

# Privacy

## Differential Privacy

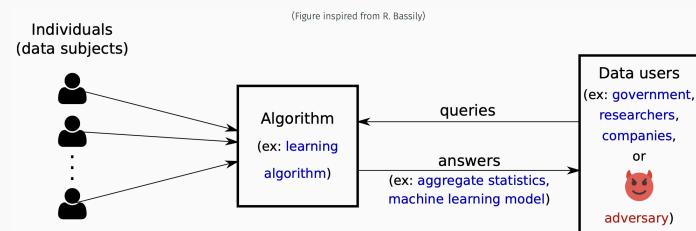
Guillaume Raschia — Nantes Université

Last update: January 3, 2026

original slides from A. Bellet (Inria), M2DS Univ. Lille  
and A. Machanavajjhala, M. Hay, X. He; Differential Privacy in the Wild, VLDB'16 & SIGMOD'17 Tutorial

1

## REMINDER: PRIVATE DATA ANALYSIS



Goal: achieve utility while preserving privacy (conflicting objectives!)

2

## REMINDER: REQUIREMENTS FOR PRIVACY DEFINITION

1. **Robustness to any auxiliary knowledge** the adversary may have, since one cannot predict what an adversary knows or might know in the future
2. **Composition over multiple analyses:** keep track of the “privacy budget” when asking several questions about the same data

3

## OUTLINE

Differential Privacy (DP)

A First DP Algorithm

Properties of DP

4

Next Topic

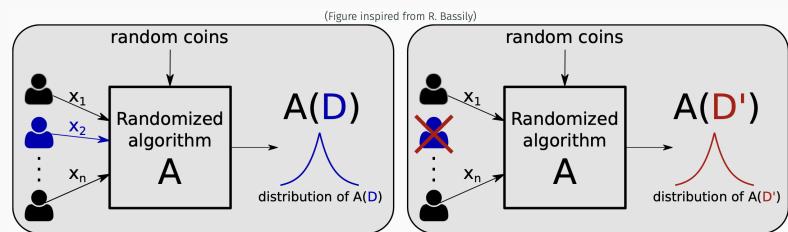
Differential Privacy (DP)

A First DP Algorithm

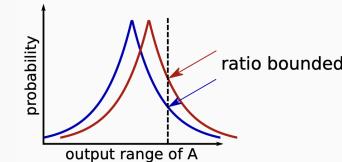
Properties of DP

5

SCHEMATIC DIFFERENTIAL PRIVACY



Requirement:  $\mathcal{A}(D)$  and  $\mathcal{A}(D')$  should have “close” distributions



6

DIFFERENTIAL PRIVACY

Definition (Differential Privacy)

A randomized mechanism  $\mathcal{A}$  preserves  $\varepsilon$ -differential privacy if for any pair of neighboring datasets  $\mathbf{D}$  and  $\mathbf{D}'$ , and for all possible sets of outputs  $S$ :

$$\Pr[\mathcal{A}(\mathbf{D}) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{A}(\mathbf{D}') \in S], \quad \varepsilon > 0$$

7

DIFFERENTIAL PRIVACY

Definition (Differential Privacy)

A randomized mechanism  $\mathcal{A}$  preserves  $\varepsilon$ -differential privacy if for any pair of neighboring datasets  $\mathbf{D}$  and  $\mathbf{D}'$ , and for all possible sets of outputs  $S$ :

$$\Pr[\mathcal{A}(\mathbf{D}) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{A}(\mathbf{D}') \in S], \quad \varepsilon > 0$$

Parameter  $\varepsilon$  is called “**privacy budget**”: it controls the degree to which  $\mathbf{D}$  and  $\mathbf{D}'$  can be distinguished. Smaller  $\varepsilon$  gives more privacy (and worse utility)

7

## DIFFERENTIAL PRIVACY

### Definition (Differential Privacy)

A randomized mechanism  $\mathcal{A}$  preserves  $\epsilon$ -differential privacy if for any pair of neighboring datasets  $\mathbf{D}$  and  $\mathbf{D}'$ , and for all possible sets of outputs  $S$ :

$$\Pr[\mathcal{A}(\mathbf{D}) \in S] \leq e^\epsilon \cdot \Pr[\mathcal{A}(\mathbf{D}') \in S], \quad \epsilon > 0$$

Parameter  $\epsilon$  is called “**privacy budget**”: it controls the degree to which  $\mathbf{D}$  and  $\mathbf{D}'$  can be distinguished. Smaller  $\epsilon$  gives more privacy (and worse utility)

First introduced in [\[Dwork et al., 2006\]](#) by Dwork, McSherry, Nissim and Smith who won the Gödel prize in 2017

7

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $\mathbf{D} \Delta \mathbf{D}' \leq 1$  (symmetric difference)

8

8

## DECYPHER DP

- What does mean “neighboring” datasets?

