Privacy

Privacy Techniques

Guillaume Raschia — Nantes Université

Last update: January 24, 2025

original slides from J. Near (Univ. of Vermont, CS211: Data Privacy)

1

Synthetic Data vs. Query Answering

Synthetic data *looks like* the original **microdata**

Name	DOB	Gender	Zip		
Rashad Arnold	02/26/2010	М	73909		
Alyssa Cherry	05/08/2010	M	14890	\Longrightarrow	
Myra Ford	05/11/2010	NB	73821		
Meredith Perry	03/31/2011	F	73909		
Aimee Thornton	04/26/2010	F	14825		

DOB	Gender	Zip
2011	F	73***
2010	NB	73***
2010	M	73***
2010	F	14***
2010	M	14***

3

An Overview of Privacy Techniques

Technique	Setting
Anonymization	Synthetic data
SDC	Synthetic data
<i>k</i> -Anonymity	Synthetic data
$\ell ext{-Diversity}$	Synthetic data
Differential Privacy	Query answering

Query Answering

Query answering is an interactive setting

Name	DOB	Gender	Zip
Rashad Arnold	02/26/2010	Μ	73909
Alyssa Cherry	05/08/2010	Μ	14890
Myra Ford	05/11/2010	NB	73821
Meredith Perry	03/31/2011	F	73909
Aimee Thornton	04/26/2010	F	14825

• Q: How many people were born in 2010?

• Q: Are all males in the same neighborhood?

· Q: ...

A: 4

A: No

/1

Synthetic Data vs. Query Answering

Synthetic data

- · Allows re-using existing data analyses (e.g. DBMS)
- One approach works for all query workloads (no advance knowledge of workload required)
- · Makes things easier for the analyst
- · Impossible to achieve perfect utility and strong privacy

Query answering

- Exact opposite of "Synthetic data pros & cons"
- · Specialization to one query enables better utility/privacy trade-off

5

Outline

Anonymization / De-identification

Statistical Disclosure Control

k-Anonymity & ℓ -Diversity

Differential Privacy

7

What does Utility Mean?

Informally

Formally

"how useful is the answer?"

depends on what the answer will be used for

"how many people have the last name Ford?"

- \cdot Anonymized data \longrightarrow impossible to answer
- $\boldsymbol{\cdot}$ Differential privacy \longrightarrow can answer \pm 1 person

More examples

- For numerical queries, how different is the "private" answer from the "true" answer?
- For machine learning, what is the difference in testing error between "private" and "non-private" models?

Goals of De-identification

- De-identification removes the association between a person and a dataset, altering identifying information
- · Goals:
 - · Reduce the risk of privacy violation
 - · Maximize data utility
- · Techniques include:
 - Suppression (remove the id's)
 - · Variation (scramble the id's)
 - · Data swapping
 - Masking

De-identification: Examples

suppression					
DOB	Gender	Zip			
02/26/2010	M	73909			
05/08/2010	Μ	14890			
05/11/2010	NB	73821			
03/31/2011	F	73909			
04/26/2010	F	14825			

	swapping		
Name	DOB	Gender	Zip
Alyssa Cherry	02/26/2010	Μ	73909
Meredith Perry	05/08/2010	M	14890
Aimee Thornton	05/11/2010	NB	73821
Rashad Arnold	03/31/2011	F	73909
Myra Ford	04/26/2010	F	14825

scrambling (hashing)					
Name	DOB	Gender	Zip		
A23C	02/26/2010	М	73909		
85E1	05/08/2010	M	14890		
B066	05/11/2010	NB	73821		

03/31/2011 F

04/26/2010 F

masking				
Name	DOB	Gender	Zip	
R****	02/26/2010	М	73909	
A****	05/08/2010	M	14890	
M****	05/11/2010	NB	73821	
M****	03/31/2011	F	73909	
A****	04/26/2010	F	14825	

10

masking

Re-identification (cont'd)

- · Requires auxiliary data to join with
- · Linking de-identified data to auxiliary data can reveal sensitive information
- · Could be seen as record linkage

12

Re-identification

Process of associating a person with de-identified data: it is the outcome of a linkage attack to perform identity disclosure

