Extending the Relational Model

Complex Values and Nested Relations

Guillaume Raschia — Nantes Université

Last update: October 17, 2023

1

4NF

A Very First Example

Class Book

title

set of authors

publisher

set of keywords

- Easy to model in any programming language
- Tricky in relational database!

Basic proposal

• Either we ignore the normalization...

Title	Author	Publisher	Keyword
FoD	S. Abiteboul	Addison-Wesley	Database
FoD	R. Hull	Addison-Wesley	Database
FoD	V. Vianu	Addison-Wesley	Database
FoD	S. Abiteboul	Addison-Wesley	Logic
FoD	R. Hull	Addison-Wesley	Logic
FoD	V. Vianu	Addison-Wesley	Logic
TCB	J.D. Ullman	Pearson	Database
:	:	:	:

- · Key: (Title, Author, Keyword)
- · Not in 2NF, given Title \longrightarrow Publisher

Intermediate State

· ...Or we go to 3NF, BCNF

Title	Publisher
FoD	Addison-Wesley
FoD	Addison-Wesl

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic

• But we still ignore the multivalued dependencies...

4

About MVD's and 4NF (cont'd)

MVD Properties in R(X, Y, Z)

$$X \to Y \Rightarrow X \to Z$$

$$X \to Y \Rightarrow X \twoheadrightarrow Y$$

•
$$X \rightarrow R - X$$
 always holds (trivial MVD)

Definition (4NF)

For every non trivial MVD $X \rightarrow Y$ in R, then X is a superkey

Losseless-join decomposition of R(X, Y, Z)

Decomposition (X, Y) and (X, Z) is losseless-join iff X woheadrightarrow Y holds in R

c

About MVD's and 4NF

• MVD: full constraint on relation¹

Definition (Multi-Valued Dependency)

Let R be a relation of schema $\{X,Y,Z\}$; X woheadrightarrow Y holds whenever (x,y,z) and (x,t,u) both belong to R, it implies that (x,y,u) and (x,t,z) should also be in R

Example:

- Department {Building} {Employee {Telephone}}
- $\cdot \ \mathsf{MVD's} = \{\mathsf{Department} \twoheadrightarrow \mathsf{Building}; \mathsf{Department}, \mathsf{Employee} \twoheadrightarrow \mathsf{Telephone}\}$

About MVD's and 4NF (cont'd)

Follow-on from the Department Example:

Department {Building} {Employee {Telephone}}

$$\boldsymbol{\cdot} \ (D \twoheadrightarrow B) \quad \Rightarrow \quad (D \twoheadrightarrow E, T)$$

$$\boldsymbol{\cdot} \ (D,E \twoheadrightarrow T) \quad \Rightarrow \quad (D,E \twoheadrightarrow B)$$

• Every trivial MVD holds, like $D, E \twoheadrightarrow B, T$

¹All the attributes are necessarily involved.

Back to the Class Book Introductory Example

Title	Publisher
FoD	Addison-Wesley

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic

List of—non trivial—MVD's:

- · Title --- Author
- Title → Keyword

0

Pros & Cons

- · 4NF design
 - requires many joins in queries (performance pitfall)
 - · and loses the big picture of class book entities
- 1NF relational view
 - eliminates the need for users/apps to perform deadly joins
 - but loses the one-to-one mapping between tuples and objects
 - · has a large amount of redundancy
 - · and could yield to insertion, deletion, update anomalies

The Ultimate Schema

· ...Or we go to 4NF

Title	Publisher
FoD	Addison-Wesley

Title	Author
FoD	S. Abiteboul
FoD	R. Hull
FoD	V. Vianu

Title	Keyword
FoD FoD	Database Logic

Contents

4NF

 NF^2

Nested Tables

Nested Queries

Design

11

NF^2

Beyond the Relational Model

- Theoretical extensions of the Relational Model (RM)
 - NF^2
 - · Nested Relations
- New Requirements
 - · Operations as extension to relational algebra
 - Normal form to provide consistency
- \cdot Today, part of SQL3 and commercial systems

3

Preamble

Alice: Complex values?

Riccardo: We could have used a different title: nested relations,

complex objects, structured objects...

