Graph Databases

Guillaume Raschia — Nantes Université
Last update: October 17, 2023

Graph DB Landscape

Graph DB Landscape
Graph Data Models

Graph Queries

“Old School” Graph Database Style

Model

A graph G(V, E) is a binary relation R(src, dst)

[CURSE
_ow N

Queries

- Relational Algebra (procedural language): {o, m, x, p, U, —}

- 3-hopssR w R x R
dstl=src2 dst2=src3

Limitations

- Join x is the key operator: costly!
- Reachability: |J, R x1 R X2 ... x; R: Recursion and fixpoint

Graph DB

-Ne04j

The #1 Database for Connected Data

Graph Data Models

Graph DB (cont'd)

&

-Neodqj

A
< QrientDP’ @

DB
y

@ JanusGraph
@ TigerGraph

Requirements for Graph Databases

The 3D graph data model [Angles et al., ACM CS 2008]

1. Data structure

- data and schema as (distinct) graphs

- standard abstractions: is-a, is-part-of, is-associated-to
2. Update and query language

- graph transformations

- primitives on paths, neighborhoods, subgraphs, graph patterns, connectivity
and graph statistics (diameter, centrality, etc.)
- multi-relational graph algorithms

3. Integrity constraints

- schema-instance consistency, identity, referential integrity

Requirements for Graph Databases (cont’d)

Definition (Graph database (tentative of))
Any storage system that provides index-free adjacency
- Each vertex has direct references to its adjacent vertices
- act as a mini-index
- O(1) to move from a vertex to its neighbors

- O(logn) b.tw. of an index in non-graph db’s

Graph Partitioning

Usually for a particular (set of) operation(s)

- The shortest path, finding frequent patterns, BFS, spanning tree search, ...

Graph partitioning is counter-intuitive and graph DB are mainly centralized

1-Dimensional Partitioning

- Partitioning of the adjacency matrix

- Focus on Breadth-First Search

Graph DB and NoSQL

Very large graphs such like TAO Social Graph at Facebook: 5 Billions+ nodes!

Bronson et al. (2013). TAO: Facebook's Distributed Data Store for the Social Graph. USENIX ATC.

Audrey Cheng et al. (2021). RAMP-TAO: Layering Atomic Transactions on
Facebook’s Online TAO Data Store. PVLDB 14(12); 3014-3027.

Abstract: k's gra ore TAO, like many other bu data r onally prioritiz: ila ficien le bili

er strong cor ncy or isolation g 1tees to serve its large, read-dominant workloads. As product developers build diverse applications
on top of this system, th r r k t ictional semantics. However, providing advanced features for select applications while
preserving the system’s overall reliability and performance is a continual challenge. In this paper, we first characterize developer desires for
transactions that have emerged over the years and describe the current failure-atomic (i.e., write) transactions offered by TAO. We then explore
how to introduce an intuitive read transaction API. We highlight the need for atomic visibility guarantees in this APl with a measurement
study on potential anomalies that occur without stronger isolation for reads. Our analysis shows that 1in 1,500 batched reads reflects partial
transactional updates, which complicate the developer experience and lead to unexpected results. In response to our findings, we present the
RAMP-TAO protocol, a variation based on the Read Atomic Multi-Partition (RAMP) protocols that can be feasibly deployed in production with
minimal overhead while ensuring atomic visibility for a read-optimized workload at scale.

1D Partitioning

12345
1fo"00 00
210 01 00
30,1000
4 {6-'5_6-'5_'1 ---------------------- - Matrix rows are randomly assigned to
S0 0010 the nodes (processors)
j Lg ?—) - g- - Each yertex and the edges emanating
alle 1 15 0 from it are owned by one processor
9100 0 0 0
10(/1 0 0 00
111 0 000
12//l0 0 0 1 1

1D Partitioning (cont’d)

BSF with 1D partitioning

1. Each processor has a set of frontier vertices F
2. The neighbors of the vertices in F' form a set of neighbouring vertices N
- Some owned by the current processor, some by others

3. Messages are sent to all “neighbouring processors”, etc.

- 1D partitioning yields to high messaging
- Then, 2D-partitioning of adjacency matrix
- lower messaging but still very demanding...

