Extending the Relational Model

Complex Values and Nested Relations

Guillaume Raschia — Nantes Université

Last update: October 12, 2025

.

A Very First Example

Class Book

title set of authors publisher set of keywords

- Easy to model in any programming language
- Tricky in relational database!

4NF

Basic proposal

• Either we ignore the normalization...

Title	Author	Publisher	Keyword
FoD	S. Abiteboul	Addison-Wesley	Database
FoD	R. Hull	Addison-Wesley	Database
FoD	V. Vianu	Addison-Wesley	Database
FoD	S. Abiteboul	Addison-Wesley	Logic
FoD	R. Hull	Addison-Wesley	Logic
FoD	V. Vianu	Addison-Wesley	Logic
TCB	J.D. Ullman	Pearson	Database
:	:	:	:

- · Key: (Title, Author, Keyword)
- · Not in 2NF, given Title \longrightarrow Publisher

3

Intermediate State

· ...Or we go up to 3NF, BCNF

Title	Publisher
FoD TCB	Addison-Wesley Pearson
÷	:

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic
TCB	J.D. Ullman	Database
:	:	:

• But we still ignore the multivalued dependencies...

4

About MVD's and 4NF

MVD: full constraint on relation¹

Definition (Multi-Valued Dependency)

Let R be a relation of schema $\{X, Y, Z\}$; X woheadrightarrow Y holds whenever (x, y, z) and (x, t, u) both belong to R, it implies that (x, y, u) and (x, t, z) should also be in R

Example:

- Department {Building} {Employee {Telephone}}
- · MVD's = {Department --> Building; Department, Employee --> Telephone}

5

About MVD's and 4NF (cont'd)

MVD Properties in R

- $\cdot X \twoheadrightarrow R X$ and $XY \twoheadrightarrow X$ always hold (trivial MVD)
- Complementation: $X \twoheadrightarrow Y \Rightarrow X \twoheadrightarrow R X Y$
- Augmentation: $X \rightarrow Y \Rightarrow XZT \rightarrow YZ$
- Transitivity: X woheadrightarrow Y and $Y woheadrightarrow Z \Rightarrow X woheadrightarrow Z Y$
- Replication: $X \to Y \Rightarrow X \twoheadrightarrow Y$

Definition (4NF)

For every non trivial MVD $X \rightarrow Y$ in R, then X is a superkey

Losseless-join decomposition of R(X, Y, Z)

Decomposition (X,Y) and (X,Z) is losseless-join iff $X \twoheadrightarrow Y$ holds in R

About MVD's and 4NF (cont'd)

Follow-on from the Department Example:

Department {Building} {Employee {Telephone}}

Known MVD's are $\{D \twoheadrightarrow B; DE \twoheadrightarrow T\}$

Derived MVD's

- $(D \twoheadrightarrow B) \Rightarrow (D \twoheadrightarrow ET)$, denoted $D \twoheadrightarrow B \mid ET$
- $\cdot (DE \twoheadrightarrow T) \Rightarrow (DE \twoheadrightarrow B)$
- Every trivial MVD holds, like DE woheadrightarrow D or DE woheadrightarrow BT

¹All the attributes are necessarily involved.

Back to the Class Book Introductory Example

Title	Publisher			
FoD TCB	Addison-Wesley Pearson			
:	:			

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic
TCB	J.D. Ullman	Database
:	:	:

Non trivial MVD's:

Title → Author | Keyword

9

The Ultimate Schema

· ...Or we go to 4NF

Title	Publisher
FoD TCB	Addison-Wesley Pearson
:	:

Title	Author
FoD	S. Abiteboul
FoD	R. Hull
FoD	V. Vianu
TCB	J.D. Ullman
:	:

Title	Keyword
FoD FoD TCB	Database Logic Database
:	:

9

Pros & Cons

- 4NF design
 - requires many joins in queries (performance pitfall)
 - · and loses the big picture of class book entities (many tuples in different tables)
- 1NF relational view
 - eliminates the need for users/apps to perform deadly joins
 - but loses the one-to-one mapping between tuples and objects (many tuples in one table)
 - · has a large amount of redundancy
 - · and could yield to insertion, deletion, update anomalies

Contents

 NF^2

Nested Tables: Model and Languages

Nested Queries: an SQL Extension

PNF Relations: Design, Properties and Algebra

11

NF^2

Preamble

Alice: Complex values?