73909

14825

Name	DOB	Gender	Zip
M****	05/11/2010	NB	73821
M****	03/31/2011	F	73909
A****	04/26/2010	F	14825

joined with (Aimee Thornton, F), reveals the full record

Name	DOB	Gender	Zip
Aimee Thornton	04/26/2010	F	14825

Anonymization

Several definitions

- · a synonym for de-identification...
- Replace identifiers with pseudo-identifiers (pseudonymization)
- A process which is **irreversible** and prevents re-association—linkage attack—of a person with a data sample

Limitation

True anonymization is mainly not possible

See the many de-identification use cases of the introductory lecture

Anonymization: A Stupid Example

Name	DOB	Gender	Zip
Rashad Arnold	02/26/2010	М	73909
Alyssa Cherry	05/08/2010	Μ	14890
Myra Ford	05/11/2010	NB	73821

becomes

Name	DOB	Gender	Zip	
****	**/**/***	**	****	
****	**/**/***	**	****	
****	**/**/***	**	****	

Anonymization is actually a pretty vague term

1/

15

Why Should We Care About Anonymization?

GDPR (General Data Protection Regulation) in Europe

1

Why Should We Care About Anonymization?

It get used **a lot**, commonly required by legal frameworks
HIPAA (Health Insurance Portability and Accountability Act) in the US

Why Should We Care About Anonymization?

Those attributes are called **Personally Identifiable Information (PII)**

- · Removing PII makes re-identification harder but **not impossible**
- · Definitions of PII vary and then, they are also vague

18

What Else Can We Do?

- · Data use agreements
- Access control restrictions
- Audits
- · More systematic approach to making data private

What is the Goal of SDC?

Statistical Disclosure Control takes a **systematic approach** to de-identification in order to minimize the risk of re-identification

	NIC-612092-Q0Y6F+admissions_for_assault_suppressed_2024_02										
RP_START	RP_END	RP_TYPE	ORG_TYPE	ORG_CODE	ORG_DESCRIPTION	MEASURE_ID	MEASURE_NAME	DEMOGRAPHIC_GROUP	MEASURE_VALUE	SUPPRESSION	PROVISIONAL
01/02/2022	28/02/2022	MONTH	PFA	E23000001	Metropolitan Police	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	60		
01/02/2022	28/02/2022	MONTH	PFA	E23000002	Cumbria	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	0	Υ	
01/02/2022	28/02/2022	MONTH	PFA	E23000003	Lancashire	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	10		
01/02/2022	28/02/2022	MONTH	PFA	E23000004	Merseyside	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	10		
01/02/2022	28/02/2022	MONTH	PFA	E23000005	Greater Manchester	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	25		
01/02/2022	28/02/2022	MONTH	PFA	E23000006	Cheshire	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	0	Υ	
01/02/2022	28/02/2022	MONTH	PFA	E23000007	Northumbria	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	15		
01/02/2022	28/02/2022	MONTH	PFA	E23000008	Durham	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	0	Υ	
01/02/2022	28/02/2022	MONTH	PFA	E23000009	North Yorkshire	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	0	Υ	
01/02/2022	28/02/2022	MONTH	PFA	E23000010	West Yorkshire	AFAS01	ASSAULT_BY_SHARP_OBJECTS_FAE	ALL	15		
04/00/0000	00,000,000	MONTH	DEA	F00000044	County Manhablas	AFACOI	ACCALUT DV CHADD OD IFOTO FAE	411	10		

Hospital admissions for assault by sharp objects February 2024 (3 995 records, Feb. 2022 - Feb. 2024) Source: NHS England

Demographic group (all, under 25, etc.) and measure value have been altered

. .

SDC Approach

Consider

- · Likelihood of an attempt at disclosure
- · Impact of disclosure
- · Auxiliary data available to attackers
- \cdot Cell values and table design, e.g. counts of 1 or 0 represent high risk

Represents a **subjective judgment** about risk—no formal guarantee

Rule-based SDC for Scottish NHS

Generalization (Coarsening)

ORIGINAL MICRODATA

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Viral
13053	23	American	Viral
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Viral
14850	59	American	Viral
13053	31	American	Cancer
13053	37	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer
13068	33	Chinese	Cancer

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Viral
130**	<30	Any	Viral
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

Equivalence Class: block of k-anonymous records that share the same quasi-identifier value

20

k-Anonymity

Main Idea [Samarati and Sweeney, 1998]

Any individual is member of a block of size at least k over its quasi-identifier

- \cdot Formal guarantee, following the principle "hiding in the crowd"
- \cdot Parameter k gives the "degree" of anonymity
- · Still requires to define quasi-identifier
- \cdot In SQL, table T is k -anonymous if each value from

SELECT COUNT(*) FROM T GROUP BY Quasi-Identifier is $\geq k$

Quasi-Identifier

PII attributes of a given dataset are either:

- · Direct Identifier: removed
- · Quasi-Identifier (QID): transformed
- · Sensitive: preserved

How to set up QID?