Efficient sharding of a graph is a hard problem

Labeled Property Graph Example

Node labels are “groups” whereas edge labels denote compulsory relationships

Name : Charles E.
Born : 1987

1

Y

KNowg

KN Name : Stephen H.
“0 Ows Born : 1989
&

Name : Omar B.
0?

Born : 1987

2

> PERSON
1 LIVES IN
Begin:2012 |
End : 2013 RENTS
‘ | Fees : 300€
— uvss IN Begin : 2011
Bazln 2014 End : 2013
Address: ...
2
Address: Surface: 60m!
Rooms : 3

Surface: 34m‘

Source: R. Bouhali & A. Laurent (2015). Exploiting RDF Open Data Using NoSQL Graph Databases. AlAl pp177-190 13

Dominant and Alternative Models of Graph DB's

Data model: Labeled Property Graph
A (attributed) multi-relational labeled digraph G(V, E) where

- Vis a finite set of nodes (id's)

- EC V x X x Vare directed edges -relationship

- Y is a finite alphabet of labels assigned to both nodes and edges

- Optional attributes —properties—- may apply to both vertices and edges as a
set of key/value pairs

Extensions to
- hypernode: nested graphs
- hypergraph: with hyperedges, i.e., sets of nodes
- multigraph: multiple single-relational edges

The Web of Data

Resource Description Framework (RDF) Graph, aka. Knowledge Graph

http://example.com/subject

http://example.com/book45

http://example.com/title

“John Smith Autobiography”

http://example.com/name

“John Smith”

Source: C. Sayers & A.H. Karp (2004). Computing the digest of an RDF graph.

http://example.com/wrote

- Data Model for the Semantic Web
- RDF statement: (subject, predicate, object)
- Triple store is a “flavor” of graph db

The Web of Data (cont’d)

RDF Data Model: Edge-Labeled Digraph

Vertex set V is split into URIs (U), literals (L), and blank/anonymous nodes (B),
such that:
EC((UxB)x Ux(UxBxL))

Extension to named graphs as ng = (n, g) with n € U and g € G, the family of RDF
graphs

Graph Queries

Labeled Property Graph vs. Edge-Labeled Digraph

LA380 : flight
Arica : Port City
T

‘ \

(Santiago : Capital Cityj ' company = LATAM 1
1 N ’ 1
lat = —18.48

1
1
. 1
LA381 : flight \ long = —70.33 ,
“__—

| lat = —33.45
long = —70.66 |

1

1

A ‘
' company = LATAM ¥
AY ’

X7 Y

lat long /from ;ode compa\iy to\lat long
N /
type \to mode company from/ type

I

Source: A. Hogan et al. (2021). Knowledge Graphs, Chapter 2 16

Another Graph DB Example

b
Neruda > Chile Coetzee
// \w\
w
w b
Nobel SouthAfrica Booker Australia
P /‘ w '\
w
w l
b l
Gordimer Carey 3 Bacchus Marsh Victoria
b: bornin w: hasWon i: livesin [: locatedIn

Source: PT. Wood, SIGMOD Record 2012 17

Conjunctive Queries

Implements subgraph matching

Definition (Graph CQ’s)

Q(z) — /\ (Ii, g, y’L)
1<i<m
where z;, y; are node variables or constants, each z; is z;, y; or any constant, and
a; €%

Example

Q(z) < (z,hasWon, Nobel), (z, hasWon, Booker), (z, bornin, SouthAfrica)

Extended CRPQ’s

Paths may

- occur in the output by means of free path variables
- be compared within a regular relation

Examples

Retrieve every path between nodes r and s that go through node e:
Q(m1,m2) + (r,m1,€), (e, 72, 8)

Retrieve all pairs (z, y) connected by paths following pattern a™.b" :

