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REMINDER: PRIVATE DATA ANALYSIS
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Goal: achieve utility while preserving privacy (conflicting objectives!)

REMINDER: REQUIREMENTS FOR PRIVACY DEFINITION

1. Robustness to any auxiliary knowledge the adversary may have, since one cannot
predict what an adversary knows or might know in the future

2. Composition over multiple analyses: keep track of the “privacy budget” when asking
several questions about the same data

OUTLINE

Differential Privacy (DP)
A First DP Algorithm

Properties of DP
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Differential Privacy (DP)

SCHEMATIC DIFFERENTIAL PRIVACY
(Figure inspired from R. Bassily)
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DIFFERENTIAL PRIVACY

Definition (Differential Privacy)
A randomized mechanism A preserves e-differential privacy if for any pair of neighboring
datasets D and D/, and for all possible sets of outputs S:

PIIAD) € ] < e - PIIA(D)) € S], >0

Parameter ¢ is called “privacy budget”: it controls the degree to which D and D’ can be
distinguished. Smaller ¢ gives more privacy (and worse utility)

First introduced in [Dwork et al.,, 2006] by Dwork, McSherry, Nissim and Smith who won
the Godel prize in 2017
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- What does mean “neighboring” datasets?
- Pairs of datasets that differ in one row: DAD’ < 1 (symmetric difference)
- Simulate the presence or absence of a single record
- Unit of privacy = “one person”, most common and safe but there exist alternatives like
“one person-day”
- Under one raw = one person: adding or removing means sizes of D and D’ are different,
updating or replacing preserves the size but DAD’ = 2!
- Why all pairs of datasets?
- Privacy guarantee holds no matter what the other records are
- Why all outputs?
- Should not be able to distinguish whether input was D or D’ no matter what the output

ABOUT ¢ PARAMETER

Privacy budget is actually a privacy loss

PrlA(D) € S]
= (5tiores)

Small value of e requires A to provide very similar outputs when given similar inputs

How should we set ¢ to prevent bad outcomes in practice? Nobody knows...

- Remind e ~ 1 + ¢ for very small e values

ABOUT ¢ PARAMETER

Privacy budget is actually a privacy loss

PrLA(D) € S]
= (Gtiyes)

Small value of e requires A to provide very similar outputs when given similar inputs
How should we set ¢ to prevent bad outcomes in practice? Nobody knows...

- Remind e ~ 1 + ¢ for very small € values
- up to 1.0 gives a strong privacy: € = 0.1 bounds leak to 10%




ABOUT ¢ PARAMETER

Privacy budget is actually a privacy loss

e>n PrlA(D) € 9]
PrlA(D’) € S]
Small value of  requires A to provide very similar outputs when given similar inputs
How should we set ¢ to prevent bad outcomes in practice? Nobody knows...
- Remind ef ~ 1 + ¢ for very small ¢ values
- up to 1.0 gives a strong privacy: e = 0.1 bounds leak to 10%
- 1.0 to 10 is “better than nothing”

- more than 10 hardly protects privacy...

WHY SIS A SET?

AD) e Svs. AD) =57
If A returns elements from a continuous output domain, PrlA(D) = s] = 0 for all D
The DP definition makes sense for both discrete and continuous distributions.

For discrete outputs, then the definition may be

PrlA(D) = s] < & - PrlA(D’) = s

CAN DETERMINISTIC ALGORITHMS SATISFY DP?

Non-trivial deterministic algorithm has at least two distinct outputs in its image
There exist two inputs that differ in one row, mapped to distinct outputs:
- Assume D = D’ U {z}, = the target row,

- and A(D) = o1, A(D') = o0, deterministically (so undoubtedly)

Then, a Differencing Attack may disclose the target's data
Aside, PrlA(D) = o01] = 1.0 and Pr[A(D’) = 0] = 0.0

WHAT ABOUT RANDOM SAMPLING?

Assume D = D’ U {z}, z the target row;

As soon as row z is sampled in o, then PrlA(D’) = o] = 0.0, and

PrlAD) € S]
PIAD) e 5] °

Privacy loss is infinite!
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A First DP Algorithm

HOW TO DESIGN DP ALGORITHMS?
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ANSWERING NUMERICAL QUERIES

- Suppose we want to compute a numerical function f : X™ — R of a private dataset D
- How to construct a DP algorithm (or mechanism A) for computing f(D)?

- How much randomness (error) do we add?
- How to introduce this randomness in the output?