Vittorio: ...N1NF, ¬1NF, NFNF, NF2, NF², V-relation...I have seen

all these names and others as well.

Sergio: In a nutshell, relations are nested within relations;

something like Matriochka relations.

Alice: Oh, yes. I love Matriochkas.

FoD: chap. 20, p. 508

The NF² Database Model

NF² = NFNF = Non First Normal Form

Principle

 $\ensuremath{\mathsf{NF}}^2$ relations permit $\ensuremath{\mathsf{complex}}$ values whenever we encounter atomic, i.e. indivisible, values

- · Breaks first normal form
- Allows more intuitive—let say *conceptual*—modeling for applications with complex data
- · Preserves mathematical foundations of the Relational Model

14

From Pointland...

Type—aka. sort—of a relation in 1NF

$$\tau := \langle A_1 : \text{dom}, \dots, A_k : \text{dom} \rangle$$

- A schema $R:\tau$ is a relation name R with $\operatorname{sort}(R)=\tau$
- A relation is a **set** of τ -tuples
- Sort constructors: **tuple** $\langle \cdot \rangle$ and—finite—**set** $\{ \cdot \}$
- Construction pattern of a relation: set(tuple(dom*))

15

Sorts and Complex Values as Finite Trees

Gentle Reminder

A relation is a—finite—set of complex values

7

...to Lineland²

In N1NF: much more combinations

$$\tau := \operatorname{dom} | \langle A_1 : \tau, \dots, A_k : \tau \rangle | \{\tau\}$$

Examples

Sort $ au$	Complex value
dom	a
$\{dom\}$	$\{a, b, c\}$
$\{\{dom\}\}$	${a, b, c}$ ${a, b, a, a, \{\}}$
$\langle A : \text{dom}, B : \text{dom} \rangle$	$\langle A:a,B:b\rangle$
$\{\langle A : \text{dom}, B : \text{dom} \rangle\}$	$\{\langle A:a,B:b\rangle,\langle A:a,B:b\rangle\}$
$\langle A : \{ \langle B : \text{dom} \rangle \} \rangle$	$\begin{cases} \langle A : a, B : b \rangle, \langle A : a, B : b \rangle \} \\ \langle A : \{ \langle B : b \rangle, \langle B : c \rangle \} \rangle \end{cases}$

²Flatland, a Romance of Many Dimensions. Edwin A. Abbott (1884).

Sorts and Complex Values as Finite Trees (cont'd)

Nested Tables

One Real-Life Example to Take Away

Type constructors alternate on every path from the root to the leaves

20

A Popular Restriction

Definition (Nested relation)

A nested relation is a ${\sf NF}^2$ relation where ${\sf set}$ and ${\sf tuple}$ constructors are required to alternate

The outermost constructor must be a tuple, as for the 1NF sort

Examples

$$\begin{array}{lll} \tau_1 = & \langle A,B,C\!:\!\{\langle D,E\!:\!\{\langle F,G\rangle\}\rangle\}\rangle & \text{Ok} \\ \tau_2 = & \langle A,B,C\!:\!\{\langle E\!:\!\{\langle F,G\rangle\}\rangle\}\rangle & \text{Ok} \\ \tau_3 = & \langle A,B,C\!:\!\{\langle D,E\!:\!\{\langle F,G\rangle\}\rangle\rangle & \text{No!} \\ \tau_4 = & \langle A,B,C\!:\!\{\langle F,G\rangle\}\}\rangle & \text{No!} \end{array}$$

Instance of a – Nested – Departments Table

Department	Employees								
		SSN I		Name		Telephones		Salary	
Computer Science		4711		Todd		Tel 038203-12230 0381-498-3401		6,000	
	5588		W	Whitman		Tel 0391-334677 0391-5592-3452		6,000	
		7754		Miller		Tel		550	
		8832		Kowalski		Tel		2,800	
		SS	SSN Name			Telephones S		alary	
Mathematics		683	34	Wheat		Tel 0345-56923	-	750	

About Nested Relations

Nested relations vs. N1NF-relations

Cosmetic restriction only!

