
Extending the Relational Model
Complex Values and Nested Relations

Guillaume Raschia — Nantes Université
Last update: October 17, 2023

1

4NF

A Very First Example

Class Book

title
set of authors
publisher
set of keywords

• Easy to model in any programming language
• Tricky in relational database!

2

Basic proposal

• Either we ignore the normalization…
Title Author Publisher Keyword

FoD S. Abiteboul Addison-Wesley Database
FoD R. Hull Addison-Wesley Database
FoD V. Vianu Addison-Wesley Database
FoD S. Abiteboul Addison-Wesley Logic
FoD R. Hull Addison-Wesley Logic
FoD V. Vianu Addison-Wesley Logic
TCB J.D. Ullman Pearson Database
...

...
...

...
• Key: (Title, Author, Keyword)
• Not in 2NF, given Title �! Publisher

3

Intermediate State

• …Or we go to 3NF, BCNF

Title Publisher

FoD Addison-Wesley

Title Author Keyword

FoD S. Abiteboul Database
FoD R. Hull Database
FoD V. Vianu Database
FoD S. Abiteboul Logic
FoD R. Hull Logic
FoD V. Vianu Logic

• But we still ignore the multivalued dependencies…

4

About MVD’s and 4NF

• MVD: full constraint on relation1

Definition (Multi-Valued Dependency)
Let R be a relation of schema {X ,Y ,Z}; X ⇣ Y holds whenever (x, y, z) and
(x, t, u) both belong to R, it implies that (x, y, u) and (x, t, z) should also be in R

Example:

• Department {Building} {Employee {Telephone}}
• MVD’s = {Department⇣ Building; Department, Employee⇣ Telephone}

1All the attributes are necessarily involved.

5

About MVD’s and 4NF (cont’d)

MVD Properties in R(X ,Y ,Z)

• X ⇣ Y) X ⇣ Z
• X ! Y) X ⇣ Y
• X ⇣ R � X always holds (trivial MVD)

Definition (4NF)
For every non trivial MVD X ⇣ Y in R, then X is a superkey

Losseless-join decomposition of R(X ,Y ,Z)

Decomposition (X ,Y) and (X ,Z) is losseless-join iff X ⇣ Y holds in R

6

About MVD’s and 4NF (cont’d)

Follow-on from the Department Example:
Department {Building} {Employee {Telephone}}

• (D ⇣ B)) (D ⇣ E ,T)

• (D,E ⇣ T)) (D,E ⇣ B)

• Every trivial MVD holds, like D,E ⇣ B,T

7

Back to the Class Book Introductory Example

Title Publisher

FoD Addison-Wesley

Title Author Keyword

FoD S. Abiteboul Database
FoD R. Hull Database
FoD V. Vianu Database
FoD S. Abiteboul Logic
FoD R. Hull Logic
FoD V. Vianu Logic

List of—non trivial—MVD’s:

• Title⇣ Author
• Title⇣ Keyword

8

The Ultimate Schema

• …Or we go to 4NF

Title Publisher

FoD Addison-Wesley

Title Author

FoD S. Abiteboul
FoD R. Hull
FoD V. Vianu

Title Keyword

FoD Database
FoD Logic

9

Pros & Cons

• 4NF design
• requires many joins in queries (performance pitfall)
• and loses the big picture of class book entities

• 1NF relational view
• eliminates the need for users/apps to perform deadly joins
• but loses the one-to-one mapping between tuples and objects
• has a large amount of redundancy
• and could yield to insertion, deletion, update anomalies

10

Contents

4NF

NF²

Nested Tables

Nested Queries

Design

11

NF²

Preamble

Alice: Complex values?
Riccardo: We could have used a different title: nested relations,

complex objects, structured objects…
Vittorio: …N1NF, ¬1NF, NFNF, NF2, NF2, V-relation…I have seen

all these names and others as well.
Sergio: In a nutshell, relations are nested within relations;

something like Matriochka relations.
Alice: Oh, yes. I love Matriochkas.

FoD: chap. 20, p. 508

12

Beyond the Relational Model

• Theoretical extensions of the Relational Model (RM)
• NF2

• Nested Relations
• New Requirements

• Operations as extension to relational algebra
• Normal form to provide consistency

• Today, part of SQL3 and commercial systems

13

The NF2 Database Model

NF2 = NFNF = Non First Normal Form

Principle
NF2 relations permit complex values whenever we encounter atomic, i.e.
indivisible, values

• Breaks first normal form
• Allows more intuitive—let say conceptual—modeling for applications with
complex data

• Preserves mathematical foundations of the Relational Model

14

From Pointland…

Type—aka. sort—of a relation in 1NF

⌧ := hA1 :dom, . . . ,Ak :domi

• A schema R :⌧ is a relation name R with sort(R) = ⌧

• A relation is a set of ⌧-tuples
• Sort constructors: tuple h·i and—finite—set {·}
• Construction pattern of a relation: set(tuple(dom⇤))

