
Graph Databases

Guillaume Raschia — Nantes Université
Last update: October 17, 2023

[Source: R. Angles and C. Gutierrez. An introduction to Graph Data Management. In Graph Databases. pp 1-32, Springer (2018)]

1

Contents

Graph DB Landscape

Graph Data Models

Graph Queries

2

Graph DB Landscape

“Old School” Graph Database Style

Model

A graph G(V ,E) is a binary relation R(src,dst)
src dst
1 2
1 3
3 1

Queries

• Relational Algebra (procedural language): {�,⇡,on, ⇢,[,�}

• 3-hops: R on
dst1=src2

R on
dst2=src3

R

Limitations

• Join on is the key operator: costly!
• Reachability:

S
k R on1 R on2 . . . onk R: Recursion and fixpoint

3



Graph DB

4

Graph DB (cont’d)

5

Graph Data Models

Requirements for Graph Databases

The 3D graph data model [Angles et al., ACM CS 2008]

1. Data structure
• data and schema as (distinct) graphs
• standard abstractions: is-a, is-part-of, is-associated-to

2. Update and query language
• graph transformations
• primitives on paths, neighborhoods, subgraphs, graph patterns, connectivity
and graph statistics (diameter, centrality, etc.)

• multi-relational graph algorithms
3. Integrity constraints

• schema-instance consistency, identity, referential integrity

6



Requirements for Graph Databases (cont’d)

Definition (Graph database (tentative of))
Any storage system that provides index-free adjacency

• Each vertex has direct references to its adjacent vertices
• act as a mini-index

• O(1) to move from a vertex to its neighbors
• O(log n) b.t.w. of an index in non-graph db’s

7

Graph DB and NoSQL

Very large graphs such like TAO Social Graph at Facebook: 5 Billions+ nodes!

Bronson et al. (2013). TAO: Facebook’s Distributed Data Store for the Social Graph. USENIX ATC.

Audrey Cheng et al. (2021). RAMP-TAO: Layering Atomic Transactions on
Facebook’s Online TAO Data Store. PVLDB 14(12): 3014-3027.

Abstract: Facebook’s graph store TAO, like many other distributed data stores, traditionally prioritizes availability, efficiency, and scalability
over strong consistency or isolation guarantees to serve its large, read-dominant workloads. As product developers build diverse applications
on top of this system, they increasingly seek transactional semantics. However, providing advanced features for select applications while
preserving the system’s overall reliability and performance is a continual challenge. In this paper, we first characterize developer desires for
transactions that have emerged over the years and describe the current failure-atomic (i.e., write) transactions offered by TAO. We then explore
how to introduce an intuitive read transaction API. We highlight the need for atomic visibility guarantees in this API with a measurement
study on potential anomalies that occur without stronger isolation for reads. Our analysis shows that 1 in 1,500 batched reads reflects partial
transactional updates, which complicate the developer experience and lead to unexpected results. In response to our findings, we present the
RAMP-TAO protocol, a variation based on the Read Atomic Multi-Partition (RAMP) protocols that can be feasibly deployed in production with
minimal overhead while ensuring atomic visibility for a read-optimized workload at scale.

8

Graph Partitioning

Usually for a particular (set of) operation(s)

• The shortest path, finding frequent patterns, BFS, spanning tree search, …

Graph partitioning is counter-intuitive and graph DB are mainly centralized

1-Dimensional Partitioning

• Partitioning of the adjacency matrix
• Focus on Breadth-First Search

9

1D Partitioning

• Matrix rows are randomly assigned to
the nodes (processors)

• Each vertex and the edges emanating
from it are owned by one processor

10



1D Partitioning (cont’d)

BSF with 1D partitioning

1. Each processor has a set of frontier vertices F
2. The neighbors of the vertices in F form a set of neighbouring vertices N

