$\left.\begin{array}{|l|l|}\hline \text { Extending the Relational Model } \\ \text { Complex Values and Nested Relations } \\ \text { Guillaume Raschia - Nantes Université } \\ \text { Lastupate: october } 1,2023\end{array}\right]$

A Very First Example

Class Book
title
set of authors
publisher
set of keywords

- Easy to model in any programming language
- Tricky in relational database!

Basic proposal

- Either we ignore the normalization.

Title	Author	Publisher	Keyword
FoD	S. Abiteboul	Addison-Wesley	Database
FoD	R. Hull	Addison-Wesley	Database
FoD	V. Vianu	Addison-Wesley	Database
FoD	S. Abiteboul	Addison-Wesley	Logic
FoD	R. Hull	Addison-Wesley	Logic
FoD	V. Vianu	Addison-Wesley	Logic
TCB	J.D. Ullman	Pearson	Database
\vdots	\vdots	\vdots	\vdots

- Key: (Title, Author, Keyword)
- Not in 2NF, given Title \longrightarrow Publisher
- ...Or we go to 3NF, BCNF

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic

- But we still ignore the multivalued dependencies..

About MVD's and 4NF (cont'd)

MVD Properties in $R(X, Y, Z)$

- $X \rightarrow Y \Rightarrow X \rightarrow Z$
- $X \rightarrow Y \Rightarrow X \rightarrow Y$
- $X \rightarrow R-X$ always holds (trivial MVD)

Definition (4NF)

For every non trivial MVD $X \rightarrow Y$ in R, then X is a superkey
Losseless-join decomposition of $R(X, Y, Z)$
Decomposition (X, Y) and (X, Z) is losseless-join iff $X \rightarrow Y$ holds in R

- MVD: full constraint on relation ${ }^{1}$

Definition (Multi-Valued Dependency)

Let R be a relation of schema $\{X, Y, Z\} ; X \rightarrow Y$ holds whenever (x, y, z) and (x, t, u) both belong to R, it implies that (x, y, u) and (x, t, z) should also be in R Example:

- Department \{Building\} \{Employee \{Telephone\}\}
- MVD's $=$ \{Department \rightarrow Building; Department, Employee \rightarrow Telephone $\}$

[^0]
About MVD's and 4NF (cont'd)

Follow-on from the Department Example:
Department \{Building\} \{Employee $\{$ Telephone $\}$ \}
$\cdot(D \rightarrow B) \quad \Rightarrow \quad(D \rightarrow E, T)$
$\cdot(D, E \rightarrow T) \quad \Rightarrow \quad(D, E \rightarrow B)$

- Every trivial MVD holds, like $D, E \rightarrow B, T$

Back to the Class Book Introductory Example

Title	Author	Keyword
FoD	S. Abiteboul	Database
FoD	R. Hull	Database
FoD	V. Vianu	Database
FoD	S. Abiteboul	Logic
FoD	R. Hull	Logic
FoD	V. Vianu	Logic

List of-non trivial-MVD's:

- Title \rightarrow Author
- Title \rightarrow Keyword

The Ultimate Schema

Pros \& Cons

- 4NF design

requires many joins in queries (performance pitfall)

- and loses the big picture of class book entities
- 1NF relational view
- eliminates the need for users/apps to perform deadly joins
- but loses the one-to-one mapping between tuples and objects
has a large amount of redundancy
- and could yield to insertion, deletion, update anomalies

Contents

4NF
N^{2}

Nested Tables

Nested Queries

Design

Beyond the Relational Model

- Theoretical extensions of the Relational Model (RM)
- NF^{2}
- Nested Relations
- New Requirements
- Operations as extension to relational algebra
- Normal form to provide consistency
- Today, part of SQL3 and commercial systems

The N^{2} ² Database Model

$N F^{2}=$ NFNF $=$ Non First Normal Form
Principle
$N F^{2}$ relations permit complex values whenever we encounter atomic, i.e.
indivisible, values

- Breaks first normal form
- Allows more intuitive-let say conceptual-modeling for applications with complex data
- Preserves mathematical foundations of the Relational Model

From Pointland...