A popular approach: the Laplace mechanism

THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Laplace mechanism A, (D, f: X" — R, ¢)
1. Compute A = A, (f), the sensitivity of function f
2. draw Y ~ Lap(A/e), the added noise
3. Output f(D) + Y, the noisy answer to query f over D
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Algorithm: Laplace mechanism A.,,(D, f: X" — R,¢)
1. Compute A = A, (f), the sensitivity of function f
2. draw Y ~ Lap(A/e), the added noise
3. Output f(D) + Y, the noisy answer to query f over D

Idea
perturb f(D) with Laplace noise, to get Aiap(D, f,¢) := f(D) + Lap(%)

- noise is calibrated to sensitivity A of f and the privacy parameter e

Theorem (DP guarantees for Laplace mechanism)
The Laplace mechanism A.ap(D, f, ) satisfies e-differential privacy

THE LAPLACE DISTRIBUTION

Definition (Laplace distribution)
The Laplace distribution Lap(b) (centered at 0) with scale b is the distribution with
probability density function:

1
p(y; b) = o5 &P (—M> ., yeR.

- It is a symmetric version of the exponential distribution

- For Y ~ Lap(b), we have E[Y] =0, E[| Y]] = b, E[Y?] = 2}?

- Useful property for DP: Pr[Y = y|/Pr[Y + a = y] can be
bounded by something which does not depend on y

-0 8 6 4 2 0 2 4 6 8 10

THE LAPLACE MECHANISM: UTILITY GUARANTEES

- This is great but what is the error incurred when using A4 (D, f, €) to answer f(D)?
- For a given output of Aiap(D, £, €), we can consider the ¢1 error || ALap(D, f, ) — f(D)||1
Theorem (Expected ¢, error of the Laplace mechanism)

Lete > 0. For a query f : X™ — R and any dataset D € X", the Laplace mechanism
Aiap(D, f,€) has the following utility guarantee:

A

E[llAap(D, f,€) = FD)l1] =

- The Laplace mechanism can answer low sensitivity queries, say Aq(f) = O(1) or
smaller, with high utility (as long as ¢ is not too small)
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THE LAPLACE MECHANISM: USE CASE

- Assume A;(f) =1ande =0.1

- How much noise do we add? or what is a “typical” noise value?
- scale b=A(f)/e =10
- “typical” noise is bv/2 = 14

- Let's compute the probability of the “tail region”, i.e. noise > b

= bl L[~ lyl\
2/{) p(y;0)dy = 2 % ), exp< b)dy
2b _a7®® 1

-5 18, ¢ = 06

- In 1 over 3 random samples, the Laplace mechanism adds noise greater than 10
- Is this answer useful?

- Yes, if the real answer is > 10
- No, otherwise

GLOBAL SENSITIVITY

Definition (Global ¢; sensitivity)
The global ¢; sensitivity of a query (function) f : X® = R is

Aq(f) lf(D) = f(D)x

= max
D,D’:DAD’'<1
- global means it holds for all pairs of neighboring datasets

- How much one record can affect the output value of the function

- Intuitively, it gives the amount of uncertainty needed to hide any single contribution

20

INTERPRETING GLOBAL SENSITIVITY
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- f(z) = z, for real numbers
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Think about the sensitivity of the following functions/queries:

f(z) = z, for real numbers
f@)=a+a
o @) =5e
o) =4
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INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- f(z) = z, for real numbers
cflr)=z+z

o M@) =58

© Hz) =

- How many people have blond hair?
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INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- f(z) = z, for real numbers
- flz)=z+=
- f(z) =5z

HORES

- How many people have blond hair?
- How many males, how many people with blond hair?

- How many people have blond hair, how many people have dark hair, how many
people have brown hair, how many people have red hair?

- What is the sum of the salaries, knowing salaries range between 20K€ and 200K€
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INTERPRETING GLOBAL SENSITIVITY

Think about the sensitivity of the following functions/queries:

- f(z) = z, for real numbers
f@)=z+z

o M@) =58
flz) = a*

- How many people have blond hair?
- How many males, how many people with blond hair?

- How many people have blond hair, how many people have dark hair, how many
people have brown hair, how many people have red hair?

- What is the sum of the salaries, knowing salaries range between 20K€ and 200K€
- What is the average age?