Size of nested relations

 $\mathcal{O}(2^{2^{\dots^{2^{n}}}})$ with n being the size of the active domain of R and "the tower of 2" equals the depth of R (#nested levels)

Reminder: the size of a flat relation is polynomial

22

23

Operations on Nested Relations

R(A, B(C, D)) and S(A(C, D), B(C, D), E) and T(A, B(C, D))

The usual way

$$\sigma_{A=a}(R)$$
 and $\pi_A(R)$
$$R\bowtie_{R.A=S.E} S$$

$$R-T \quad \text{and} \quad R\cup T \quad \text{(on union-compliant relations)}$$

Straightforward – recursive – extensions

$$\begin{array}{lll} \sigma_{A(C,D)=B(C,D)}(S) & \sigma_{A(C,D)\subset B(C,D)}(S) & \sigma_{A\in B.C}(R) \\ \pi_{A.B.C}(R) & R\bowtie_{R.B\subset S.A} S \end{array}$$

2/1

Languages for the Nested Relations

Logic

Mainly extend the Relational Calculus to variables denoting sets

$$\{t. \mathsf{Dpt} \mid \mathsf{Dpts}(t) \ \land \ \forall X, u : (t. \mathsf{Emps} = X \land \\ u \in X \to u. \mathsf{Salary} < 5,000)\}$$

Flavor with queries as terms:

$$\{t.\mathsf{Dpt}\mid \mathsf{Dpts}(t) \ \land \ t.\mathsf{Emps} \subseteq \{u\mid u.\mathsf{Salary} \leq 5,000\}\}$$

Nested Relational Algebra

Selection-Projection-Join-Union-Negation

- $\cdot \cup -\pi \bowtie \text{nearly as in relational algebra}$
- \cdot σ and M: condition extended to support
 - · Relations as operands (instead of constants in dom)
 - Set operations like $\theta \in \{\in, \subseteq, \subset, \supset, \supseteq\}$
- · Recursively structured operation parameters, e.g.
 - π : nested projection attribute lists
 - + σ and $\mathbf{m} :$ predicates on nested relations

First real-world implementation: DREMEL (2010) by Google

A language of the NoSQL era, built upon the Protocol Buffer – Protobuf – format

Sergey Melnik et al. 2020. Dremel: a decade of interactive SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (August 2020), 3461–3472.

Nested Relational Algebra (cont'd)

Additional operations: Nest (ν) and Unnest (μ)

- $\cdot \nu_{A=(A_1,A_2,\ldots,A_n)}(R)$: create column A as a nesting from A_1,A_2,\ldots,A_n of R
- $\mu_{A(A_1,A_2,\dots,A_n)}(R)$: remove 1 level of nesting from the A column of R and then, promote nested columns (A_1,A_2,\dots,A_n) as regular outermost columns

A curiosity: The Powerset operator

$$\Omega(\mathtt{I}(R)) = \{\vartheta \mid \vartheta \subseteq \mathtt{I}(R)\}\$$

Powerset Ω extends algebra up to reachability (eq. Datalog)

26

About the Duality of Nest & Unnest

Unnesting is not generally reversible!

А	[)	_							
	В	С	_					Α	[)
1	2	7		Α	В	С			В	С
	3	6	_	1	2	7	-	1	2	7
1	В	С	$\xrightarrow{\mu_D(R)}$	1	3	6	$\xrightarrow{\nu_{D=(B,C)}(S)}$		3 4	6 5
1	4	5		1 2	4 1	5 1			=	_
		=	-					2	В	C
2	В	С							1	1
	1	1								

7

Nest & Unnest

				А	[)
A	В				В	С
1	2	7	$\xrightarrow{\nu_{D=(B,C)}(S)}$	1	2	7
1	3	6			3	6
1	4	5	$\mu_{D(B,C)}(R)$		4	5 ——
2	1	1	-(-,-)	2	В	С
				2	1	1

To Sum Up

- · Unnest is the **right inverse** of nest: $\mu_{A(\alpha)} \circ \nu_{A=\alpha} \equiv \operatorname{Id}$
- Unnest is not information preserving (one-to-one) and so has no right inverse

Nested Queries

Nesting in Queries (cont'd)

Result is actually stronger for query Q

Nested Query Theorem

Assume a d_1 -nested relation as input and a d_2 -nested relation as output; there is no need for intermediate results having depth greater than $\max(d_1, d_2)$

What for?