Type-aka. sort-of a relation in 1NF

$$
\tau:=\left\langle A_{1}: \operatorname{dom}, \ldots, A_{k}: \text { dom }\right\rangle
$$

- A schema $R: \tau$ is a relation name R with $\operatorname{sort}(R)=\tau$
- A relation is a set of τ-tuples
- Sort constructors: tuple $\langle\cdot\rangle$ and-finite-set $\{\cdot\}$
- Construction pattern of a relation: set(tuple(dom*))

Sorts and Complex Values as Finite Trees

Gentle Reminder
A relation is a-finite-set of complex values

Sorts and Complex Values as Finite Trees (cont'd)

Nested Tables

A Popular Restriction

Definition (Nested relation)
A nested relation is a NF^{2} relation where set and tuple constructors are required to alternate

The outermost constructor must be a tuple, as for the 1NF sort Examples

$$
\begin{array}{rlrl}
\tau_{1} & =\langle A, B, C:\{\langle D, E:\{\langle F, G\rangle\}\rangle\}\rangle & \text { Ok } \\
\tau_{2} & =\langle A, B, C:\{\langle E:\{\langle F, G\rangle\}\rangle\}\rangle & & \text { Ok } \\
\tau_{3} & =\langle A, B, C:\langle D, E:\{\langle F, G\rangle\}\rangle\rangle & & \text { No! } \\
\tau_{4} & =\langle A, B, C:\{\{\langle F, G\rangle\}\}\rangle & \text { No! }
\end{array}
$$

Instance of a - Nested - Departments Table

Department	Employees			
Computer Science	SSN	Name	Telephones	Salary
	4711	Todd	Tel	6,000
			038203-12230	
			0381-498-3401	
	5588	Whitman	Tel	6,000
			0391-334677	
			0391-5592-3452	
	7754	Miller	Tel	550
	8832	Kowalski	Tel	2,800
Mathematics	SSN	Name	Telephones	ara
	6834	Wheat	Tel	750
			0345-56923	

Nested relations vs. N1NF-relations

Cosmetic restriction only!
Size of nested relations
$\mathcal{O}\left(2^{2 .^{2^{n}}}\right)$ with n being the size of the active domain of R and "the tower of $2^{\prime \prime}$ equals the depth of R (\#nested levels)

Reminder: the size of a flat relation is polynomial

Languages for the Nested Relations

Logic

Mainly extend the Relational Calculus to variables denoting sets

$$
\begin{aligned}
& \{t . \operatorname{Dpt} \mid \operatorname{Dpts}(t) \wedge \forall X, u:(t . \text { Emps }=X \wedge \\
& \quad u \in X \rightarrow u . \text { Salary } \leq 5,000)\}
\end{aligned}
$$

Flavor with queries as terms:

$$
\{t . \text { Dpt } \mid \operatorname{Dpts}(t) \wedge t . \mathrm{Emps} \subseteq\{u \mid u . \text { Salary } \leq 5,000\}\}
$$

Operations on Nested Relations

$R(A, B(C, D))$ and $S(A(C, D), B(C, D), E)$ and $T(A, B(C, D))$
The usual way

$$
\begin{aligned}
& \sigma_{A=a}(R) \quad \text { and } \quad \pi_{A}(R) \\
& R \bowtie_{R . A=S . E} S \\
& R-T \quad \text { and } \quad R \cup T \quad \text { (on union-compliant relations) }
\end{aligned}
$$

Straightforward - recursive - extensions

$$
\begin{array}{lll}
\sigma_{A(C, D)=B(C, D)}(S) & \sigma_{A(C, D) \subset B(C, D)}(S) & \sigma_{A \in B . C}(R) \\
\pi_{A, B . C}(R) & R \bowtie_{R . B \subseteq S . A} S
\end{array}
$$

Nested Relational Algebra

Selection-Projection-Join-Union-Negation

- $\cup-\pi \bowtie$ nearly as in relational algebra
- σ and \bowtie : condition extended to support
- Relations as operands (instead of constants in dom)
- Set operations like $\theta \in\{\in, \subseteq, \subset, \supset, \supseteq\}$
- Recursively structured operation parameters, e.g.
- π : nested projection attribute lists
- σ and \bowtie : predicates on nested relations

First real-world implementation: DREMEL (2010) by Google
A language of the NoSQL era, built upon the Protocol Buffer - Protobuf - format
Sergey Melnik et al. 2020. Dremel: a decade of interactive SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (August 2020), 3461-3472.

