Privacy

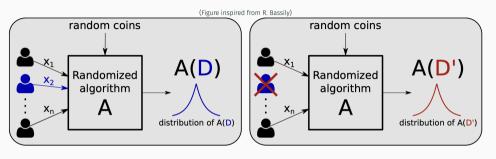
Differential Privacy (Part II)

Guillaume Raschia — Nantes Université

Last update: February 5, 2025

original slides from A. Bellet (Inria), M2DS Univ. Lilles also from A. Machanavajjhala, M. Hay, X. He *Differential Privacy in the Wild*, VLDB'16 & SIGMOD'17 Tutlorial also from J.P. Near and C. Abuah *Programmino Differential Privacy*

REMINDER: DIFFERENTIAL PRIVACY



Definition (Differential Privacy)

An algorithm \mathcal{A} preserves differential privacy if for any pair of neighboring datasets D and D', and for all possible sets of outputs S:

$$\Pr[\mathcal{A}(D) \in S] \le e^{\varepsilon} \Pr[\mathcal{A}(D') \in S], \quad \varepsilon > 0$$

2

REMINDER: GLOBAL SENSITIVITY

Definition (Global ℓ_1 sensitivity)

The global ℓ_1 sensitivity of a query (function) $f: \mathcal{X}^n \to \mathbb{R}$ is

$$\Delta_1(f) = \max_{D, D': D\Delta D' \le 1} |f(D) - f(D')|_1$$

How much adding or removing a single record can change the value of the query, measured in ℓ_1 norm

3

REMINDER: THE LAPLACE MECHANISM

Algorithm: Laplace mechanism $\mathcal{A}_{\mathsf{Lap}}(D, f: \mathcal{X}^n \to \mathbb{R}, \varepsilon)$

- 1. Compute $\Delta = \Delta_1(f)$, the sensitivity of function f
- 2. draw $Y \sim \text{Lap}(\Delta/\varepsilon)$, the added noise
- 3. Output f(D) + Y, the noisy answer to query f over D

Theorem (DP guarantees for Laplace mechanism)

The Laplace mechanism $\mathcal{A}_{\mathsf{Lap}}(D,f,arepsilon)$ satisfies arepsilon-differential privacy

LIMITATIONS OF OUTPUT PERTURBATION

 \cdot So far we have seen the Laplace mechanism, which is based on output perturbation

$$\mathcal{A}(D) = f(D) + Y$$

 $\boldsymbol{\cdot}$ Can you think of some intrinsic limitations?

LIMITATIONS OF OUTPUT PERTURBATION

 \cdot So far we have seen the Laplace mechanism, which is based on output perturbation

$$\mathcal{A}(D) = f(D) + Y$$

Can you think of some intrinsic limitations?

First limitation

It only works for numeric queries

For instance, what if the output is a label, a set or even a graph?

LIMITATIONS OF OUTPUT PERTURBATION

· So far we have seen the Laplace mechanism, which is based on output perturbation

$$\mathcal{A}(D) = f(D) + Y$$

Can you think of some intrinsic limitations?

First limitation

It only works for numeric queries

For instance, what if the output is a label, a set or even a graph?

Second limitation

It is relevant only if the utility function is sufficiently regular

When perturbation leads to invalid outputs, e.g. how to ensure integrality or non-negativity of the output?

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - $\boldsymbol{\cdot}$ What is the best set of hyperparameters to train my classifier on the dataset?