Riccardo: We could have used a different title: nested relations,

complex objects, structured objects...

Vittorio: ...N1NF, ¬1NF, NFNF, NF2, NF², V-relation...I have seen

all these names and others as well.

Sergio: In a nutshell, relations are nested within relations;

something like Matriochka relations.

Alice: Oh, yes. I love Matriochkas.

FoD: chap. 20, p. 508

Beyond the Relational Model

- · Theoretical extensions of the Relational Model (RM)
 - NF^2
 - · Nested Relations
- New Requirements
 - · Operations as extension to relational algebra
 - · Normal form to provide consistency
- Today, part of SQL3 and commercial systems

The NF² Database Model

NF² = NFNF = Non First Normal Form

Principle

NF² relations permit **complex values** whenever we encounter atomic, i.e. indivisible, values

- · Breaks first normal form
- Allows more intuitive—let say *conceptual*—modeling for applications with complex data
- · Preserves mathematical foundations of the Relational Model

13

From Pointland...

Type—aka. sort—of a relation in 1NF

$$\tau := \langle A_1 : \text{dom}, \dots, A_k : \text{dom} \rangle$$

- A schema $R:\tau$ is a relation name R with $\operatorname{sort}(R)=\tau$
- A relation is a **set** of τ -tuples
- Sort constructors: tuple ⟨·⟩ and—finite—set {·}
- Construction pattern of a relation: set(tuple(dom*))

15

...to Lineland²

In N1NF: much more combinations

$$\tau := \operatorname{dom} | \langle A_1 : \tau, \dots, A_k : \tau \rangle | \{\tau\}$$

Examples

Sort $ au$	Complex value
dom	a
$\{dom\}$	$\{a, b, c\}$
$\{\{dom\}\}$	${a, b, c}$ ${a, b, {a}, {a}, {}$ $\langle A: a, B: b \rangle$
$\langle A : \text{dom}, B : \text{dom} \rangle$	$\langle A:a,B:b\rangle$
$\{\langle A : \text{dom}, B : \text{dom} \rangle\}$	$\{\langle A:a,B:b\rangle,\langle A:a,B:b\rangle\}$
$\langle A : \{ \langle B : \text{dom} \rangle \} \rangle$	$ \left\{ \langle A : a, B : b \rangle, \langle A : a, B : b \rangle \right\} $ $ \left\langle A : \left\{ \langle B : b \rangle, \langle B : c \rangle \right\} \right\rangle $

²Flatland, a Romance of Many Dimensions. Edwin A. Abbott (1884).

10

Sorts and Complex Values as Finite Trees

Gentle Reminder

A relation is a—finite—set of complex values

Sorts and Complex Values as Finite Trees (cont'd)

Nested Tables

A Popular Restriction

Definition (Nested relation)

A nested relation is a NF² relation where **set** and **tuple** constructors are required to alternate

The outermost constructor must be a tuple, as for the 1NF sort

Examples

$$\begin{array}{lll} \tau_1 = & \langle A,B,C\!:\!\{\langle D,E\!:\!\{\langle F,G\rangle\}\rangle\}\rangle & \text{Ok} \\ \tau_2 = & \langle A,B,C\!:\!\{\langle E\!:\!\{\langle F,G\rangle\}\rangle\}\rangle & \text{Ok} \\ \tau_3 = & \langle A,B,C\!:\!\langle D,E\!:\!\{\langle F,G\rangle\}\rangle\rangle & \text{No!} \\ \tau_4 = & \langle A,B,C\!:\!\{\langle F,G\rangle\}\}\rangle & \text{No!} \end{array}$$

19

One Real-Life Example to Take Away

Departments: $\langle Dpt, Emps: \{\langle SSN, Name, Tels: \{\langle Tel \rangle\}, Salary \rangle \} \rangle$

Type constructors alternate on every path from the root to the leaves

Instance of a-Nested-Departments Table

Department	Employees					
	SSI	SSN Name		Telephones	Salary	
				Tel	_	
	471	11	Todd	038203-12230 0381-498-3401	- 6,000 -	
Computer Science				Tel	_	
	558	38 W	'hitman	0391-334677 0391-5592-3452	6,000	
	775	54	Miller	Tel	550	
	883	32 K	owalski	Tel	2,800	
		SSN	Name	Telephones	Salary	
Mathematics	_	6834	Wheat	Tel 0345-56923	750	

About Nested Relations

Nested relations vs. N1NF-relations

Cosmetic restriction only!

