a unified 
recommendation framework based on probabilistic relational models (PRMs). This framework includes 
most of existing recommendation approaches, such as collaborative filtering, content-based, demographic 
filtering, and hybrid approaches, as special cases. Recently developed in the machine learning community, 
PRMs aim to study the relational patterns within a database containing multiple interlinked data tables 
using a statistical model that describes probabilistic dependencies between attributes in the domain. We 
extended the original PRMs in order to capture relational data patterns that are important for 
recommendation. We also specialized the algorithm for learning PRMs in dependency model construction 
and parameter estimation to exploit the special characteristics of the recommendation problem. Through 
an experimental study, we demonstrate that the proposed framework not only conceptually unifies 
existing recommendation approaches but also allows the exploitation of a wider range of relational data 
patterns in an integrated manner, leading to improved recommendation performance. 

1. Introduction  
Recommender systems are being widely used in many application settings to suggest products, services, 
and information items to potential consumers. A wide range of companies such as Amazon.com, Half.com, 
CDNOW, J.C. Penney, and Procter & Gamble have successfully deployed recommendation technologies 
to increase Web and catalog sales and improve customer loyalty [14]. A variety of recommendation 
approaches have been developed in the Artificial Intelligence and Information Retrieval communities [1, 
10, 13]. Most of theses approaches take as input three types of data: product attributes, consumer 
attributes, and interactions between consumers and products (such as purchases and ratings). As output, 
they predict future or unobserved interactions as recommendations. Depending on the input data these 
approaches can be roughly categorized into content-based (using product attributes and the interaction 
data), collaborative filtering (using the interaction data only), demographic filtering (using consumer 
attributes and the interaction data), and hybrid approaches (using multiple types of input data) [7, 10, 13].  

Conceptually, the recommendation problem is concerned with the relationships between consumers 
and products. As such, it can be viewed as a special case of the relational learning problem [3]. Recent 
years have seen significant interest and development in the area of relational learning, which focuses on 
identifying relational patterns within a database containing multiple interlinked data tables. Applying the 
relational learning framework, one can argue that a recommendation model takes a (portion of the) 
database containing multiple related tables regarding consumers, products, and their interactions as input 
to predict unobserved entries in the consumer-product interaction table.  

The main objective of this paper is to establish the connection between the recommendation problem 
and the relational learning framework through the application of a recently developed statistical relational 
learning method called probabilistic relational models (PRMs) in the recommendation context. We 
extend the original PRMs to meet the unique computational challenges of the recommendation task. We 
show that existing recommendation approaches can be conceptualized as special cases under this 
framework. We also demonstrate the improved recommendation performance achieved by the unified 
framework using a real-world e-commerce dataset.  

2. Relational Learning and Probabilistic Relational Models  
Relational learning or multirelational learning [3] extends standard data mining that learns from 
attributes of independent entities stored in a single database table to extract patterns from multiple related 



tables. The assumption that the data objects are independent from each other is dropped in relational 
learning. In fact, linkages between data objects are of central interest in relational learning. Examples of 
relational learning applications include link prediction, link-based clustering, social network modeling, 
and object identification. 

Probabilistic relational models (PRMs) are the main formal approach that has been developed for 
relational learning [8, 12]. A PRM is defined for a particular database, or formally a relational schema R. 
A relational schema R describes a set of classes (tables in the database) X. Each X∈X is associated with a 
set of descriptive attributes (standard table attributes) A(X) and a set of reference slots (foreign keys) 
R(X). We denote the attribute A of class X as X.A and the reference slot ρ of X as X.ρ, where ρ denotes a 
function from Domain[ρ] = X to Range[ρ] = Y. PRMs with existence uncertainty [5] are able to model the 
existence of certain records in the data tables. Under this extension, a class X of interest can be modeled 
as an undetermined class by introducing a special existence attribute X.E whose values are from V(E) = 
{true, false}, with true indicating the particular object of class X exists and false indicating nonexistence. 
For each reference slot ρ we define an inverse reference slot ρ-1, mapping from Range[ρ] = Y to 
Domain[ρ] = X. A slot chain τ is defined as τ  = ρ1,…,ρk, for all i, Range[ρi] = Domain[ρi+1]. Through slot 
chains dependencies between the attributes of related data objects can be explored.  