15

…to Lineland2

In N1NF: much more combinations

⌧ := dom | hA1 :⌧, . . . ,Ak :⌧i | {⌧}

Examples

Sort ⌧ Complex value
dom a
{dom} {a, b, c}
{{dom}} {{a, b}, {a}, {}}
hA :dom,B :domi hA :a,B :bi
{hA :dom,B :domi} {hA :a,B :bi, hA :a,B :bi}
hA :{hB :domi}i hA :{hB :bi, hB :ci}i

2Flatland, a Romance of Many Dimensions. Edwin A. Abbott (1884). 16

Sorts and Complex Values as Finite Trees

Sort hA :dom,B :domi Complex value hA :a,B :bi

⇥

dom dom

A B

⇥

a b

A B

Gentle Reminder
A relation is a—finite—set of complex values

17

Sorts and Complex Values as Finite Trees (cont’d)

Sort hA :{hB :domi}i Complex value hA :{hB :bi, hB :ci}i

⇥

⇤

⇥

dom

A

B

⇥

⇤

⇥

b

⇥

c

A

B B

18

Nested Tables

A Popular Restriction

Definition (Nested relation)
A nested relation is a NF2 relation where set and tuple constructors are required
to alternate

The outermost constructor must be a tuple, as for the 1NF sort

Examples

⌧1 = hA,B,C :{hD,E :{hF ,Gi}i}i Ok
⌧2 = hA,B,C :{hE :{hF ,Gi}i}i Ok
⌧3 = hA,B,C :hD,E :{hF ,Gi}ii No!
⌧4 = hA,B,C :{{hF ,Gi}}i No!

19

One Real-Life Example to Take Away

Departments: hDpt, Emps :{hSSN,Name, Tels :{hTeli}, Salaryi}i

⇥

dom ⇤

⇥

dom dom ⇤

⇥

dom

dom

Dpt Emps

SSN Name Tels

Tel

Salary

Type constructors alternate on every path from the root to the leaves 20

Instance of a – Nested – Departments Table

Department Employees

Computer Science

SSN Name Telephones Salary

4711 Todd
Tel

038203-12230
0381-498-3401

6,000

5588 Whitman
Tel

0391-334677
0391-5592-3452

6,000

7754 Miller Tel 550

8832 Kowalski Tel 2,800

Mathematics
SSN Name Telephones Salary

6834 Wheat
Tel

0345-56923
750

21

About Nested Relations

Nested relations vs. N1NF-relations
Cosmetic restriction only!

Size of nested relations

O(22...2
n

) with n being the size of the active domain of R and “the tower of 2”
equals the depth of R (#nested levels)

Reminder: the size of a flat relation is polynomial

22

Languages for the Nested Relations

Logic
Mainly extend the Relational Calculus to variables denoting sets

{t.Dpt | Dpts(t) ^ 8X , u :(t.Emps = X ^
u 2 X ! u.Salary  5, 000)}

Flavor with queries as terms:

{t.Dpt | Dpts(t) ^ t.Emps ✓ {u | u.Salary  5, 000}}

23

Operations on Nested Relations

R(A,B(C ,D)) and S(A(C ,D),B(C ,D),E) and T(A,B(C ,D))

The usual way
�A=a(R) and ⇡A(R)

R onR.A=S.E S
R � T and R [T (on union-compliant relations)

Straightforward – recursive – extensions

�A(C ,D)=B(C ,D)(S) �A(C ,D)⇢B(C ,D)(S) �A2B.C (R)

⇡A,B.C (R) R onR.B✓S.A S

24

Nested Relational Algebra

Selection-Projection-Join-Union-Negation

• [� ⇡ on nearly as in relational algebra
• � and on: condition extended to support

• Relations as operands (instead of constants in dom)
• Set operations like ✓ 2 {2,✓,⇢,�,◆}

• Recursively structured operation parameters, e.g.
• ⇡: nested projection attribute lists
• � and on: predicates on nested relations

First real-world implementation: Dremel (2010) by Google
A language of the NoSQL era, built upon the Protocol Buffer – Protobuf – format

Sergey Melnik et al. 2020. Dremel: a decade of interactive SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (August 2020), 3461–3472.