Size of nested relations

 $\mathcal{O}(2^{2^{\dots^{2^{n}}}})$ with n being the size of the active domain of R and "the tower of 2" equals the depth of R (#nested levels)

Reminder: the size of a flat relation is polynomial

22

Languages for Nested Relations

Logic

Mainly extend the Relational Calculus to variables denoting sets

$$\{t.\mathsf{Dpt} \mid t \in \mathsf{Dpts} \land \forall X, u : (t.\mathsf{Emps} = X \land u \in X \to u.\mathsf{Salary} \le 5,000)\}$$

Flavor with queries as terms:

 $\{t.\mathsf{Dpt} \mid t \in \mathsf{Dpts} \land t.\mathsf{Emps} \subseteq \{u \mid u \in \mathsf{Dpts}.\mathsf{Emps} \land u.\mathsf{Salary} \le 5,000\}\}$

22

Operations on Nested Relations

$$R(A, B(C, D))$$
 and $S(A(C, D), B(C, D), E)$ and $T(A, B(C, D))$

The usual way

$$\sigma_{A=a}(R)$$
 and $\pi_A(R)$
$$R\bowtie_{R.A=S.E} S$$

$$R-T \text{ and } R\cup T \text{ (on union-compliant relations)}$$

Straightforward—recursive—extensions

$$\begin{array}{lll} \sigma_{A(C,D)=B(C,D)}(S) & \sigma_{A(C,D)\subset B(C,D)}(S) & \sigma_{A\in B}(R) \\ \pi_{B}(R) & S\bowtie_{S,B\subset T,B} T \end{array}$$

Nested Relational Algebra

Selection-Projection-Join-Union-Negation

- $\cdot \cup -\pi$ nearly as in relational algebra
- σ and \bowtie : condition extended to support
 - Relations as operands (instead of constants in $\mathop{\rm dom})$
 - Set operations like $\theta \in \{\in, \subseteq, \subset, \supset, \supseteq\}$
- · Recursively structured operation parameters, e.g.
 - π : nested projection attribute lists
 - σ and \bowtie : predicates on nested relations

Nested Relational Algebra (cont'd)

First real-world implementation: DREMEL (2010) by Google

Sergey Melnik et al. 2020. Dremel: a decade of interactive SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (August 2020), 3461–3472.

A language of the NoSQL era, built upon the Protocol Buffer - Protobuf - format

"Hierarchical schemas were a big departure from typical SQL schema design. Textbook normal forms would use many tables, and query-time joins. Avoiding joins was a key enabler for Dremel's scalable and fast execution. (Dremel initially had no join support, and was successful for years with only limited join support.) Denormalizing related data into one nested record was common in Google's datasets; hierarchical schemas made it unnecessary to flatten or duplicate any data, which would have increased storage and processing cost."

26

Nested Relational Algebra (cont'd)

Additional operations: Nest (ν) and Unnest (μ)

- $\cdot \nu_{A=(A_1,A_2,\dots,A_n)}(R)$: create column A as a nesting from A_1,A_2,\dots,A_n of R
- $\mu_{A(A_1,A_2,...,A_n)}(R)$: remove 1 level of nesting from the A column of R and then, promote nested columns $(A_1,A_2,...,A_n)$ as regular outermost columns

A curiosity: The Powerset operator

$$\Omega(\mathbf{I}(R)) = \{ \vartheta \mid \vartheta \subseteq \mathbf{I}(R) \}$$

Powerset Ω extends algebra up to reachability (eq. Datalog)

27

Nest & Unnest

				Α	[)
A	В	C			В	С
	2		$\xrightarrow{\nu_{D=(B,C)}(S)}$	1	2	7 6
1	3 4	6 5	$\mu_{D(B,C)}(R)$		4	5
2	1	1	, p(p,c),	2	В	С
				2	1	1

About the Duality of Nest & Unnest

Unnesting is not generally reversible!