Q(L T/) &~ (33, 7r1,z), (zv 2,5 U) a*(ﬂ—l)» b*(ﬂ?)?(U (CL, b))*(wlvﬂ?)

a,bex

20

Conjunctive Regular Path Queries

Implements reachability by path expressions

Definition (Graph CRPQ’s)

QE) « N (@i ri,y)

1<i<m

Extend CQ’s to r; as a regular expression over &
Example

Q(z) < (z,hasWon,Booker), (z, r,Australia)
r = citizenOf | ((bornin | livesin).locatedIn™)

Extended CRPQ’s (cont'd)

Definition (Graph ECRPQ’s)

QED + N (miw),)\ BRI

1<i<m 1<j<p

&Y

where xg, m;, wj; are path variables, and Rff is a regular expression that defines a
regular relation over &

Extension to approximate matching and ranking

- Define an edit distance d.(z, y) on ©*

- Operate with a regular expression over triples of the form (a, k, b),
a,b € XU {e}, k the cost of substitution

21

Aggregation and Arithmetic Predicates

count sum min max + — = / for computing:

- degree, eccentricity of a node
- distance between two nodes
- diameter of the graph

- etc.

Example

Length of the shortest path between each pair of nodes

len(z, z, z,0) «— dist(z,y,0)

len(z, z, z,0) +— dist(y, z,0)

len(z, z, y, d) +— sp(z,z,s),dist(z,y,£),d=s+¢
sp(z, y,min(d)) <« len(z,z, vy,d)

22

The Jungle of Languages for Property Graphs

No(t yet any) Standard
Alternatives
- Native APl in generic programming language
depends on PL and Graph DB

- Procedural—algebraic-based—language
depends on Graph DB

- Declarative—logic-based—language
depends on Graph DB

24

Querying Knowledge Graphs

SPARQL
Graph pattern-based SQL-like query language for RDF triple stores

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name Zemail
WHERE

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email.

23

Neo4) Native Java API

Node person = matching.getSingle();

Iterable<Relationship> relations =
startNode.getRelationships(Direction.OUTGOING, RelTypes.FRIEND);

for (Relationship rel : relations)

{

Node friend = rel.getEndNode();
String name = friend.getProperty("name");

Source et planches suivantes: F. Holzschuher and R. Peinl, EDBT/ICDT 2013

25

= new Table();

= [1;
.idx("persons")[[id:id_param]].out("FRIEND_OF").fill(x);
.idx("persons")[[id:id_param]].out("FRIEND_OF")
out("FRIEND_OF").dedup().except(x).id.as("ID").
back(1).displayName.as("name")
table(t,["ID","name"]){it}{it}.iterate();

va va X +

26

SQL

SELECT persondb0.ID, persondb@.display_name
FROM person persondb0
WHERE persondb@.oid IN (
SELECT frienddb2.friend_id
FROM person persondbl, friend frienddb2
WHERE persondbl.oid=frienddb2.person_id AND
(persondbl.person_id IN (?))
) 8

28

Neo4j Cypher

Cypher Query Language (CQL)

START person=node:people(id = {id})

MATCH person-[:FRIEND_OF]->friend-[:FRIEND_OF]->friend_of_friend
WHERE not (friend_of_friend<-[:FRIEND_OF]-person)

RETURN friend_of_friend, COUNT(%)

ORDER BY COUNT(*) DESC

Neo Technology released CQL to open source: see OpenCypher Project

27

Performance Comparison

1,000,000

100,000 ————e—d

10,000

1,000 f
100

S . S . S

eﬂ‘sewe eﬁﬁe\q* Y “‘e“d ‘s“‘e“d
o I o I 00® 0e
A 92 « A0 oe® 2000 d A0 9
20 20 2

—#— Neodj REST Cypher benchmark ==¢= Embedded Neo4j Cypher benchmark
Neo4j REST Gremlin benchmark === Neo4j REST benchmark

=p— Embedded Neo4j benchmark JPA (MySQL) benchmark 29

Cypher Use Case

User story
As an employee,

I want to know who in the company has similar skills to me
So that we can exchange knowledge

Query
Which people, who work for the same company as me, have similar skills to me?