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $\mathbf{D} \Delta \mathbf{D}' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $D \Delta D' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $D \Delta D' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”
  - Under one raw = one person: **adding or removing** means sizes of  $D$  and  $D'$  are different, **updating or replacing** preserves the size but  $D \Delta D' = 2!$

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $D \Delta D' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”
  - Under one raw = one person: **adding or removing** means sizes of  $D$  and  $D'$  are different, **updating or replacing** preserves the size but  $D \Delta D' = 2!$
- Why **all** pairs of datasets?

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $D \Delta D' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”
  - Under one raw = one person: **adding or removing** means sizes of  $D$  and  $D'$  are different, **updating or replacing** preserves the size but  $D \Delta D' = 2!$
- Why **all** pairs of datasets?
  - Privacy guarantee holds no matter what the other records are

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $\mathbf{D} \Delta \mathbf{D}' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”
  - Under one raw = one person: **adding or removing** means sizes of  $\mathbf{D}$  and  $\mathbf{D}'$  are different, **updating or replacing** preserves the size but  $\mathbf{D} \Delta \mathbf{D}' = 2$ !
- Why **all** pairs of datasets?
  - Privacy guarantee holds no matter what the other records are
- Why **all** outputs?

8

## DECYPHER DP

- What does mean “neighboring” datasets?
  - Pairs of datasets **that differ in one row**:  $\mathbf{D} \Delta \mathbf{D}' \leq 1$  (symmetric difference)
  - Simulate the presence or absence of a single record
  - **Unit of privacy** = “one person”, most common and safe but there exist alternatives like “one person-day”
  - Under one raw = one person: **adding or removing** means sizes of  $\mathbf{D}$  and  $\mathbf{D}'$  are different, **updating or replacing** preserves the size but  $\mathbf{D} \Delta \mathbf{D}' = 2$ !
- Why **all** pairs of datasets?
  - Privacy guarantee holds no matter what the other records are
- Why **all** outputs?
  - Should not be able to distinguish whether input was  $\mathbf{D}$  or  $\mathbf{D}'$  no matter what the output

8

## ABOUT $\varepsilon$ PARAMETER

Privacy budget is actually a **privacy loss**

$$\varepsilon \geq \ln \left( \frac{\Pr[\mathcal{A}(\mathbf{D}) \in S]}{\Pr[\mathcal{A}(\mathbf{D}') \in S]} \right)$$

Small value of  $\varepsilon$  requires  $\mathcal{A}$  to provide very similar outputs when given similar inputs

How should we set  $\varepsilon$  to prevent bad outcomes in practice? **Nobody knows...**

- Remind  $e^\varepsilon \approx 1 + \varepsilon$  for very small  $\varepsilon$  values

9

## ABOUT $\varepsilon$ PARAMETER

Privacy budget is actually a **privacy loss**

$$\varepsilon \geq \ln \left( \frac{\Pr[\mathcal{A}(\mathbf{D}) \in S]}{\Pr[\mathcal{A}(\mathbf{D}') \in S]} \right)$$

Small value of  $\varepsilon$  requires  $\mathcal{A}$  to provide very similar outputs when given similar inputs

How should we set  $\varepsilon$  to prevent bad outcomes in practice? **Nobody knows...**

- Remind  $e^\varepsilon \approx 1 + \varepsilon$  for very small  $\varepsilon$  values
- up to 1.0 gives a **strong privacy**:  $\varepsilon = 0.1$  bounds leak to 10%

9

## ABOUT $\varepsilon$ PARAMETER

Privacy budget is actually a **privacy loss**

$$\varepsilon \geq \ln \left( \frac{\Pr[\mathcal{A}(\mathbf{D}) \in S]}{\Pr[\mathcal{A}(\mathbf{D}') \in S]} \right)$$

Small value of  $\varepsilon$  requires  $\mathcal{A}$  to provide very similar outputs when given similar inputs

How should we set  $\varepsilon$  to prevent bad outcomes in practice? **Nobody knows...**

- Remind  $e^\varepsilon \approx 1 + \varepsilon$  for very small  $\varepsilon$  values
- up to 1.0 gives a **strong privacy**:  $\varepsilon = 0.1$  bounds leak to 10%
- 1.0 to 10 is “better than nothing”
- more than 10 hardly protects privacy...