А	[)	-							
	В	С	_					Α	[)
1	2	7		Α	В	С			В	С
	3	3 6	-	1	2	7	-	1	2	7
1	В	С	$\xrightarrow{\mu_D(R)}$	1	3	6 5	$\xrightarrow{\nu_{D=(B,C)}(S)}$		3 4	6 5
1	4	5		2	4 1	1			=	
	В						-	2	B 1	1
2	1	1								

To Sum Up

- Unnest is the **right inverse** of nest: $\mu_{A(\alpha)} \circ \nu_{A=\alpha} \equiv \operatorname{Id}$
- Unnest is **not information preserving** (one-to-one) and so has no right inverse

20

Nesting in Queries

Flat-Flat Theorem

Let Q be a nested relational algebra expression;

- Q takes a non-nested relation as input
- $\cdot \ \mathit{Q}$ produces a non-nested relation as output

Then, \it{Q} can be rewritten as a **regular relational algebra expression** (i.e., w/o nesting)

Nested Queries

Nesting in Queries (cont'd)

Result is actually stronger for query Q

Nested Query Theorem

Assume a d_1 -nested relation as input and a d_2 -nested relation as output; there is no need for intermediate results having depth greater than $\max(d_1, d_2)$

What for?

- Can be used by query optimizers
- · No need to introduce intermediate nesting
- · Standard techniques for query evaluation

31

NF² Concepts in SQL3

- · SQL-99 introduced tuple type constructor ROW
- · Only few changes to type system in SQL:2003
 - · Bag type constructor MULTISET
 - XML data types
- Implementations in commercial DBMS most often do NOT comply with standard!

33

ROW Type Constructor (cont'd)

• Insertion of records requires call to ROW constructor

```
INSERT INTO Customer
VALUES('Doe', ROW('50 Otages', 'Nantes', '44000'));
```

Component access by usual dot "." notation with field parenthesis (≠ table prefix)

```
SELECT C.Name, (C.Address).City FROM Customer C;
```

ROW Type Constructor

• ROW implements tuple type constructor

Example

```
CREATE ROW TYPE AddressType (

Street VARCHAR(30),
City VARCHAR(30),
Zip VARCHAR(10));

CREATE ROW TYPE CustomerType (
Name VARCHAR(40),
Address AdressType );

CREATE TABLE Customer OF TYPE CustomerType
( PRIMARY KEY Name );
```

- -

MULTISET Type Constructor

- · SQL:2003 MULTISET implements set/bag type constructor
- · Can be combined with the **ROW** constructor
- · Allows creation of nested tables (NF²)

```
CREATE TABLE Department (

Name VARCHAR(40),

Buildings INTEGER MULTISET,

Employees ROW( Firstname VARCHAR(30),

Lastname VARCHAR(30),

Office INTEGER ) MULTISET );
```

.

MULTISET Type Constructor (cont'd)

Operations

- MULTISET constructor
- UNNEST implements μ
- COLLECT: special aggregate function to implement ν
- FUSION: special aggregate function to build union of aggregated multisets
- MULTISET UNION|INTERSECT|EXCEPT
- CARDINALITY for size
- SET eliminates duplicates
- ELEMENT converts singleton to a tuple (row) expression

MULTISET Type Constructor (cont'd)

Predicates

- MEMBER: $x \in E$
- SUBMULTISET multiset containment: $S \subseteq E$
- IS [NOT] A SET test whether there are duplicates or not

38

MULTISET Type Constructor (cont'd)

Insert and **Update** statements

MULTISET Type Constructor (cont'd)

Unnesting of a multiset

```
SELECT D.Name, Emp.LastName
FROM Department D,
UNNEST( D.Employees ) Emp;
```

• Nesting using the COLLECT aggregation function

PNF Relations

Design of Flat Tables

Normal Forms that Matter

- 1NF
- · 3NF
- BCNF (Boyce-Codd NF)
- · 4NF

Other Normal Forms

- 2NF
- 5NF or PJNF (Projet-Join NF)
- DKNF (Domain-Key NF)
- · 6NF, for Temporal Data