30

Running the Query

name:
Acme

WORKS_FOR WORKS_FOR

PoEonoooSooooEEEnonoEonoooEoo00oo000 & WORKS_FOR

| name | score | skills |

o mm e m e e - +)

| "Lucy" | 2 | ["Java","Neo&j"] | rame: an name: Bl

| "Bill" | 1 | ["Neo4j"] |

T e e L L e D e e e el + HAS_SKILL HAS_SKILL HAS_SKILL
2 rows

32

Query as a Graph Pattern

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),
(company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)
WHERE me.name= {name}
RETURN colleague.name AS name,
count(skill) AS score,
collect(skill.name) AS skills
ORDER BY score DESC

company

WORKS_FOR WORKS_FOR

me colleague

HAS_SKILL HAS_SKILL

skill

31

Path Patterns in Cypher

Examples

O

COEy)

(m:MOVIE)-->(a:ACTOR)

(:MOVIE)-->(a { name: "Ivan Trojan" })
()<-[r:PLAY]-()

(m)-[:PLAY { role: "Ivan" }]1->()

(:ACTOR { name: "Ivan Trojan" })-[:KNOW *2]1->(:ACTOR)
()-[:KNOW *5..]->(f)

38

Towards a Standard Declarative Language for Graph DB's

Graph Query Language (GQL) is a Global ISO/IEC Standards Project alongside SQL'

- ggqlstandards.org
- A Deutsch et al. (2022). Graph Pattern Matching in GQL and SQL/PGQ. SIGMOD

Alastair Green, Query Languages Standards & Research Lead, Neoj

2019 - 4 mins read

The votes are in.

This past June, national standards bodies around the world - belonging to ISO/IEC's Joint Technical
Committee 1 (responsible for IT standards) - began voting on the GQL project proposal.

Graph Query Language (GQL) is a new language being developed and maintained by the same
international working group that also maintains the SQL standard.

Now, it's official: Earlier this week, the ballot closed and the proposal passed, with seven countries
putting experts forward to work on the four-year standard query language project.

"The very 1st since SQL itself!

Last Update: October 4th, 2023

34

GQL (cont'd)

PcaL

-“Read Owly

-RPQGs

“No GRavH
Consrrue™ProsecT,

= NoT ComPoSABLE

— T

OracrePoX

W __1
[GCORE]
I-Caente Reap| ~CREATE -READ -

u UPDATE -DeLeTE
I-RPQs I N RPGs

|~ GRAPH ConsTRuCT/ |

< - RAPH CowsTRUCT/
ProvecTs ProsECT :
| - ComposaaLe | - ComPosamie.

=N —i ’»Nwﬁvba “cyprec bl
CAsensluaph SPARK/GrEmin

‘IMPLEMENYHU’NS] RIE1s Gomph #Nemey o
“SRP

HANK | winGraj
reph ~Cypret.?L]

e o 1= 1

-Crente-Resd-Uspare DereT!
-RPGs

- (>rAPH ConsTrucT/PRoSECTS

= ComPOSABIE

36

GaL

- RPQs with data tests (node & edge properties)

Exondod by

|

- Create, Read, Update, Delete

Academia - Complex path expressions

GXPath e - Configurable match semantics
= Paih mecro (complex path - Construct & project graphs
Exended by expressions) - Composable (views, omnigraphs)
Acadenia - Catalog
RPQs - Schema

(Regular
Path
Queries)

Reacing graphs

- Construct & project graphs
- Composable
Gomplex peth oxprossions

Reading orephs

cRUD

oy
Consinct & proct
sathe

- Create, Read, Update, Delete (CRUD) Views omgraph | Named graphs
Cataog

Reading graphs.

Schema
Views/omingrash

Academia
STRUQL

Jlamed oraph

~Create, Read v oo pah exressions

- Advanced complex path expressions
- Construct & project graphs
- Composable

Academia
Regular
Queries

Construct & profet graphs
blo

35