9

## WHY $S$ IS A SET?

$\mathcal{A}(\mathbf{D}) \in S$  vs.  $\mathcal{A}(\mathbf{D}) = s$ ?

If  $\mathcal{A}$  returns elements from a continuous output domain,  $\Pr[\mathcal{A}(\mathbf{D}) = s] = 0$  for all  $\mathbf{D}$

The DP definition makes sense for both discrete and continuous distributions.

For discrete outputs, then the definition may be

$$\Pr[\mathcal{A}(\mathbf{D}) = s] \leq e^\varepsilon \cdot \Pr[\mathcal{A}(\mathbf{D}') = s]$$

10

## CAN DETERMINISTIC ALGORITHMS SATISFY DP?

Non-trivial deterministic algorithm has at least two distinct outputs in its image

There exist two inputs that differ in one row, mapped to distinct outputs:

- Assume  $\mathbf{D} = \mathbf{D}' \cup \{x\}$ ,  $x$  the target row,
- and  $\mathcal{A}(\mathbf{D}) = o_1$ ,  $\mathcal{A}(\mathbf{D}') = o_2$  deterministically (so undoubtedly)

Then, a **Differencing Attack** may disclose the target's data

Aside,  $\Pr[\mathcal{A}(\mathbf{D}) = o_1] = 1.0$  and  $\Pr[\mathcal{A}(\mathbf{D}') = o_1] = 0.0$

11

## WHAT ABOUT RANDOM SAMPLING?

Assume  $\mathbf{D} = \mathbf{D}' \cup \{x\}$ ,  $x$  the target row;

As soon as row  $x$  is sampled in  $o$ , then  $\Pr[\mathcal{A}(\mathbf{D}') = o] = 0.0$ , and

$$\frac{\Pr[\mathcal{A}(\mathbf{D}) \in S]}{\Pr[\mathcal{A}(\mathbf{D}') \in S]} = +\infty$$

Privacy loss is infinite!

12

Next Topic

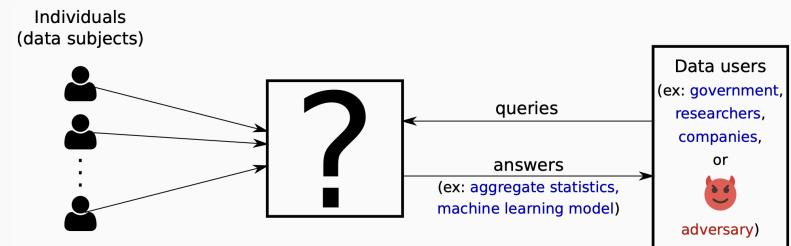
Differential Privacy (DP)

A First DP Algorithm

Properties of DP

13

HOW TO DESIGN DP ALGORITHMS?



14

ANSWERING NUMERICAL QUERIES

- Suppose we want to compute a numerical function  $f : \mathcal{X}^n \rightarrow \mathbb{R}$  of a private dataset  $\mathbf{D}$
- How to construct a DP algorithm (or mechanism  $\mathcal{A}$ ) for computing  $f(\mathbf{D})$ ?
  - How much randomness (error) do we add?
  - How to introduce this randomness in the output?