- · Can be used by query optimizers
- · No need to introduce intermediate nesting
- · Standard techniques for query evaluation

1

Nesting in Queries

Flat-Flat Theorem

Let Q be a nested relational algebra expression;

- Q takes a non-nested relation as input
- $\cdot \ \mathit{Q}$ produces a non-nested relation as output

Then, \it{Q} can be rewritten as a **regular relational algebra expression** (i.e., w/o nesting)

NF² Concepts in SQL3

- $\cdot\,$ SQL-99 introduced tuple type constructor ROW
- $\boldsymbol{\cdot}$ Only few changes to type system in SQL:2003
 - · Bag type constructor MULTISET
 - · XML data types
- Implementations in commercial DBMS most often do NOT comply with standard!

ROW Type Constructor

```
· ROW implements tuple type constructor
```

Example

```
CREATE ROW TYPE AddressType (

Street VARCHAR(30),
City VARCHAR(30),
Zip VARCHAR(10));

CREATE ROW TYPE CustomerType (
Name VARCHAR(40),
Address AdressType);

CREATE TABLE Customer OF TYPE CustomerType
( PRIMARY KEY Name );
```

MULTISET Type Constructor

- · SQL:2003 MULTISET implements set/bag type constructor
- · Can be combined with the ROW constructor
- Allows creation of nested tables (NF²)

```
CREATE TABLE Department (
Name VARCHAR(40),
Buildings INTEGER MULTISET,
Employees ROW( Firstname VARCHAR(30),
Lastname VARCHAR(30),
Office INTEGER ) MULTISET );
```

35

ROW Type Constructor (cont'd)

• Insertion of records requires call to **ROW constructor**

```
INSERT INTO Customer
VALUES('Doe', ROW('50 Otages', 'Nantes', '44000'));
```

- Component access by usual dot "." notation with field parenthesis (\neq table prefix)

```
SELECT C.Name, (C.Address).City FROM Customer C;
```

MULTISET Type Constructor (cont'd)

Operations

- MULTISET constructor
- UNNEST implements μ
- \cdot COLLECT: special aggregate function to implement u
- FUSION: special aggregate function to build union of aggregated multisets
- MULTISET UNION|INTERSECT|EXCEPT
- CARDINALITY for size
- SET eliminates duplicates
- ELEMENT converts singleton to a tuple (row) expression

34

MULTISET Type Constructor (cont'd)

Predicates

- MEMBER: $x \in E$
- SUBMULTISET multiset containment: $S \subseteq E$
- IS [NOT] A SET test whether there are duplicates or not

```
SELECT D.Name FROM Department D
WHERE CARDINALITY(D.Buildings) >= 2 AND
    D.Employees IS A SET;
```

37

MULTISET Type Constructor (cont'd)

· Unnesting of a multiset

```
FROM Department D,
UNNEST( D.Employees ) Emp;
```

· Nesting using the COLLECT aggregation function

```
SELECT C.Title,

COLLECT( C.Keyword ) AS Keywords,

COLLECT( C.Author) AS Authors

FROM Classbook C GROUP BY C.Title;
```

- -

MULTISET Type Constructor (cont'd)

Insert and **Update** statements

Design

On Flat Tables

Normal Forms that Matter

- 1NF
- 3NF
- BCNF
- 4NF

Other Normal Forms

- · 2NF
- 5NF
- DKNF
- · 6NF
- ...

Partitioned Normal Form

Definition (PNF)

Let R(X, Y) be a n-ary relation where X is the set of atomic attributes and Y is the set of relation-valued attributes; R is in partitioned normal form (PNF) iff

- 1. $X \rightarrow X$, Y (X is a super-key)
- 2. Recursively, $\forall r \in Y$ and $\forall \mathbf{I}(r) \in \pi_r(R)$, $\mathbf{I}(r)$ is in PNF
- If $X = \emptyset$, then $\emptyset \longrightarrow Y$ must hold
- If $Y = \emptyset$, then $X \longrightarrow X$ holds trivially

Thus a 1NF relation is in PNF

PNF Nested Relations

An important subclass of nested relations

Principle

The Partitioned Normal Form (PNF) requires a flat key on every nesting level

	A	[)
		В	С
PNF relation:	1	2 3 4	7 6 5
	2	В	С
		1	1

Properties of PNF

- 1. A flat (1NF) relation is always in PNF
- 2. PNF relations are **closed** under unnesting
- 3. Nesting and unnesting operations **commute** for PNF relations
- 4. Size of PNF relations remains polynomial!