21

CLIPPING

Queries with unbounded sensitivity cannot be straightforwardly answered with the
Laplace mechanism
Definition (Clipping)

Enforce lower and upper bounds of a given function, as a band-pass filter, to fall back
into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP

- aggressive clipping (close bounds) yields to lower sensitivity then less noise
- conservative clipping (broad range) yields to higher sensitivity then more noise

22
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CLIPPING Next Topic

Queries with unbounded sensitivity cannot be straightforwardly answered with the
Laplace mechanism

Definition (Clipping)

Enforce lower and upper bounds of a given function, as a band-pass filter, to fall back
into bounded sensitivity

- Trade-off between information lost in clipping and noise needed to ensure DP

- aggressive clipping (close bounds) yields to lower sensitivity then less noise
- conservative clipping (broad range) yields to higher sensitivity then more noise

- As a rule of thumb: clipping bounds should include 100% of the dataset Properties of DP

- But never ever scan the data to set bounds! or do it properly..i.e. in a “DP manner”

Sensitivity underestimation may break the differential privacy guarantee, while sensitivity
overestimation leads to unnecessary inaccuracy in the private analysis

22 23




ROBUSTNESS TO AUXILIARY KNOWLEDGE

- DP guarantees are intrinsically robust to arbitrary auxiliary knowledge: it bounds the
relative advantage that an adversary gets from observing the output of an algorithm
- Adversary may know all the dataset except one record
-+ Adversary may know all external sources of knowledge, present and future
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ROBUSTNESS TO AUXILIARY KNOWLEDGE

- DP guarantees are intrinsically robust to arbitrary auxiliary knowledge: it bounds the
relative advantage that an adversary gets from observing the output of an algorithm
- Adversary may know all the dataset except one record
-+ Adversary may know all external sources of knowledge, present and future
- The algorithm A can be public: only the randomness needs to remain hidden

- A key requirement of modern security (“security by obscurity” has long been rejected)
- Allows to openly discuss the algorithms and their guarantees

24

RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)

let A: X™ — O be e-DP and let f : © — O’ be an arbitrary (randomized) function,
independent of A. Then

foAd: X" 50O
is e-DP.
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RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)

let A: X™ — O be e-DP and let f : © — O’ be an arbitrary (randomized) function,
independent of A. Then

foA: X" = O
is e-DP.

- “Thinking about” the output of a differentially private algorithm cannot make it less
differentially private
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RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)

let A: X™ — O be e-DP and let f : © — O’ be an arbitrary (randomized) function,
independent of A. Then

foA: X" = 0O
is e-DP.
- “Thinking about” the output of a differentially private algorithm cannot make it less
differentially private
- Can let data users do whatever they want with it

- This holds regardless of attacker strategy and computational power
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SEQUENTIAL COMPOSITION

Theorem (Simple composition)

Let Ay, ..., Ax be K independently chosen algorithms where Ay, satisfies e,-DP. For any
dataset D, let A be such that

AD) = (A (D), ..., Ax(D)).

Then Ais e-DP with e = Z{;l €k
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SEQUENTIAL COMPOSITION

Theorem (Simple composition)

Let Ay, ..., Ax be K independently chosen algorithms where Ay, satisfies e,-DP. For any
dataset D, let A be such that

AD) = (A(D), ..., Ax (D))
Then A is e-DPwithe = S35 | .

- This allows to control the cumulative privacy loss over multiple analyses run on the
same dataset, including complex multi-step algorithms
- Total budget is an upper bound: actual privacy loss may be smaller
- (Lap(1/e1) + Lap(1/e2))/2 is less accurate than Lap(1/(e1 + €2))

26




PARALLEL COMPOSITION CONCLUSION

. . . - Differential Privacy is robust to auxiliary knowledge
The previous composition result is worst-case (assumes correlated outputs) y y g

. - DPis a property of the algorithm, not the dataset
Theorem (Parallel composition)

: : . - DP requires randomization
If A1,..., Ak operate on distinct inputs, then A(D) is maxy -DP g

- Privacy loss is bounded by ¢, also called “budget”

Example (Count by gender and hair color) - The Laplace Mechanism provides e-DP to numerical functions (queries)

Blond  Dark  Brown Red - Laplace scale is calibrated to sensitivity of the function and e
Female 20 39 7 - Clipping ensures sensitivity is bounded
Nonbinary 12 7 28 3 R
Male 17 42 4 8 - DP mechanisms can be composed

- in sequence, thene = > ey, or

If for each count the algorithm generating it satisfies e-DP, then releasing the entire table - in parallel, then & = max ¢

is also e-DP (as opposed to 12e-DP with sequential composition!) . )
- DP is robust to postprocessing
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