A popular approach: the Laplace mechanism

15

THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Laplace mechanism  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f : \mathcal{X}^n \rightarrow \mathbb{R}, \varepsilon)$

1. Compute  $\Delta = \Delta_1(f)$ , the **sensitivity** of function  $f$
2. draw  $Y \sim \text{Lap}(\Delta/\varepsilon)$ , the **added noise**
3. Output  $f(\mathbf{D}) + Y$ , the **noisy answer** to query  $f$  over  $\mathbf{D}$

16

## THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

**Algorithm:** Laplace mechanism  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f : \mathcal{X}^n \rightarrow \mathbb{R}, \varepsilon)$

1. Compute  $\Delta = \Delta_1(f)$ , the **sensitivity** of function  $f$
2. draw  $Y \sim \text{Lap}(\Delta/\varepsilon)$ , the **added noise**
3. Output  $f(\mathbf{D}) + Y$ , the **noisy answer** to query  $f$  over  $\mathbf{D}$

### Idea

perturb  $f(\mathbf{D})$  with Laplace noise, to get  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon) := f(\mathbf{D}) + \text{Lap}(\frac{\Delta}{\varepsilon})$

- noise is calibrated to sensitivity  $\Delta$  of  $f$  and the privacy parameter  $\varepsilon$

16

## THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

**Algorithm:** Laplace mechanism  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f : \mathcal{X}^n \rightarrow \mathbb{R}, \varepsilon)$

1. Compute  $\Delta = \Delta_1(f)$ , the **sensitivity** of function  $f$
2. draw  $Y \sim \text{Lap}(\Delta/\varepsilon)$ , the **added noise**
3. Output  $f(\mathbf{D}) + Y$ , the **noisy answer** to query  $f$  over  $\mathbf{D}$

### Idea

perturb  $f(\mathbf{D})$  with Laplace noise, to get  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon) := f(\mathbf{D}) + \text{Lap}(\frac{\Delta}{\varepsilon})$

- noise is calibrated to sensitivity  $\Delta$  of  $f$  and the privacy parameter  $\varepsilon$

### Theorem (DP guarantees for Laplace mechanism)

The Laplace mechanism  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon)$  satisfies  $\varepsilon$ -differential privacy

16

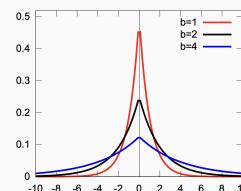
## THE LAPLACE DISTRIBUTION

### Definition (Laplace distribution)

The Laplace distribution  $\text{Lap}(b)$  (centered at 0) with scale  $b$  is the distribution with probability density function:

$$p(y; b) = \frac{1}{2b} \exp\left(-\frac{|y|}{b}\right), \quad y \in \mathbb{R}.$$

- It is a symmetric version of the **exponential distribution**
- For  $Y \sim \text{Lap}(b)$ , we have  $\mathbb{E}[Y] = 0$ ,  $\mathbb{E}[|Y|] = b$ ,  $\mathbb{E}[Y^2] = 2b^2$
- Useful property for DP:  $\Pr[Y = y]/\Pr[Y + a = y]$  can be bounded by something which does not depend on  $y$



17

## THE LAPLACE MECHANISM: UTILITY GUARANTEES

- This is great but what is the error incurred when using  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon)$  to answer  $f(\mathbf{D})$ ?
- For a given output of  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon)$ , we can consider the  $\ell_1$  error  $\|\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon) - f(\mathbf{D})\|_1$

### Theorem (Expected $\ell_1$ error of the Laplace mechanism)

Let  $\varepsilon > 0$ . For a query  $f : \mathcal{X}^n \rightarrow \mathbb{R}$  and any dataset  $\mathbf{D} \in \mathcal{X}^n$ , the Laplace mechanism  $\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon)$  has the following utility guarantee:

$$\mathbb{E}[\|\mathcal{A}_{\text{Lap}}(\mathbf{D}, f, \varepsilon) - f(\mathbf{D})\|_1] = \frac{\Delta_1(f)}{\varepsilon}.$$

- The Laplace mechanism can answer **low sensitivity queries**, say  $\Delta_1(f) = O(1)$  or smaller, with **high utility** (as long as  $\varepsilon$  is not too small)

18

## THE LAPLACE MECHANISM: USE CASE

- Assume  $\Delta_1(f) = 1$  and  $\varepsilon = 0.1$
- How much noise do we add? or what is a “typical” noise value?