A PRM is an extension of Bayesian networks for describing probability distributions over a database. 
A PRM Π contains a qualitative component S, an acyclic graph that describes the statistical dependency 
structure of descriptive attributes linked through slot chains, and a quantitative component ΘS that 
represents the set of parameters characterizing the conditional probability distributions. Formally, a PRM 
Π = <S, ΘS> for a relational schema R = <X, A> defines for each class X∈X and each descriptive attribute 
A∈A(X), a set of parents Pa(X.A), and a conditional probability distribution that represents 

)).(|.( AXPaAXP [5]. A complete instantiation I for a PRM is defined as the set of objects in each class 
X and the values for each attribute and each reference slot of each object. With a complete instantiation a 
PRM can be learned by finding a PRM Π that best matches I. Similar to Bayesian network learning, a 
statistically motivated scoring function is used to evaluate each model with respect to the training data. A 
commonly used Bayesian scoring metric is given by CSPSIPISP ++= )(log)|(log)|(log , where 

)|( SIP is the marginal likelihood ∫ ΘΘΘ= SSS dSPSIPSIP )|(),|()|( . Standard hill-climbing greedy 

search algorithms can be employed to search for the optimal structural model S. With the optimal 
dependency structure, standard maximum likelihood parameter estimation can be performed to complete 
the model specification. Details on PRM learning can be found in [4, 5]. 

3. PRM-based Recommendation  
The recommendation problem is an ideal application for relational learning as the linkages between 
consumers and products are the modeling focus. In fact one most successful recommendation approach, 
collaborative filtering, makes recommendation predictions only based on these linkages. In this section, 
we establish the connection between recommendation problem and relational learning. Using a book sales 
database as an example, Section 3.1 describes recommendation task from a relational learning perspective. 
Section 3.2 introduces an extension to the original PRM, motivated to evaluate similarities between sets 
required by the recommendation model. Section 3.3 presents a simplified parameter estimation procedure 
exploiting the characteristics of recommendation tasks. We demonstrate in Section 3.4 that existing 
recommendation approaches can be viewed as special cases of our unified framework. 
3.1 Model Description 
Figure 1 illustrates an example book sales database. Customer, Book, and Word are entity classes while 
Order and Occurrence are relationship classes. Customer and Book have 7 and 3 descriptive attributes, 
respectively, excluding their identifiers. Order contains two references slots linking to Customer and Book 
while Occurrence contains book and word reference slots describing the occurrence of keywords in book 
content descriptions such as title and introduction. For recommendations, we model Order as an 
undetermined class by introducing a special descriptive attribute exist to indicate the existence of a sales 



transaction. In Figure 1, we only present existing records (with 1 assigned to the exist attribute) while for 
all other customer-book pairs the value 0 is implicitly assigned indicating the absence of the sale record.  

customer city birthYear education vocation sex married child
c1 taipei 1977 college financial f yes 1
c2 kaohsuing 1968 high school construction m no 0
c3 taipei 1982 college student m no 0

Customer
customer city birthYear education vocation sex married child

c1 taipei 1977 college financial f yes 1
c2 kaohsuing 1968 high school construction m no 0
c3 taipei 1982 college student m no 0

Customer

customer book exist
c1 b1 1
c1 b2 1
c2 b3 1
c3 b4 1

Order
book publisher translated price
b1 p1 yes 130
b2 p1 yes 230
b3 p2 no 100
b4 p3 no 500

Book

Word
word
w1
w2
w3
w4
w5
w6

book word
b1 w2
b1 w3
b2 w1
b3 w4
b3 w5
b4 w4
b4 w6

Occurrence

 
Figure 1. An example book sales database 

Using the PRM notation introduced in Section 2, the dependency structure S for a PRM defines the 
parents Pa(X.A) for each attribute X.A. In our context, since we are only concerned with Order.exist, we 
only need to derive a partial dependency structure for Order.exist. Instead of searching for the complete 
model describing all probabilistic dependencies we focus on identifying attributes within the Markov 
blanket of Order.exist and search for an optimal model describing these variables and Order.exist. A 
Markov blanket refers to the parents, children, and other parents of the children of a node V in a Bayesian 
network model; it shields V from being affected by any node outside the blanket [2]. Potential attributes 
to be included into the Markov blanket of Order.exist can be derived from reference slots or slot chains. 
For example, [Order.customer].education could be a potential parent attribute representing the education 
level of the target customer. Long slot chains with inverse reference slots can bring in more complex 
attributes. For example, [Order.customer].[Order.customer]-1.[Order.book].price represents the prices of 
the set of books bought by the target customer. If any of the reference slots in the chain involves a one-to-
many mapping, such as [Order.customer]-1 (indicating the function from a customer to his/her involved 
orders) in this example, the derived attribute will be a multi-valued attribute. For these attributes, 
aggregation operators such as maximum, minimum, mode, average, and carnality can be applied and 
aggregated single-valued attributes are then included into the dependency structure S.  
3.2 Multi-set Operations 
A PRM allows attributes to be derived separately from individual slot chains. For example, 
[Order.customer].[Order.customer]-1.[Order.book].[Order.book]-1.[Order.customer] represents the set of 
customers who bought at least one common book bought by the target customer (the customer neighbors) 
while [Order.book].[Order.book]-1.[Order.customer] represents the set of customers who bought the target 
book. These two multi-valued attributes, with aggregation operations, could provide certain information 
regarding the likelihood for a transaction involving the target consumer and target book to occur. 
However, the original PRMs do not model information that can only be derived jointly from multiple 
attributes, which can play a critical role in recommendation. For example, the set similarity of the above 
two attributes (may be derived through the cardinalities of the intersection and union of the two attributes) 
describes the overlap of the target consumer’s neighbors and the customers who bought the target book. 
Such information is essential for making user-based collaborative filtering recommendations. 