PNF Nested Relations

An important subclass of nested relations

Principle

The Partitioned Normal Form (PNF) requires a flat key on every nesting level

PNF	relation:	
PNF	relation:	

Α	[)	
	В	С	
1	2 3 4	7 6 5	
2	В	C	
2	1	1	

Non-PNF relation:

Partitioned Normal Form

Definition (PNF)

Let R(X, Y) be a n-ary relation where X is the set of atomic attributes and Y is the set of relation-valued attributes; R is in partitioned normal form (PNF) iff

- 1. $X \rightarrow X$, Y (X is a super-key)
- 2. Recursively, $\forall r \in Y \text{ and } \forall \mathbf{I}(r) \in \pi_r(R), \mathbf{I}(r) \text{ is in PNF}$
- If $X = \emptyset$, then $\emptyset \longrightarrow Y$ must hold
- If $Y = \emptyset$, then $X \longrightarrow X$ holds trivially

Thus a 1NF relation is in PNF

Properties of PNF

- 1. A flat (1NF) relation is always in PNF
- 2. PNF relations are **closed** under unnesting
- 3. Nesting and unnesting operations commute for PNF relations
- 4. Size of PNF relations remains polynomial!

Strong theoretical results and many practical applications

44

PNF as an Alternative to 4NF

PNF relation R and the "equivalent" unnested relation S

Α	Е	F
1	B C 2 3 4 2	D 1
2	1 1 4 1	2 3
3	1 1	2

 $\xrightarrow{\mu_{E(BC)} \circ \mu_{F(D)}}$

Α	В	С	D
1 1 2 2 2 2 2 3	2 4 1 4 1 4	3 2 1 1 1 1	1 1 2 2 3 3 2

- \cdot $A woheadrightarrow BC \mid D$ holds in S: S should be split to reach 4NF
- PNF compactly mimics 4NF (A is a superkey in R)

45

PNF and MVD's and Scheme Tree

Preliminary statement

A **scheme tree** captures the logical structure of a nested relation schema and explicitly represents the **set of MVD's**

One more property of PNF relations

A nested relation R is in PNF iff the scheme of R follows a scheme tree with respect to the given set of MVD's

MVD's by example

- Book db: {Title --> Author | Keyword }
- Class db: Student, Major, Class, Exam, Project $\{S \twoheadrightarrow M, SC \twoheadrightarrow E, SC \twoheadrightarrow P\}$

Scheme-or Schema-Tree

A tool for nested relation design

Definition (Scheme Tree)

A scheme tree is a tree containing at least one node and whose nodes are labelled with nonempty sets of attributes that form a disjoint partition of a set $\it U$ of atomic attributes

Design by MVD's

Pattern

Ancestors-and-self → Child-and-descendants

Example (cont'd)

- STUDENT → MAIOR
- · STUDENT -- CLASS EXAM PROJECT
- STUDENT CLASS → EXAM
- · STUDENT CLASS --> PROJECT

Nested Relation Schema

Definition (NRS)

A nested relation scheme (NRS) for a scheme tree T, denoted by \mathcal{T} , is a sort defined recursively by:

- 1. If T is empty, i.e. T is defined over an empty set of attributes, then $\mathcal{T} = \emptyset$;
- 2. If T is a leaf node X, then $\mathcal{T} = \langle X \rangle$;
- 3. If A is the root of T and $T_1, \ldots, T_n, n \ge 1$, are the principal subtrees of T then $\mathcal{T} = \langle A, B_1 : \{\mathcal{T}_1\}, \ldots, B_n : \{\mathcal{T}_n\} \rangle$

Example (cont'd)

 $\label{eq:class} $$\langle STUDENT, Majors: {\langle MAJOR \rangle \}, Classes: {\langle CLASS, Exams: {\langle EXAM \rangle \}, Projects: {\langle PROJECT \rangle } \ } $$} $$$

, ,

The Initial Flat Class Table

STUDENT	MAJOR	CLASS	EXAM	PROJECT
Anna	Math	CS100	mid-year	Proj A
Anna	Math	CS100	mid-year	Proj B
Anna	Math	CS100	mid-year	Proj C
Anna	Math	CS100	final	Proj A
Anna	Math	CS100	final	Proj B
Anna	Math	CS100	final	Proj C
Anna	Computing	CS100	mid-year	Proj A
Anna	Computing	CS100	mid-year	Proj B
Anna	Computing	CS100	mid-year	Proj C
Anna	Computing	CS100	final	Proj A
Anna	Computing	CS100	final	Proj B
Anna	Computing	CS100	final	Proj C
Bill				

Hint

NRS follows **serialization** of the schema tree:

(Student (Major) (Class (Exam) (Project)))

PNF from NRS From Schema Tree from MVD's!