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - · What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - · Which date works better for a set of people to meet?
 - Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3.0€
Bob	4.0€

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - · What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - · Which date works better for a set of people to meet?
 - Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3.0€
Bob	4.0€

Profit if we set price to 3€: 3€

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - · What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - · Which date works better for a set of people to meet?
 - \cdot Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3.0€
Bob	4.0€

- Profit if we set price to 3€: 3€
- Profit if we set price to 3.01€: 3.01€

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - · What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - · Which date works better for a set of people to meet?
 - · Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3.0€
Bob	4.0€

- Profit if we set price to 3€: 3€
- Profit if we set price to 3.01€: 3.01€
- Profit if we set price to 4€: 4€

- Non-numeric queries
 - · What is the most popular website among Firefox users?
 - · What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - · Which date works better for a set of people to meet?
 - Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3.0€
Bob	4.0€

- Profit if we set price to 3€: 3€
- Profit if we set price to 3.01€: 3.01€
- Profit if we set price to 4€: 4€
- Profit if we set price to 4.01€: 0€

- We will now consider queries $f:\mathcal{X}^n \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (dates): $\mathcal{O} = \{\text{'Monday', 'Tuesday', 'Wednesday', ...}\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, ...\}$
 - Example (hair color): $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}$

- We will now consider queries $f: \mathcal{X}^n \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (dates): $\mathcal{O} = \{$ 'Monday', 'Tuesday', 'Wednesday', ... $\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, ...\}$
 - Example (hair color): $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$
- Associated to $\mathcal O$ we have a scoring function (or utility function)

$$s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$$

- We will now consider queries $f: \mathcal{X}^n \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (dates): $\mathcal{O} = \{$ 'Monday', 'Tuesday', 'Wednesday', ... $\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, ...\}$
 - Example (hair color): $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$
- Associated to \mathcal{O} we have a scoring function (or utility function)

$$s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$$

• For a dataset $D \in \mathcal{X}^n$ and an output $o \in \mathcal{O}$, s(D,o) represents how good it is to return o when the query is f(D)

7

- · We will now consider queries $f: \mathcal{X}^n \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (dates): $\mathcal{O} = \{$ 'Monday', 'Tuesday', 'Wednesday', ... $\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, ...\}$
 - Example (hair color): $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$
- Associated to \mathcal{O} we have a scoring function (or utility function)

$$s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$$

- For a dataset $D \in \mathcal{X}^n$ and an output $o \in \mathcal{O}$, s(D, o) represents how good it is to return o when the query is f(D)
- \cdot The function s can be arbitrary: it should be designed according to the use-case

- We will now consider queries $f: \mathcal{X}^n \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (dates): $\mathcal{O} = \{$ 'Monday', 'Tuesday', 'Wednesday', ... $\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, ...\}$
 - Example (hair color): $\mathcal{O} = \{ 'dark', 'blond', 'brown', 'red' \}$
- Associated to \mathcal{O} we have a scoring function (or utility function)

$$s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$$

- For a dataset $D \in \mathcal{X}^n$ and an output $o \in \mathcal{O}$, s(D, o) represents how good it is to return o when the query is f(D)
- \cdot The function s can be arbitrary: it should be designed according to the use-case
- Of course, o = f(D) is usually assigned the maximum score

SENSITIVITY OF THE SCORING FUNCTION

Definition (Sensitivity of scoring function)

The sensitivity of $s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$ is

$$\boldsymbol{\Delta}(s) = \max_{o \in \mathcal{O}} \max_{D,D':D\Delta D' \leq 1} |s(D,o) - s(D',o)|$$

SENSITIVITY OF THE SCORING FUNCTION

Definition (Sensitivity of scoring function)

The sensitivity of $s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$ is

$$\Delta(s) = \max_{o \in \mathcal{O}} \max_{D, D' : D\Delta D' \le 1} |s(D, o) - s(D', o)|$$

- Worst-case change of score of an output when adding or removing one record
- Note that sensitivity is only with respect to the dataset (scores can vary arbitrarily across outputs)

THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Exponential mechanism $\mathcal{A}_{\mathsf{Exp}}(D,f:\mathcal{X}^n \to \mathcal{O},s:\mathcal{X}^n \times \mathcal{O} \to \mathbb{R},\varepsilon)$

- 1. Compute $\Delta = \Delta(s)$
- 2. Output $o \in \mathcal{O}$ with probability:

$$\Pr\left[o\right] = \frac{\exp\left(\frac{s(D,o) \cdot \varepsilon}{2\Delta}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D,o') \cdot \varepsilon}{2\Delta}\right)}$$

- Sample $o \in \mathcal{O}$ with probability proportional to its score (denominator: normalization)
- Make high quality outputs exponentially more likely, at a rate that depends on the sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism)

Let
$$\varepsilon > 0$$
, $f: \mathcal{X}^n \to \mathcal{O}$ and $s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$. $\mathcal{A}_{\mathsf{Exp}}(\cdot, f, s, \varepsilon)$ satisfies ε -DP.