19

## THE LAPLACE MECHANISM: USE CASE

- Assume  $\Delta_1(f) = 1$  and  $\varepsilon = 0.1$
- How much noise do we add? or what is a “typical” noise value?
  - scale  $b = \Delta_1(f)/\varepsilon = 10$
  - “typical” noise is  $b\sqrt{2} = 14$

19

## THE LAPLACE MECHANISM: USE CASE

- Assume  $\Delta_1(f) = 1$  and  $\varepsilon = 0.1$
- How much noise do we add? or what is a “typical” noise value?
  - scale  $b = \Delta_1(f)/\varepsilon = 10$
  - “typical” noise is  $b\sqrt{2} = 14$
- Let’s compute the probability of the “tail region”, i.e. noise  $> b$ :

$$\begin{aligned} 2 \cdot \int_b^\infty p(y; b) dy &= 2 \cdot \frac{1}{2b} \cdot \int_b^\infty \exp\left(-\frac{|y|}{b}\right) dy \\ &= -\frac{2b}{2b} \cdot \left[e^{-\frac{y}{b}}\right]_b^\infty = e^{-1} = 0.36 \end{aligned}$$

19

## THE LAPLACE MECHANISM: USE CASE

- Assume  $\Delta_1(f) = 1$  and  $\varepsilon = 0.1$
- How much noise do we add? or what is a “typical” noise value?
  - scale  $b = \Delta_1(f)/\varepsilon = 10$
  - “typical” noise is  $b\sqrt{2} = 14$
- Let’s compute the probability of the “tail region”, i.e. noise  $> b$ :

$$\begin{aligned} 2 \cdot \int_b^\infty p(y; b) dy &= 2 \cdot \frac{1}{2b} \cdot \int_b^\infty \exp\left(-\frac{|y|}{b}\right) dy \\ &= -\frac{2b}{2b} \cdot \left[e^{-\frac{y}{b}}\right]_b^\infty = e^{-1} = 0.36 \end{aligned}$$

- In 1 over 3 random samples, the Laplace mechanism adds noise greater than 10
- Is this answer useful?

19

## THE LAPLACE MECHANISM: USE CASE

- Assume  $\Delta_1(f) = 1$  and  $\varepsilon = 0.1$
- How much noise do we add? or what is a “typical” noise value?
  - scale  $b = \Delta_1(f)/\varepsilon = 10$
  - “typical” noise is  $b\sqrt{2} = 14$
- Let’s compute the probability of the “tail region”, i.e. noise  $> b$ :

$$\begin{aligned} 2 \cdot \int_b^\infty p(y; b) dy &= 2 \cdot \frac{1}{2b} \cdot \int_b^\infty \exp\left(-\frac{|y|}{b}\right) dy \\ &= -\frac{2b}{2b} \cdot \left[e^{-\frac{y}{b}}\right]_b^\infty = e^{-1} = 0.36 \end{aligned}$$

- In 1 over 3 random samples, the Laplace mechanism adds noise greater than 10
- Is this answer useful?
  - Yes, if the real answer is  $\gg 10$
  - No, otherwise

19

## GLOBAL SENSITIVITY

### Definition (Global $\ell_1$ sensitivity)

The global  $\ell_1$  sensitivity of a query (function)  $f : \mathcal{X}^n \rightarrow \mathbb{R}$  is

$$\Delta_1(f) = \max_{\mathbf{D}, \mathbf{D}' : \mathbf{D} \Delta \mathbf{D}' \leq 1} |f(\mathbf{D}) - f(\mathbf{D}')|_1$$

- global* means it holds for **all** pairs of neighboring datasets
- How much one record can affect the output value of the function
- Intuitively, it gives the amount of uncertainty needed to hide any single contribution

20

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$
- How many people have blond hair?

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$
- How many people have blond hair?
- How many males, how many people with blond hair?

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$
- How many people have blond hair?
- How many males, how many people with blond hair?
- How many people have blond hair, how many people have dark hair, how many people have brown hair, how many people have red hair?

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$
- How many people have blond hair?
- How many males, how many people with blond hair?
- How many people have blond hair, how many people have dark hair, how many people have brown hair, how many people have red hair?
- What is the sum of the salaries, knowing salaries range between 20K€ and 200K€

21

## INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- $f(x) = x$ , for real numbers
- $f(x) = x + x$
- $f(x) = 5x$
- $f(x) = x^2$
- How many people have blond hair?
- How many males, how many people with blond hair?
- How many people have blond hair, how many people have dark hair, how many people have brown hair, how many people have red hair?
- What is the sum of the salaries, knowing salaries range between 20K€ and 200K€
- What is the average age?