• Some owned by the current processor, some by others

3. Messages are sent to all “neighbouring processors”, etc.

• 1D partitioning yields to high messaging
• Then, 2D-partitioning of adjacency matrix

• lower messaging but still very demanding…

Efficient sharding of a graph is a hard problem

11

Dominant and Alternative Models of Graph DB’s

Data model: Labeled Property Graph
A (attributed) multi-relational labeled digraph G(V ,E) where

• V is a finite set of nodes (id’s)
• E ✓ V ⇥ ⌃⇥ V are directed edges –relationship
• ⌃ is a finite alphabet of labels assigned to both nodes and edges
• Optional attributes –properties– may apply to both vertices and edges as a
set of key/value pairs

Extensions to

• hypernode: nested graphs
• hypergraph: with hyperedges, i.e., sets of nodes
• multigraph: multiple single-relational edges 12

Labeled Property Graph Example

Node labels are “groups” whereas edge labels denote compulsory relationships

Source: R. Bouhali & A. Laurent (2015). Exploiting RDF Open Data Using NoSQL Graph Databases. AIAI pp.177-190. 13

The Web of Data

Resource Description Framework (RDF) Graph, aka. Knowledge Graph

Source: C. Sayers & A.H. Karp (2004). Computing the digest of an RDF graph.

• Data Model for the Semantic Web
• RDF statement: (subject, predicate, object)
• Triple store is a “flavor” of graph db

14



The Web of Data (cont’d)

RDF Data Model: Edge-Labeled Digraph
Vertex set V is split into URIs (U ), literals (L), and blank/anonymous nodes (B),
such that:

E ✓ ((U ⇥ B)⇥ U ⇥ (U ⇥ B ⇥ L))

Extension to named graphs as ng = (n, g) with n 2 U and g 2 G, the family of RDF
graphs

15

Labeled Property Graph vs. Edge-Labeled Digraph

Source: A. Hogan et al. (2021). Knowledge Graphs, Chapter 2. 16

Graph Queries

Another Graph DB Example

b : bornIn w : hasWon i : livesIn l : locatedIn

Source: P.T. Wood, SIGMOD Record 2012 17



Conjunctive Queries

Implements subgraph matching

Definition (Graph CQ’s)

Q(~z) 
^

1im
(xi , ai , yi)

where xi , yi are node variables or constants, each zj is xi , yi or any constant, and
ai 2 ⌃

Example

Q(x) (x,hasWon,Nobel), (x,hasWon,Booker), (x,bornIn, SouthAfrica)

18

Conjunctive Regular Path Queries

Implements reachability by path expressions

Definition (Graph CRPQ’s)

Q(~z) 
^

1im
(xi , ri , yi)

Extend CQ’s to ri as a regular expression over ⌃

Example

Q(x)  (x,hasWon,Booker), (x, r ,Australia)
r := citizenOf | ((bornIn | livesIn).locatedIn⇤)

19

Extended CRPQ’s

Paths may

• occur in the output by means of free path variables
• be compared within a regular relation

Examples
Retrieve every path between nodes r and s that go through node e :

Q(⇡1,⇡2) (r ,⇡1, e), (e,⇡2, s)

Retrieve all pairs (x, y) connected by paths following pattern an.bn :

Q(x, y) (x,⇡1, z), (z,⇡2, y), a⇤(⇡1), b⇤(⇡2), (
[

a,b2⌃
(a, b))⇤(⇡1,⇡2)

20

Extended CRPQ’s (cont’d)

Definition (Graph ECRPQ’s)

Q(~z, ~�) 
^

1im
(xi ,⇡i , yi),

^

1jp
Rkj

j ( ~!j)

where �`, ⇡i , !jt are path variables, and Rkj
j is a regular expression that defines a

regular relation over ⌃

Extension to approximate matching and ranking

• Define an edit distance de(x, y) on ⌃⇤

• Operate with a regular expression over triples of the form (a, k, b),
a, b 2 ⌃ [ {✏}, k the cost of substitution

21



Aggregation and Arithmetic Predicates

count sum min max + � ⇤ / for computing:

• degree, eccentricity of a node
• distance between two nodes
• diameter of the graph
• etc.