Nested Relational Algebra (cont'd)

Additional operations: Nest (ν) and Unnest (μ)

- $\nu_{A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(R)$: create column A as a nesting from $A_{1}, A_{2}, \ldots, A_{n}$ of R
- $\mu_{A\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(R)$: remove 1 level of nesting from the A column of R and then, promote nested columns ($A_{1}, A_{2}, \ldots, A_{n}$) as regular outermost columns

A curiosity: The Powerset operator

$$
\Omega(\mathrm{I}(R))=\{\vartheta \mid \vartheta \subseteq \mathrm{I}(R)\}
$$

Powerset Ω extends algebra up to reachability (eq. Datalog)

- Unnest is the right inverse of nest: $\mu_{A(\alpha)} \circ \nu_{A=\alpha} \equiv \mathrm{Id}$
- Unnest is not information preserving (one-to-one) and so has no right inverse

Nesting in Queries (cont'd)

Result is actually stronger for query Q

Nested Query Theorem

Assume a d_{1}-nested relation as input and a d_{2}-nested relation as output; there is
no need for intermediate results having depth greater than $\max \left(d_{1}, d_{2}\right)$

What for?

- Can be used by query optimizers
- No need to introduce intermediate nesting
- Standard techniques for query evaluation

Flat-Flat Theorem

Let Q be a nested relational algebra expression;

- Q takes a non-nested relation as input
- Q produces a non-nested relation as output

Then, Q can be rewritten as a regular relational algebra expression (i.e., w/o nesting)

- SQL-99 introduced tuple type constructor ROW
- Only few changes to type system in SQL:2003
- Bag type constructor MULTISET
- XML data types
- Implementations in commercial DBMS most often do NOT comply with standard!

ROW Type Constructor

- ROW implements tuple type constructor

Example

	Street	VARCHAR(30),
	City	$\operatorname{VARCHAR}(30)$,
	Zip	$\operatorname{Varchar}(10)$);
CREATE ROW TYPE CustomerType	(
	Name	$\operatorname{Varchar(40),}$
	Address	AdressType);

CREATE TABLE Customer OF TYPE CustomerType
(PRIMARY KEY Name);

ROW Type Constructor (cont'd)

- Insertion of records requires call to ROW constructor

```
INSERT INTO Customer
VALUES('Doe', ROW('50 Otages','Nantes','44000'));
```

- Component access by usual dot "." notation with field parenthesis (\neq table prefix)

SELECT C.Name, (C.Address).City FROM Customer C;

MULTISET Type Constructor

- SQL:2003 MULTISET implements set/bag type constructor
- Can be combined with the ROW constructor
- Allows creation of nested tables $\left(\mathrm{NF}^{2}\right)$

```
CREATE TABLE Department 
    Name VARCHAR(40),
    Buildings INTEGER MULTISET,
    Employees ROW( Firstname VARCHAR(30)
        Lastname VARCHAR(30),
        Office INTEGER ) MULTISET );
```


MULTISET Type Constructor (cont'd)

Operations

- MULTISET constructor
- UNNEST implements μ
- COLLECT: special aggregate function to implement ν
- FUSION: special aggregate function to build union of aggregated multisets
- MULTISET UNION|INTERSECT|EXCEPT
. CARDINALITY for size
- SET eliminates duplicates
- ELEMENT converts singleton to a tuple (row) expression

MULTISET Type Constructor (cont'd)

Predicates

- MEMBER: $x \in E$
- SUBMULTISET multiset containment: $S \subseteq E$
- IS [NOT] A SET test whether there are duplicates or not

SELECT D.Name FROM Department D

WHERE CARDINALITY(D.Buildings) >= 2 AND
D.Employees IS A SET;

MULTISET Type Constructor (cont'd)

Insert and Update statements

INSERT INTO Department
VALUES('Computer Science', MULTISET[29,30],
MULTISET(ROW(...)));
INSERT INTO Department
VALUES('Physics',
MULTISET[28],
MULTISET(SELECT ... FROM ...);
UPDATE Department
SET Buildings=Buildings MULTISET UNION MULTISET[17]
WHERE Name='Computer Science';

MULTISET Type Constructor (cont'd)

- Unnesting of a multiset

SELECT D.Name, Emp.LastName
FROM Department D,
UNNEST(D.Employees) Emp;

- Nesting using the COLLECT aggregation function

SELECT C.Title,
COLLECT(C.Keyword) AS Keywords,
COLLECT(C.Author) AS Authors
FROM Classbook C GROUP BY C.Title;

On Flat Tables

Normal Forms that Matter

- 1NF
- 3NF
- BCNF
-4NF

Other Normal Forms

- 2NF
-5NF
- DKNF
-6NF
-...