- QID is a combination of attributes (that an adversary may know) that uniquely identify a large fraction of the population
- There can be many sets of QID: if $Q=\{A,B,C\}$ is a quasi-identifier, then $Q\cup\{D\}$ is also a quasi-identifier
- Need to guarantee k-anonymity against the largest QID

__

Attack 1: Homogeneity

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
		Any	
		Any	
		Any	
1485*	≥40	Any	Cancer
		Any	
		Any	
		Any	
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

Name	Zip	Age	Nat.
Bob	13053	35	French

· Bob has cancer

28

ℓ -Diversity

In addition to k-Anonymity, require:

ℓ-Diversity Principle [Machanavajjhala et al., 2006]

A q^* -block is ℓ -diverse if it contains at least ℓ well-represented values for the sensitive attribute S. A table is ℓ -diverse if every q^* -block is ℓ -diverse.

Prevents attack #1 (homogeneity)

If all values are equally represented, all rows are equally likely to be the target's record

Increases resistance against attack #2 (background knowledge)

- Protects the target, even if the attacker knows $\ell-2$ negation statements about the block ("Umeko does not have cancer")
- If the attacker knows $\ell-1$ negation statements, then the attacker eliminates all rows but one

20

Attack 2: Background Knowledge

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Flu
130**	<30	Any	Flu
1485*		Any	
130**	[30,40)	Any	Cancer
130**		Any	

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

- Japanese have a very low incidence of Heart disease
- · Umeko has flu

Attack 2: Background Knowledge

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Diabetes
130**	<30	Any	Cancer
130**	<30	Any	Flu
1485*	≥40	Any	Cancer
1485*	≥40		
1485*	≥40		
1485*	≥40		
130**	[30,40)	Any	Cancer
130**	[30,40)		
130**	[30,40)		
130**	[30,40)		
130**	[30,40)		

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

- · Umeko does not have cancer
- · Umeko does not have heart disease
- · Umeko does not have diabetes
- Umeko has flu

3

k-Anonymity & ℓ -Diversity

- Formal privacy models to prevent identity disclosure through linkage attack
- · Big improvement over ad-hoc approaches
- · Not yet covered: high computation cost
 - Given table T, find a k-anonymous table T' that maximizes utility
 - NP-hard problem [Meyerson and Williams, 2004]

Exposition to Attribute Disclosure

- · Homogeneity Attack
- Background Knowledge Attack

Lots of Extended Models

- t-Closeness [Li et al., 2007]
- *m*-Invariance [Xiao and Tao, 2007]
- τ -Safety [Anjum et al., 2017]
- etc

Privacy protection depends on adversary's auxiliary information

32

What is Differential Privacy?

Definition (Differential Privacy [Dwork et al., 2006])

An algorithm $\mathcal{A}: \mathcal{X}^n \to \mathbb{R}^d$ preserves ε -differential privacy if for any pair of neighboring databases $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$, and for any output o among the possible outputs:

$$\Pr[\mathcal{A}(\mathbf{x}) = o] \le e^{\varepsilon} \cdot \Pr[\mathcal{A}(\mathbf{y}) = o]$$

In other words...

$$\frac{\Pr[\mathcal{A}(\mathbf{x}) = o]}{\Pr[\mathcal{A}(\mathbf{y}) = o]} \le e^{\varepsilon}$$

First proposed in [Dwork et al., 2006] by Dwork, McSherry, Nissim and Smith who won the Gödel prize in 2017

25

Back to the Attempt at Privacy Definition

Definition (Privacy)

"An analysis of a dataset is private if what can be learned about an individual in the dataset is not much more than what would be learned if the same analysis was conducted without him/her in the dataset."