21

## CLIPPING

Queries with **unbounded sensitivity** cannot be straightforwardly answered with the Laplace mechanism

### Definition (Clipping)

Enforce lower and upper bounds of a given function, as a *band-pass filter*, to fall back into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP
  - aggressive clipping (close bounds) yields to lower sensitivity then less noise
  - conservative clipping (broad range) yields to higher sensitivity then more noise

22

## CLIPPING

Queries with **unbounded sensitivity** cannot be straightforwardly answered with the Laplace mechanism

### Definition (Clipping)

Enforce lower and upper bounds of a given function, as a *band-pass filter*, to fall back into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP
  - aggressive clipping (close bounds) yields to lower sensitivity then less noise
  - conservative clipping (broad range) yields to higher sensitivity then more noise
- As a rule of thumb: **clipping bounds should include 100% of the dataset**

22

## CLIPPING

Queries with **unbounded sensitivity** cannot be straightforwardly answered with the Laplace mechanism

### Definition (Clipping)

Enforce lower and upper bounds of a given function, as a *band-pass filter*, to fall back into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP
  - aggressive clipping (close bounds) yields to lower sensitivity then less noise
  - conservative clipping (broad range) yields to higher sensitivity then more noise
- As a rule of thumb: **clipping bounds should include 100% of the dataset**
- But never ever scan the data to set bounds! or do it properly...i.e. in a “DP manner”

22

## CLIPPING

Queries with **unbounded sensitivity** cannot be straightforwardly answered with the Laplace mechanism

### Definition (Clipping)

Enforce lower and upper bounds of a given function, as a *band-pass filter*, to fall back into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP
  - aggressive clipping (close bounds) yields to lower sensitivity then less noise
  - conservative clipping (broad range) yields to higher sensitivity then more noise
- As a rule of thumb: **clipping bounds should include 100% of the dataset**
- But never ever scan the data to set bounds! or do it properly...i.e. in a “DP manner”

Sensitivity underestimation may break the differential privacy guarantee, while sensitivity overestimation leads to unnecessary inaccuracy in the private analysis

22

## Next Topic

Differential Privacy (DP)

A First DP Algorithm

Properties of DP

23

## ROBUSTNESS TO AUXILIARY KNOWLEDGE

- DP guarantees are intrinsically robust to **arbitrary auxiliary knowledge**: it bounds the relative advantage that an adversary gets from observing the output of an algorithm
  - Adversary may know all the dataset except one record
  - Adversary may know all external sources of knowledge, present and future

24

## ROBUSTNESS TO AUXILIARY KNOWLEDGE

- DP guarantees are intrinsically robust to **arbitrary auxiliary knowledge**: it bounds the relative advantage that an adversary gets from observing the output of an algorithm
  - Adversary may know all the dataset except one record
  - Adversary may know all external sources of knowledge, present and future
- The algorithm  $\mathcal{A}$  can be **public**: only the randomness needs to remain hidden
  - A key requirement of modern security (“security by obscurity” has long been rejected)
  - Allows to openly discuss the algorithms and their guarantees

24

## RESILIENCE TO POSTPROCESSING

### Theorem (Postprocessing)

Let  $\mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}$  be  $\epsilon$ -DP and let  $f : \mathcal{O} \rightarrow \mathcal{O}'$  be an arbitrary (randomized) function, independent of  $\mathcal{A}$ . Then

$$f \circ \mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}'$$

is  $\epsilon$ -DP.

25

## RESILIENCE TO POSTPROCESSING

### Theorem (Postprocessing)

Let  $\mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}$  be  $\epsilon$ -DP and let  $f : \mathcal{O} \rightarrow \mathcal{O}'$  be an arbitrary (randomized) function, independent of  $\mathcal{A}$ . Then

$$f \circ \mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}'$$

is  $\epsilon$ -DP.

- “Thinking about” the output of a differentially private algorithm cannot make it less differentially private

25

## RESILIENCE TO POSTPROCESSING

### Theorem (Postprocessing)

Let  $\mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}$  be  $\epsilon$ -DP and let  $f : \mathcal{O} \rightarrow \mathcal{O}'$  be an arbitrary (randomized) function, independent of  $\mathcal{A}$ . Then

$$f \circ \mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}'$$

is  $\epsilon$ -DP.