To derive information jointly from multiple attributes, we propose to extend PRMs by introducing 
multi-set operators. A multi-set operator φk on k multi-valued attributes A1, …, Ak that share the same 
domain V(A1) denotes a function from V(A1)k to V(A1). Such multi-set operators include simple set 
operators such as intersection and union and more complex aggregation operators modeling value 
distributions [11]. By applying an aggregation operator after a multi-set operator, we can derive attributes 
from multiple multi-valued attributes and include them into the probabilistic dependency specification of 
a PRM. Our current study focuses on using binary multi-set operators that involve two attributes. 
3.3 Learning Process 
An important challenge for PRM learning is that there are an infinite number of potential attributes that 
could be derived through slot chains and the newly introduced multi-set operators. The standard approach 



to address this issue is an iterative expanding heuristic structure search algorithm [4]. Under this approach, 
the length of the slot chains is constrained while searching for the optimal PRM. The allowable slot chain 
length controls the complexity of the model. 

We applied standard search-and-scoring procedure for Bayesian network learning to search the 
optimal partial dependency structure involving Order.exist as discussed in Section 3.1. Once the optimal 
local PRM dependency structure for a particular slot chain length is determined, standard parameter 
estimation procedures can be applied to derive predictive models of the value of Order.exist. In our 
current study, a Naïve Bayesian algorithm for binary prediction [2] was applied to estimate the purchase 
probability P(Order.exist=1 | relevant attributes of Order.exist) for unobserved customer-book pairs. 
Various types of recommendations can then be generated based on such purchase probability estimates. 
3.4 Recommendation Models under PRM 
We now examine existing recommendation approaches in light of our unified PRM framework. For 
illustration purposes, we use the same book sales database example. In Figure 2, attributes in circles, 
including single-valued and aggregated multi-valued attributes, are potential relevant attributes of 
Order.exist in the dependency model. Model (a) includes attributes derived through slot chains with the 
maximum length of 3 (e.g., city of the target customer [Order.customer].city and number of customers 
who bought the target book cardinality{[Order.book].[Order.book]-1.[Order.customer]}). Such a model 
corresponds to typical purchase prediction models that involve customer demographic attributes, number 
of observed customer purchases, book attributes, and past book sales volumes. 
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Figure 2. PRM recommendation model with maximum slot chain lengths of 3 and 5 

Model (b) allows for slot chains of the maximum length of 5. As the model gets more complicated, 
many interesting attributes that correspond to existing recommendation approaches appear. As explained 
in Section 3.2, cardinality{intersection{[Order.customer].[Order.customer]-1.[Order.book].[Order.book]-

1.[Order.customer], [Order.book].[Order.book]-1.[Order.customer]}} represents the number of the target 
customer’s neighbor customers who have bought the target book, which provides essential information 
for the standard user-based collaborative filtering algorithm. Similarly, cardinality{intersection 
{[Order.customer].[Order.customer]-1.[Order.book], [Order.book].[Occurrence.book]-1.[Occurrence.word]. 
[Occurrence.word]-1.[Occurrence.book]}} represents the number of books bought by the target customer 
that contain words appearing in the target book, which provides essential information for content-based 
recommendation approaches. The PRM estimated based on model (b) could potentially be a “hybrid” 
recommendation based on multiple algorithmic implementations of several recommendation approaches. 
As the maximum slot chain length increases, the model becomes more complicated by introducing 
indirect customer/book neighbors and their associated attributes, which in principle correspond to graph-
based recommendation algorithms that account for transitive associations among customers and books 
leading to better recommendation performances (e.g., [6]). However, a larger maximum slot chain length 



also leads to a dramatically larger search space, making the model estimation and prediction process 
much more computationally intensive. 