Strong theoretical results and many practical applications

PNF as an Alternative to 4NF

PNF relation R and the "equivalent" unnested relation S

A E F 1 B C D 2 3 1 2 1 1 2 3 1 1 2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	Е	F
	1		D 1
3 1 1 2	2		2 3
	3	1 1	2

$$\xrightarrow{\mu_{E(BC)} \circ \mu_{F(D)}}$$

Α	В	С	D
1 1 2 2 2 2 3	2 4 1 4 1 4	3 2 1 1 1 1	1 1 2 2 3 3 2

- A woheadrightarrow BC|D holds in S: S should be split to reach 4NF
- PNF compactly mimics 4NF (A is a superkey in R)

44

Scheme—or Schema—Tree

A tool for nested relation design

Definition (Scheme Tree)

A scheme tree is a tree containing at least one node and whose nodes are labelled with nonempty sets of attributes that form a disjoint partition of a set $\it U$ of atomic attributes

46

PNF and MVD's and Scheme Tree

Preliminary statement

A **scheme tree** captures the logical structure of a nested relation schema and explicitly represents the **set of MVD's**

One more property of PNF relations

A nested relation R is in PNF iff the scheme of R follows a scheme tree with respect to the given set of MVD's

MVD's by example

- Book db: {Title → Author}
- · Class db: Student, Major, Class, Exam, Project $\{S \twoheadrightarrow M, SC \twoheadrightarrow E, SC \twoheadrightarrow P\}$

Design by MVD's

Pattern

Ancestors-and-self → Child-and-descendants

Example (cont'd)

- · STUDENT → MAJOR
- · STUDENT --> CLASS EXAM PROJECT
- · STUDENT CLASS → EXAM
- STUDENT CLASS → PROJECT

Nested Relation Schema

Definition (NRS)

A nested relation scheme (NRS) for a scheme tree T, denoted by \mathcal{T} , is a sort defined recursively by:

- 1. If T is empty, i.e. T is defined over an empty set of attributes, then $\mathcal{T} = \emptyset$;
- 2. If T is a leaf node X, then $\mathcal{T} = \langle X \rangle$;
- 3. If A is the root of T and $T_1, \ldots, T_n, n \ge 1$, are the principal subtrees of T then $T = \langle A, B_1 : \{T_1\}, \ldots, B_n : \{T_n\} \rangle$

Example (cont'd)

⟨STUDENT, Majors:{⟨MAJOR⟩}, Classes:{⟨CLASS, Exams:{⟨EXAM⟩}, Projects:{⟨PROJECT⟩}⟩}⟩

4.0

The Initial Flat Class Table

STUDENT	MAJOR CLASS EXAM		PROJECT	
Anna	Math	CS100	mid-year	Proj A
Anna	Math	CS100	mid-year	Proj B
Anna	Math	CS100	mid-year	Proj C
Anna	Math	CS100	final	Proj A
Anna	Math	CS100	final	Proj B
Anna	Math	CS100	final	Proj C
Anna	Computing	CS100	mid-year	Proj A
Anna	Computing	CS100	mid-year	Proj B
Anna	Computing	CS100	mid-year	Proj C
Anna	Computing	CS100	final	Proj A
Anna	Computing	CS100	final	Proj B
Anna	Computing	CS100	final	Proj C
Bill				

Hint

NRS follows **serialization** of the schema tree:

(Student (Major) (Class (Exam) (Project)))

/₁C

PNF from NRS From Schema Tree from MVD's!

STUDENT	Majors	Classes		
		CLASS	Exams	Projects
Anna Math Computing		CS100	EXAM mid-year final	PROJECT Proj A Proj B Proj C
Bill	MAJOR	CLASS	Exams	Projects
		P100	EXAM final	PROJECT Pract Test 1 Pract Test 2
	Physics Chemistry	CH200	EXAM test A test B test C	PROJECT Exp 1 Exp 2 Exp 3

.