PNF Nested Relations
An important subclass of nested relations
Principle
The Partitioned Normal Form (PNF) requires a flat key on every nesting level

PNF relation:

Non-PNF relation:

Partitioned Normal Form

Definition (PNF)

Let $R(X, Y)$ be a n-ary relation where X is the set of atomic attributes and Y is the set of relation-valued attributes; R is in partitioned normal form (PNF) iff

1. $X \rightarrow X, Y$ (X is a super-key)
2. Recursively, $\forall r \in Y$ and $\forall \mathrm{I}(r) \in \pi_{r}(R), \mathrm{I}(r)$ is in PNF

- If $X=\emptyset$, then $\emptyset \longrightarrow Y$ must hold
- If $Y=\emptyset$, then $X \longrightarrow X$ holds trivially

Thus a 1 NF relation is in PNF

Properties of PNF

1. A flat (1NF) relation is always in PNF
2. PNF relations are closed under unnesting
3. Nesting and unnesting operations commute for PNF relations
4. Size of PNF relations remains polynomial!

Strong theoretical results and many practical applications

PNF as an Alternative to 4NF

PNF relation R and the "equivalent" unnested relation S

- $A \rightarrow B C \mid D$ holds in $S: S$ should be split to reach 4NF
- PNF compactly mimics 4NF (A is a superkey in R)

PNF and MVD's and Scheme Tree

Preliminary statement
A scheme tree captures the logical structure of a nested relation schema and explicitly represents the set of MVD's

One more property of PNF relations

A nested relation R is in PNF iff the scheme of R follows a scheme tree with respect to the given set of MVD's

MVD's by example

- Book db: $\{$ Title \rightarrow Author $\}$
- Class db: Student, Major, Class, Exam, Project

$$
\{S \rightarrow M, S C \rightarrow E, S C \rightarrow P\}
$$

Scheme-or Schema-Tree

A tool for nested relation design

Definition (Scheme Tree)

A scheme tree is a tree containing at least one node and whose nodes are labelled with nonempty sets of attributes that form a disjoint partition of a set U of atomic attributes

Design by MVD's

Pattern
Ancestors-and-self \rightarrow Child-and-descendants
Example (cont'd)

- STUDENT \rightarrow MAJOR
- STUDENT \rightarrow CLASS EXAM PROJECT
- STUDENT CLASS \rightarrow EXAM
- STUDENT CLASS \rightarrow PROJECT

Nested Relation Schema

Definition（NRS）

A nested relation scheme（NRS）for a scheme tree T ，denoted by \mathcal{T} ，is a sort defined recursively by：

1．If T is empty，i．e．T is defined over an empty set of attributes，then $\mathcal{T}=\emptyset$ ；
2．If T is a leaf node X ，then $\mathcal{T}=\langle X\rangle$ ；
3．If A is the root of T and $T_{1}, \ldots, T_{n}, n \geq 1$ ，are the principal subtrees of T then $\mathcal{T}=\left\langle A, B_{1}:\left\{\mathcal{T}_{1}\right\}, \ldots, B_{n}:\left\{\mathcal{T}_{n}\right\}\right\rangle$

Example（cont＇d）
〈STUDENT，Majors：\｛\｛MAJOR〉\}, Classes:\{〈CLASS, Exams:\{〈EXAM〉\}, Projects:\{〈PROJECT〉\} 〉\} >

The Initial Flat Class Table

STUDENT	MAJOR	CLASS	EXAM	PROJECT
Anna	Math	CS100	mid－year	Proj A
Anna	Math	CS100	mid－－year	Proj B
Anna	Math	CS100	mid－year	Proj C
Anna	Math	CS100	final	Proj A
Anna	Math	CS100	final	Proj B
Anna	Math	CS100	final	Proj C
Anna	Computing	CS100	mid－year	Proj A
Anna	Computing	CS100	mid－year	Proj B
Anna	Comptuting	CS100	mid－－year	Proj C
Anna	Computing	CS100	final	Proj A
Anna	Computing	CS100	final	Proj B
Anna	Computing	CS100	final	Proj C
Bill	\ldots	\ldots	\ldots	\ldots

Hint
NRS follows serialization of the schema tree：
（Student（Major）（Class（Exam）（Project）））

[^0]: ${ }^{1}$ All the attributes are necessarily involved