Intuition

Cannot infer the presence/absence of an individual in the dataset, or anything "specific" about an individual

Here, "specific" refers to information that cannot be inferred unless the individual's data is used in the analysis

What Does the Guarantee Mean?

- Two neighboring DBs are identical except for data of one individual
- A algorithm's output does not enable adversary to distinguish between the two neighboring databases
- · Outcome is the same whether or not an individual participates

Why is it a Good Guarantee?

- Matches a "pretty good" intuitive definition of privacy: nothing bad happens to me as a result of my participation in an analysis
 - i.e. if a bad thing happens, it would have happened even if I did not participate
- Formal definition enables proving that an algorithm satisfies differential privacy
- · Holds regardless of adversary's auxiliary knowledge
 - Including case where the adversary knows the entire database except the target's row
 - \cdot Prevents from the attacks on k-Anonymity and its extensions
- · Only way we know to come close to "true anonymization"

Interpreting the Formal Definition

$$\frac{\Pr[\mathcal{A}(\mathbf{x}) = o]}{\Pr[\mathcal{A}(\mathbf{y}) = o]} \leq e^{\varepsilon} \quad \Leftrightarrow \quad \ln \frac{\Pr[\mathcal{A}(\mathbf{x}) = o]}{\Pr[\mathcal{A}(\mathbf{y}) = o]} \leq \varepsilon$$

This is called the **privacy loss** (or "privacy budget")

A differentially private mechanism should produce probability distributions like these over its outputs

3

What are the Downsides?

- · No synthetic data, only query answering
 - DP is a property of an algorithm (i.e. the analysis itself), not a property of data But in many cases, those algorithms can generate "good enough" synthetic data
- \cdot Hard to interpret the guarantee
 - Strength of guarantee parameterized by ε : "how hard is it to distinguish two neighboring databases?"
 - What ε is sufficient? too low \to poor utility too high \to re-identification becomes possible
 - We don't really know the answer yet

Takeaways (1/3)

De-identification / Anonymization

- Suppresses PII to reduce risk of re-identification
- · Ad-hoc approach means high risk of mistakes
- Most commonly used technique

SDC

- · Makes de-identification systematic
- · Considers size of groups in output data
- Still no formal guarantee

Takeaways (2/3)

k-Anonymity

- · Formalizes systematic de-identification
- Requires groups to be at least size k
- · Subject to homogeneity and auxiliary knowledge attacks

ℓ -Diversity

- · Requires groups to be diverse
- Prevents homogeneity attack
- Prevents auxiliary knowledge attacks when the adversary knows fewer than $\ell-2$ negative facts about the group

41

References i

Anjum, A., Raschia, G., Gelgon, M., Khan, A., Malik, S. U. R., Ahmad, N., Ahmed, M., Suhail, S., and Alam, M. (2017).

au-safety: A privacy model for sequential publication with arbitrary updates. *Comput. Secur.*, 66:20–39.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis.

In Proceedings of the Third Conference on Theory of Cryptography, TCC'06, page 265–284, Berlin, Heidelberg. Springer-Verlag.

43

Takeaways (3/3)

Differential Privacy

- Formal property of a mechanism (e.g. algorithm or analysis or query)
 - · Not a process to generate private data
- Corresponds to notion of indistinguishability: same outcome, whether I participate or not
- · Guarantee holds regardless of adversary's auxiliary knowledge
 - · Only family of approaches we know with this property

References ii

Li, N., Li, T., and Venkatasubramanian, S. (2007). t-closeness: Privacy beyond k-anonymity and l-diversity.

In 2007 IEEE 23rd International Conference on Data Engineering, pages 106–115.

Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam, M. (2006). L-diversity: privacy beyond k-anonymity.

In 22nd International Conference on Data Engineering (ICDE'06), pages 24–24.

References iii

Meyerson, A. and Williams, R. (2004).

On the complexity of optimal k-anonymity.

In Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '04, page 223–228, New York, NY, USA. Association for Computing Machinery.

Samarati, P. and Sweeney, L. (1998).

Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement through Generalization and Suppression.

Technical Report SRI-CSL-98-04, SRI International.

15

References iv

M-invariance: towards privacy preserving re-publication of dynamic datasets.

In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD '07, page 689–700, New York, NY, USA. Association for Computing Machinery.