25

Nested Relational Algebra (cont’d)

Additional operations: Nest (⌫) and Unnest (µ)

• ⌫A=(A1,A2,...,An)(R): create column A as a nesting from A1,A2, . . . ,An of R
• µA(A1,A2,...,An)(R): remove 1 level of nesting from the A column of R and then,
promote nested columns (A1,A2, . . . ,An) as regular outermost columns

A curiosity: The Powerset operator

⌦(I(R)) = {# | # ✓ I(R)}

Powerset ⌦ extends algebra up to reachability (eq. Datalog)

26

Nest & Unnest

A B C

1 2 7
1 3 6
1 4 5
2 1 1

��������!
⌫D=(B,C)(S)

 �������
µD(B,C)(R)

A D

1

B C

2 7
3 6
4 5

2
B C

1 1

27

About the Duality of Nest & Unnest

Unnesting is not generally reversible!

A D

1
B C

2 7
3 6

1
B C

4 5

2
B C

1 1

����!
µD(R)

A B C

1 2 7
1 3 6
1 4 5
2 1 1

��������!
⌫D=(B,C)(S)

A D

1

B C

2 7
3 6
4 5

2
B C

1 1

28

To Sum Up

• Unnest is the right inverse of nest: µA(↵) � ⌫A=↵ ⌘ Id
• Unnest is not information preserving (one-to-one) and so has no right
inverse

29

Nested Queries

Nesting in Queries

Flat-Flat Theorem
Let Q be a nested relational algebra expression;

• Q takes a non-nested relation as input
• Q produces a non-nested relation as output

Then, Q can be rewritten as a regular relational algebra expression (i.e., w/o
nesting)

30

Nesting in Queries (cont’d)

Result is actually stronger for query Q

Nested Query Theorem
Assume a d1-nested relation as input and a d2-nested relation as output; there is
no need for intermediate results having depth greater than max(d1, d2)

What for?

• Can be used by query optimizers
• No need to introduce intermediate nesting
• Standard techniques for query evaluation

31

NF2 Concepts in SQL3

• SQL-99 introduced tuple type constructor ROW
• Only few changes to type system in SQL:2003

• Bag type constructor MULTISET
• XML data types

• Implementations in commercial DBMS most often do NOT comply with
standard!

32

ROW Type Constructor

• ROW implements tuple type constructor
Example

CREATE ROW TYPE AddressType (
Street VARCHAR(30),
City VARCHAR(30),
Zip VARCHAR(10));

CREATE ROW TYPE CustomerType (
Name VARCHAR(40),
Address AdressType);

CREATE TABLE Customer OF TYPE CustomerType
(PRIMARY KEY Name);

33

ROW Type Constructor (cont’d)

• Insertion of records requires call to ROW constructor

INSERT INTO Customer
VALUES('Doe', ROW('50 Otages','Nantes','44000'));

• Component access by usual dot “.” notation with field parenthesis (6= table
prefix)

SELECT C.Name, (C.Address).City FROM Customer C;

34

MULTISET Type Constructor

• SQL:2003 MULTISET implements set/bag type constructor
• Can be combined with the ROW constructor
• Allows creation of nested tables (NF2)

CREATE TABLE Department (
Name VARCHAR(40),
Buildings INTEGER MULTISET,
Employees ROW(Firstname VARCHAR(30),

Lastname VARCHAR(30),
Office INTEGER) MULTISET);

35

MULTISET Type Constructor (cont’d)

Operations

• MULTISET constructor
• UNNEST implements µ
• COLLECT: special aggregate function to implement ⌫
• FUSION: special aggregate function to build union of aggregated multisets
• MULTISET UNION|INTERSECT|EXCEPT
• CARDINALITY for size
• SET eliminates duplicates
• ELEMENT converts singleton to a tuple (row) expression

36

MULTISET Type Constructor (cont’d)

Predicates

• MEMBER: x 2 E
• SUBMULTISET multiset containment: S ✓ E
• IS [NOT] A SET test whether there are duplicates or not

SELECT D.Name FROM Department D
WHERE CARDINALITY(D.Buildings) >= 2 AND

D.Employees IS A SET;

37

MULTISET Type Constructor (cont’d)

Insert and Update statements

INSERT INTO Department
VALUES('Computer Science',

MULTISET[29,30],
MULTISET(ROW(...)));

INSERT INTO Department
VALUES('Physics',

MULTISET[28],
MULTISET(SELECT ... FROM ...);

UPDATE Department
SET Buildings=Buildings MULTISET UNION MULTISET[17]
WHERE Name='Computer Science';

38

MULTISET Type Constructor (cont’d)

• Unnesting of a multiset

SELECT D.Name, Emp.LastName
FROM Department D,

UNNEST(D.Employees) Emp;

• Nesting using the COLLECT aggregation function

SELECT C.Title,
COLLECT(C.Keyword) AS Keywords,
COLLECT(C.Author) AS Authors

FROM Classbook C GROUP BY C.Title;