- Given a dataset D, let $s^*(D) = \max_{o \in \mathcal{O}} s(D, o)$, the best score for D
- One shows that it is unlikely that \mathcal{A}_{Exp} returns a "bad" output, measured w.r.t. $s^*(D)$

- Given a dataset D, let $s^*(D) = \max_{o \in \mathcal{O}} s(D, o)$, the best score for D
- · One shows that it is unlikely that $\mathcal{A}_{\mathsf{Exp}}$ returns a "bad" output, measured w.r.t. $s^*(D)$

Theorem (Utility guarantees for the Exponential mechanism)

Let $\varepsilon > 0$, $f: \mathcal{X}^n \to \mathcal{O}$ and $s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$. Given a dataset $D \in \mathcal{X}^n$, let $\mathcal{O} = \{o \in \mathcal{O}: s(D, o) = s^*(D)\}$. Then:

$$\Pr\left[s^*(D) - s(\mathcal{A}_{\mathsf{Exp}}(D, f, s, \varepsilon) \le \frac{2\Delta(s)}{\varepsilon} \ln\left(\frac{|\mathcal{O}|}{\beta|\mathcal{O}^*|}\right)\right] \ge 1 - \beta$$

- Given a dataset D, let $s^*(D) = \max_{o \in \mathcal{O}} s(D, o)$, the best score for D
- One shows that it is unlikely that $\mathcal{A}_{\mathsf{Exp}}$ returns a "bad" output, measured w.r.t. $s^*(D)$

Theorem (Utility guarantees for the Exponential mechanism)

Let $\varepsilon > 0$, $f: \mathcal{X}^n \to \mathcal{O}$ and $s: \mathcal{X}^n \times \mathcal{O} \to \mathbb{R}$. Given a dataset $D \in \mathcal{X}^n$, let $\mathcal{O} = \{o \in \mathcal{O}: s(D, o) = s^*(D)\}$. Then:

$$\Pr\left[s^*(D) - s(\mathcal{A}_{\mathsf{Exp}}(D, f, s, \varepsilon) \le \frac{2\Delta(s)}{\varepsilon} \ln\left(\frac{|\mathcal{O}|}{\beta |\mathcal{O}^*|}\right)\right] \ge 1 - \beta$$

- · It is highly unlikely that we get utility score smaller than $s^*(D)$ by more than an additive factor of $O\left(\frac{\Delta(s)}{\varepsilon}\ln(|\mathcal{O}|)\right)$
- · Guarantees are better if several outputs have maximal score (i.e., $|\mathcal{O}^*| \geq 1$)

• Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores

- Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)

- Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)

For $\varepsilon = 0.1$, what is the probability that $\mathcal{A}_{\mathsf{Exp}}$ returns 'dark'?

- Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)

For $\varepsilon=0.1$, what is the probability that $\mathcal{A}_{\mathsf{Exp}}$ returns 'dark'?

• Note that $\Delta(s)=1$, $|\mathcal{O}|=4$ and $|\mathcal{O}^*|=1$

- Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)

For $\varepsilon=0.1$, what is the probability that $\mathcal{A}_{\mathsf{Exp}}$ returns 'dark'?

- Note that $\Delta(s)=1$, $|\mathcal{O}|=4$ and $|\mathcal{O}^*|=1$
- Applying the theorem, we know that the probability of returning an output whose score is larger than $400=500-20\ln(4/\beta)$ is at least $1-\beta$

- Let $\mathcal{O} = \{\text{'dark', 'blond', 'brown', 'red'}\}\$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)

For $\varepsilon = 0.1$, what is the probability that $\mathcal{A}_{\mathsf{Exp}}$ returns 'dark'?