Example
Length of the shortest path between each pair of nodes

len(x, x, x, 0)  dist(x, y, `)
len(x, x, x, 0)  dist(y, x, `)
len(x, z, y, d)  sp(x, z, s),dist(z, y, `), d = s + `

sp(x, y,min(d))  len(x, z, y, d)
22

Querying Knowledge Graphs

SPARQL
Graph pattern-based SQL-like query language for RDF triple stores

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

23

The Jungle of Languages for Property Graphs

No(t yet any) Standard

Alternatives

• Native API in generic programming language
depends on PL and Graph DB

• Procedural—algebraic-based—language
depends on Graph DB

• Declarative—logic-based—language
depends on Graph DB

24

Neo4J Native Java API

Node person = matching.getSingle();
Iterable<Relationship> relations =

startNode.getRelationships(Direction.OUTGOING, RelTypes.FRIEND);
for (Relationship rel : relations)
{

Node friend = rel.getEndNode();
String name = friend.getProperty("name");

}

Source et planches suivantes: F. Holzschuher and R. Peinl, EDBT/ICDT 2013

25



Gremlin

t = new Table();
x = [];
g.idx("persons")[[id:id_param]].out("FRIEND_OF").fill(x);
g.idx("persons")[[id:id_param]].out("FRIEND_OF").

out("FRIEND_OF").dedup().except(x).id.as("ID").
back(1).displayName.as("name").
table(t,["ID","name"]){it}{it}.iterate();

26

Neo4j Cypher

Cypher Query Language (CQL)

START person=node:people(id = {id})
MATCH person-[:FRIEND_OF]->friend-[:FRIEND_OF]->friend_of_friend
WHERE not (friend_of_friend<-[:FRIEND_OF]-person)
RETURN friend_of_friend, COUNT(*)
ORDER BY COUNT(*) DESC

Neo Technology released CQL to open source: see OpenCypher Project

27

SQL

SELECT persondb0.ID, persondb0.display_name
FROM person persondb0
WHERE persondb0.oid IN (

SELECT frienddb2.friend_id
FROM person persondb1, friend frienddb2
WHERE persondb1.oid=frienddb2.person_id AND
(persondb1.person_id IN (?))
) ;

28

Performance Comparison

29



Cypher Use Case

User story
As an employee,

I want to know who in the company has similar skills to me

So that we can exchange knowledge

Query
Which people, who work for the same company as me, have similar skills to me?

30

Query as a Graph Pattern

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),
(company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name= {name}
RETURN colleague.name AS name,

count(skill) AS score,
collect(skill.name) AS skills

ORDER BY score DESC

31

Running the Query

+-----------------------------------+
| name | score | skills |
+-----------------------------------+
| "Lucy" | 2 | ["Java","Neo4j"] |
| "Bill" | 1 | ["Neo4j"] |
+-----------------------------------+
2 rows

32

Path Patterns in Cypher

Examples

()
(x)--(y)
(m:MOVIE)-->(a:ACTOR)
(:MOVIE)-->(a { name: "Ivan Trojan" })
()<-[r:PLAY]-()
(m)-[:PLAY { role: "Ivan" }]->()
(:ACTOR { name: "Ivan Trojan" })-[:KNOW *2]->(:ACTOR)
()-[:KNOW *5..]->(f)

33



Towards a Standard Declarative Language for Graph DB’s

Graph Query Language (GQL) is a Global ISO/IEC Standards Project alongside SQL1

• gqlstandards.org Last Update: October 4th, 2023
• A. Deutsch et al. (2022). Graph Pattern Matching in GQL and SQL/PGQ. SIGMOD

1The very 1st since SQL itself!
34

GQL

35

GQL (cont’d)

36