39

Design

On Flat Tables

Normal Forms that Matter

• 1NF
• 3NF
• BCNF
• 4NF

Other Normal Forms

• 2NF
• 5NF
• DKNF
• 6NF
• … 40

PNF Nested Relations

An important subclass of nested relations
Principle
The Partitioned Normal Form (PNF) requires a flat key on every nesting level

PNF relation:

A D

1
B C
2 7
3 6
4 5

2 B C
1 1

Non-PNF relation:

A D

1
B C
2 7
3 6

1
B C
4 5

2
B C
1 1

41

Partitioned Normal Form

Definition (PNF)
Let R(X ,Y) be a n-ary relation where X is the set of atomic attributes and Y is
the set of relation-valued attributes; R is in partitioned normal form (PNF) iff

1. X ! X ,Y (X is a super-key)
2. Recursively, 8r 2 Y and 8I(r) 2 ⇡r(R), I(r) is in PNF

• If X = ;, then ; �! Y must hold
• If Y = ;, then X �! X holds trivially
Thus a 1NF relation is in PNF

42

Properties of PNF

1. A flat (1NF) relation is always in PNF
2. PNF relations are closed under unnesting
3. Nesting and unnesting operations commute for PNF relations
4. Size of PNF relations remains polynomial!

Strong theoretical results and many practical applications

43

PNF as an Alternative to 4NF

PNF relation R and the “equivalent” unnested relation S

A E F

1
B C
2 3
4 2

D
1

2 1 1
4 1

2
3

3 1 1 2

µE(BC) �µF(D)
����������!

A B C D
1 2 3 1
1 4 2 1
2 1 1 2
2 4 1 2
2 1 1 3
2 4 1 3
3 1 1 2

• A ⇣ BC |D holds in S : S should be split to reach 4NF
• PNF compactly mimics 4NF (A is a superkey in R)

44

PNF and MVD’s and Scheme Tree

Preliminary statement
A scheme tree captures the logical structure of a nested relation schema and
explicitly represents the set of MVD’s

One more property of PNF relations
A nested relation R is in PNF iff the scheme of R follows a scheme tree with
respect to the given set of MVD’s

MVD’s by example

• Book db: {Title⇣ Author}
• Class db: Student, Major, Class, Exam, Project
{S ⇣ M ,SC ⇣ E ,SC ⇣ P}

45

Scheme—or Schema—Tree

A tool for nested relation design

Definition (Scheme Tree)
A scheme tree is a tree containing at least one node and whose nodes are
labelled with nonempty sets of attributes that form a disjoint partition of a set U
of atomic attributes

STUDENT

MAJOR CLASS

EXAM PROJECT

46

Design by MVD’s

Pattern
Ancestors-and-self⇣ Child-and-descendants
Example (cont’d)

• STUDENT⇣ MAJOR
• STUDENT⇣ CLASS EXAM PROJECT
• STUDENT CLASS⇣ EXAM
• STUDENT CLASS⇣ PROJECT

STUDENT

MAJOR CLASS

EXAM PROJECT
47

Nested Relation Schema

Definition (NRS)
A nested relation scheme (NRS) for a scheme tree T , denoted by T , is a sort
defined recursively by:

1. If T is empty, i.e. T is defined over an empty set of attributes, then T = ;;
2. If T is a leaf node X , then T = hXi;
3. If A is the root of T and T1, . . . ,Tn , n � 1, are the principal subtrees of T
then T = hA,B1 :{T1}, . . . ,Bn :{Tn}i

Example (cont’d)
hSTUDENT, Majors:{hMAJORi}, Classes:{hCLASS, Exams:{hEXAMi}, Projects:{hPROJECTi} i} i

48

The Initial Flat Class Table

STUDENT MAJOR CLASS EXAM PROJECT

Anna Math CS100 mid-year Proj A
Anna Math CS100 mid-year Proj B
Anna Math CS100 mid-year Proj C
Anna Math CS100 final Proj A
Anna Math CS100 final Proj B
Anna Math CS100 final Proj C
Anna Computing CS100 mid-year Proj A
Anna Computing CS100 mid-year Proj B
Anna Computing CS100 mid-year Proj C
Anna Computing CS100 final Proj A
Anna Computing CS100 final Proj B
Anna Computing CS100 final Proj C
Bill … … … …

Hint
NRS follows serialization of the schema tree:

(Student (Major) (Class (Exam) (Project)))
49

PNF from NRS From Schema Tree from MVD’s!

STUDENT Majors Classes

Anna
MAJOR
Math

Computing

CLASS Exams Projects

CS100
EXAM

mid-year
final

PROJECT
Proj A
Proj B
Proj C

Bill
MAJOR
Physics
Chemistry

CLASS Exams Projects

P100
EXAM
final

PROJECT
Pract Test 1
Pract Test 2

CH200
EXAM
test A
test B
test C

PROJECT
Exp 1
Exp 2
Exp 3

50