- “Thinking about” the output of a differentially private algorithm cannot make it less differentially private
- Can **let data users do whatever they want with it**

25

## RESILIENCE TO POSTPROCESSING

### Theorem (Postprocessing)

Let  $\mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}$  be  $\epsilon$ -DP and let  $f : \mathcal{O} \rightarrow \mathcal{O}'$  be an arbitrary (randomized) function, independent of  $\mathcal{A}$ . Then

$$f \circ \mathcal{A} : \mathcal{X}^n \rightarrow \mathcal{O}'$$

is  $\epsilon$ -DP.

- “Thinking about” the output of a differentially private algorithm cannot make it less differentially private
- Can **let data users do whatever they want with it**
- This holds regardless of attacker strategy and computational power

25

## SEQUENTIAL COMPOSITION

### Theorem (Simple composition)

Let  $\mathcal{A}_1, \dots, \mathcal{A}_K$  be  $K$  independently chosen algorithms where  $\mathcal{A}_k$  satisfies  $\epsilon_k$ -DP. For any dataset  $\mathbf{D}$ , let  $\mathcal{A}$  be such that

$$\mathcal{A}(\mathbf{D}) = (\mathcal{A}_1(\mathbf{D}), \dots, \mathcal{A}_K(\mathbf{D})).$$

Then  $\mathcal{A}$  is  $\epsilon$ -DP with  $\epsilon = \sum_{k=1}^K \epsilon_k$ .

26

## SEQUENTIAL COMPOSITION

### Theorem (Simple composition)

Let  $\mathcal{A}_1, \dots, \mathcal{A}_K$  be  $K$  independently chosen algorithms where  $\mathcal{A}_k$  satisfies  $\epsilon_k$ -DP. For any dataset  $\mathbf{D}$ , let  $\mathcal{A}$  be such that

$$\mathcal{A}(\mathbf{D}) = (\mathcal{A}_1(\mathbf{D}), \dots, \mathcal{A}_K(\mathbf{D})).$$

Then  $\mathcal{A}$  is  $\epsilon$ -DP with  $\epsilon = \sum_{k=1}^K \epsilon_k$ .

- This allows to control the cumulative privacy loss over **multiple analyses run on the same dataset**, including complex multi-step algorithms
- Total budget is an **upper bound**: actual privacy loss may be smaller
  - $(\text{Lap}(1/\epsilon_1) + \text{Lap}(1/\epsilon_2))/2$  is less accurate than  $\text{Lap}(1/(\epsilon_1 + \epsilon_2))$

26

## PARALLEL COMPOSITION

The previous composition result is worst-case (assumes correlated outputs)

### Theorem (Parallel composition)

If  $\mathcal{A}_1, \dots, \mathcal{A}_K$  operate on *distinct inputs*, then  $\mathcal{A}(\mathbf{D})$  is  $\max_k \varepsilon_k$ -DP

### Example (Count by gender and hair color)

|           | Blond | Dark | Brown | Red |
|-----------|-------|------|-------|-----|
| Female    | 20    | 33   | 9     | 7   |
| Nonbinary | 12    | 7    | 28    | 3   |
| Male      | 17    | 42   | 4     | 8   |

If for each count the algorithm generating it satisfies  $\varepsilon$ -DP, then releasing the entire table is also  $\varepsilon$ -DP (as opposed to  $12\varepsilon$ -DP with sequential composition!)

## CONCLUSION

- Differential Privacy is robust to auxiliary knowledge
- DP is a property of the algorithm, not the dataset
- DP requires randomization
- Privacy loss is bounded by  $\varepsilon$ , also called “budget”
- The Laplace Mechanism provides  $\varepsilon$ -DP to numerical functions (queries)
- Laplace scale is calibrated to sensitivity of the function and  $\varepsilon$
- Clipping ensures sensitivity is bounded
- DP mechanisms can be composed
  - in sequence, then  $\varepsilon = \sum \varepsilon_k$ , or
  - in parallel, then  $\varepsilon = \max \varepsilon_k$
- DP is robust to postprocessing

27

28

## References

 Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).  
Calibrating noise to sensitivity in private data analysis.  
In *Proceedings of the Third Conference on Theory of Cryptography*, TCC'06, page 265–284, Berlin, Heidelberg. Springer-Verlag.

29