- Note that $\Delta(s)=1$, $|\mathcal{O}|=4$ and $|\mathcal{O}^*|=1$
- Applying the theorem, we know that the probability of returning an output whose score is larger than $400=500-20\ln(4/\beta)$ is at least $1-\beta$
- This gives $\beta=4e^{-5}$, hence the probability to get the correct answer is at least $1-\beta=0.973$

Implements the Exp mechanism in terms of the Lap mechanism for finite output ${\cal O}$

Algorithm: Report Noisy Max (RNM)

- 1. For each $o \in \mathcal{O}$, calculate a noisy score $s(D,o) + \operatorname{Lap}(\frac{\Delta(s)}{\varepsilon})$
- 2. Output the element $\it o$ with the maximum noisy score

Implements the Exp mechanism in terms of the Lap mechanism for finite output ${\cal O}$

Algorithm: Report Noisy Max (RNM)

- 1. For each $o \in \mathcal{O}$, calculate a noisy score $s(D,o) + \operatorname{Lap}(\frac{\Delta(s)}{\varepsilon})$
- 2. Output the element o with the maximum noisy score

Pessimistic privacy/utility analysis:

· With sensitivity $\Delta(s)$, each "query" in step 1 is arepsilon-DP

Implements the Exp mechanism in terms of the Lap mechanism for finite output ${\cal O}$

Algorithm: Report Noisy Max (RNM)

- 1. For each $o \in \mathcal{O}$, calculate a noisy score $s(D,o) + \operatorname{Lap}(\frac{\Delta(s)}{\varepsilon})$
- 2. Output the element o with the maximum noisy score

Pessimistic privacy/utility analysis:

- · With sensitivity $\Delta(s)$, each "query" in step 1 is arepsilon-DP
- · If $|\mathcal{O}|=n$, then the overall RNM is narepsilon-DP by sequential composition

Implements the Exp mechanism in terms of the Lap mechanism for finite output ${\cal O}$

Algorithm: Report Noisy Max (RNM)

- 1. For each $o \in \mathcal{O}$, calculate a noisy score $s(D,o) + \operatorname{Lap}(\frac{\Delta(s)}{\varepsilon})$
- 2. Output the element o with the maximum noisy score

Pessimistic privacy/utility analysis:

- · With sensitivity $\Delta(s)$, each "query" in step 1 is arepsilon-DP
- · If $|\mathcal{O}|=n$, then the overall RNM is narepsilon-DP by sequential composition
- However, exponential mechanism would cost ε only!
 - $\cdot\,\,$ it releases less information, only the output rather than the n noisy scores

Privacy Guarantees of RNM

Report Noisy Max satisfies ε -DP, no matter how large (but finite) is \mathcal{O} , since it releases only the identity of the element with the largest noisy score [McSherry and Talwar, 2007]

THE EXPONENTIAL MECHANISM: PRACTICAL CONSIDERATIONS

- The exponential mechanism is the natural building block for answering queries with arbitrary utilities and arbitrary non-numeric range
- · As we have seen, it is often quite easy to analyze
- The set \mathcal{O} of possible outputs should not be specific to the particular dataset!
 - · Otherwise one violates DP
 - Example of violation: possible prices for items based on actual bids
- The exponential mechanism can define a complex distribution over an arbitrary large domain, so it is not always possible to implement it efficiently

A LOT MORE TO SAY

- Approximate DP
- · Gaussian mechanism
- Advanced composition
- Variants
 - · Rényi DP
 - · zero-Concentrated DP
- · Local DP
- Sparse Vector Technique
- DP for ML: Private Empirical Risk Minimization, ...
- · etc.

References

McSherry, F. and Talwar, K. (2007).

Mechanism design via differential privacy.

In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 94–103.