4. Experimental Study  
We used a book sales dataset from a major Chinese online bookstore for our experimental study. This 
dataset covers 5 years of transactions of a sample of 2,000 customers, involving 9,695 books and 18,771 
transactions. We derived from the raw data a database with a schema corresponded to the example in 
Figure 1. For the word occurrence table we only included indexed phrases in book titles and keywords.  

Due to the space limit we only report a subset of our experimental results in this paper. We estimated 
PRMs with maximum slot chain lengths of 3 and 5 corresponding to our discussions in Section 3.4. Table 
1 presents the relevant attributes of Order.exist under models (a) and (b). Book attributes did not 
contribute to explain the occurrences of sales records in model (a) while a wide variety of different types 
of derived features were included into the optimal parent set for model (b).  

Model Maximum length 
of slot chains Relevant attributes

(a) 3 c's number of past purchases, city, vocation, birthYear, education, sex, child

(b) 5

number of c's neighbors that have bought b, number of b's neighbors that c has bought, number of books bought 
by c that contain words appear in b, number of books bought by c that are published by the publiser of  b, 

number of books bought by c that are at the same price level as b, number of customers who bought b and have 
the same vocation as c, number of customers who bought b and have the same education level as c, number of 

customers who bought b and were born in the same decade as c was born. 
*We denote the target customer as c and target book as b  

Table 1. Relevant attributes to Order.exist of models (a) and (b) 

To provide recommendation performance evaluation consistent with the literature, we generated top-
N recommendations based on the purchase probability estimates obtained from our model. For each 
customer we recommended top 10 books that he/she had not purchased previously ranked by the 
estimated purchase probabilities. In addition to this typical recommendation task, other recommendation 
tasks can be also supported, such as finding the most likely customers for a particular book and finding 
the orders that are most likely to occur. 

We report in Table 2 top-N recommendation performance for using subsets of the attributes included 
in model (b) that correspond to existing recommendation approaches and the performance using all 
attributes in model (b). We employed standard top-N recommendation quality measures including 
precision, recall, F measure, and rank score [1, 10] to evaluate the accuracy, coverage, and ranking quality 
by matching the recommendation lists with withheld 30% later actual purchase records. The experimental 
results showed that the complete optimal model achieved higher recommendation quality measures than 
all models corresponding to existing recommendation approaches. We also observed that the model based 
on demographic attributes had the second best performance for our dataset. 1  

 

Relevant attributes
Corresponding 

recommendation 
approach

Precision Recall F Rank 
Score

number of c's neighbors that have bought b user-based CF 0.0197 0.0491 0.0250 3.9450
number of books bought by c that contain words appear in b content-based 0.0195 0.0381 0.0228 2.6418
number of customers who bought b and have the same vocation as c, number of 
customers who bought b and have the same education level as c, number of 
customers who bought b and were born in the same decade as c

demographic 
filtering 0.0265 0.0687 0.0343 6.4160

all relevant attributes shown in Table 1 (complete model) 0.0308 0.0817 0.0399 6.4498  
Table 2. Recommendation performance of sub models and the complete model under model (b) 

5. Conclusions and Future Directions  
In this paper we have presented a unified recommendation framework based on probabilistic relational 
models treating the recommendation problem as a special type of relational learning problem. We 
                                                 
1 For fast prototyping we implemented the PRM learning algorithms using MS SQL Server stored procedures, which are quite inefficient in both 
computing time and memory requirement. For our testing dataset, this implementation took more than 6 hours to complete the feature 
construction and selection processes while the parameter estimation and prediction generation processes took less than 5 minutes. We expect 
significant reduction in computing time and space requirement with more efficient programming environments. 



extended PRMs by introducing multi-set operators to explore the important relational data patterns 
relevant to recommendation. We also specialized the dependency structure searching and parameter 
estimation procedures to exploit the characteristics of recommendation problem. The proposed PRM-
based recommendation framework allows the integration of various existing recommendation approaches 
as well as exploitation of a wider range of relational data patterns. Our experimental results using data 
provided by an online bookstore showed that such a unified framework resulted in improved 
recommendation performance. 

We are in the process of extending our work in the following directions: (a) application of complex 
multi-set aggregation operations that provide richer input information for learning; (b) optimization of the 
algorithm implementation to improve space and time efficiencies; (c) a complete comparison with a wide 
range of existing recommendation approaches. Recommendation is only one special application of PRM-
based relational learning. We can also develop other specializations of PRMs for a wide range of 
personalization, marketing, and managerial applications based on consumer behavior modeling [9]. 
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