Maiors

STUDENT

01002111	1110,010			
		CLASS	Exams	Projects
Anna	MAJOR Math Computing	CS100	EXAM mid-year final	PROJECT Proj A Proj B Proj C
		CLASS	Exams	Projects
Bill	MAJOR	P100	EXAM final	PROJECT Pract Test 1 Pract Test 2
Ditt	· · · · · · · · · · · · · · · · · · ·	CH200	EXAM test A test B test C	PROJECT Exp 1 Exp 2 Exp 3

Classes

Extended RA on PNF Relations (Roth et al., TODS 1988)

A	X		
	В		Y
		C	D
a_1	$\overline{b_1}$	c_1	d_1
		c_1	d_2
	b_2	c_1	d_1
		c_2	d_2
a_2	b_1	c_1	d_1
	ſ	c_2	d_3
		c ₃	d_1
	b ₃	c2	d_2
<i>a</i> ₃	b4	c1	d_2

r_1 (Je r ₂				
A		X			
- ($\Box B$	7	Y		
	j	C	D		
a	b ₁	c_1	d_1		
- }	1	c_1	d_2		
- }	L	c ₃	d_2		
ł	62	c_1	d_1		
ŀ		c_2	d_2		
L	b ₃	C4	d_4		
a	b_1	c_1	d_1		
- 1	1	c_2	d_3		
Į.		c ₃	d_1		
	b ₃		d_2		
a			d_2		
a.	4 62	c_1	d_2		
Ĺ	[c_1	d_3		

Α) X			
	B		Y	
	}	C	D	
a ₁	b_1	c_1	d_1	
a2	b ₃	c_2	d_2	

$r_1 - \epsilon$	r_2		
A	X		
(В		Y
		C	D
a_1	b_1	c_1	d_2
]	b_2	c_1	d_1
L		c_2	d_2
a ₂	b_1	c_1	$\overline{d_1}$
Ì	1	c_2	d_3
	Ĺ	c_3	d_1
a ₃	b ₄	c_1	d_2

52

Extended RA on PNF Relations (cont'd)

A	B		X
		C	D
a_1	b_1	c_1	d_1
ł	ł	c_2	d_2
		c_1	d_3
a_2	b_1	<i>c</i> ₃	d_1
		c ₂	d_2
		c_1	d_1
a_2	b_2	c_1	d_2
	L	c ₃	d_2

\boldsymbol{A}	E	В	X	
	1	İ	C	D
a_1	e_1	b ₁	c_1	d_1
		L	c_1	d ₃
a_2	e_1	b ₁	c1	d_1
a_2	e4	b_1	c ₃	d_1
a2	e ₃	b_2	<i>c</i> ₃	d_2

$\pi^e_{A,X} (s_1 \bowtie^e s_2)$					
A	X				
L	C	D			
a_1	c_1	d_1			
	c_1	d_3			
a_2	c ₁	d_1			
	cз	\overline{d}_1			
	<i>c</i> ₃	d_2			

s_2			
E	B	X	
		C	D
e_1	b_1	c_1	d_1
1		c_1	d_3
L		c_3	d_4
e_3	b_2	c_3	d_2
e4	b ₁	c_3	d_1
		C4	d_2

$\pi^e_{E,B,X} (s_1 \bowtie^e s_2)$					
E	B	X			
		C	D		
e_1	<i>b</i> ₁	c1	d_1		
		c_1	d_3		
e_4	b_1	c ₃	d_1		
e_3	b_2	c ₃	d_2		

Mark A. Roth, Herry F. Korth, and Abraham Silberschatz. 1988. Extended algebra and calculus for nested relational databases. ACM Trans. Database Syst. 13, 4 (Dec. 1988), 389–417. https://doi.org/10.1145/49346.49347