NoSQL Storage Systems

A Data Modeling Techniques Perspective

Guillaume Raschia — Nantes Université
Last update: October 18, 2024

R-DBMS Limitations

R-DBMS Limitations
NoSQL Models
Polyglot Persistence

NewSQL

The R-DBMS World in Brief

Relational Model from the 70’s

- tables, rows, fixed columns
- attributes are pre-defined in a schema
- CREATE TABLE-like statements (DDL part of SQL)

- User-centered query language (SQL) as an abstraction layer

DB Design

Normalization normalization normalization!

- prevent from redundancy and anomalies

The R-DBMS World in Brief (cont'd)

ACID Transactions

Atomicity - Consistency - Isolation - Durability
Consistency and integrity enforcement

- Schema-data consistency

- Domain constraints (value range, regexp)

- References (FK and inclusion dependencies)
- Uniqueness (PK)

- Tuple-based constraints (e.g, R.A > R.B/2)

Relational Model: a—Sort of—Real-Life Example

e

Source: Data Model, Directus docs.

Relational Database Limitations

Impedance mismatch

How to fit complex objects from PL to flat tables ?!

- decomposition into many vertical fragments: ORM to the rescue

1D: 1001

customer: Ann

line items: %
‘customers
oaziz03533 | 2 | 48 | s96
cazieonstz | 1 | s39_| s39 %
=~
ines

GRS | 0 | | o

payment detalls:

oredit cards

Source: Aggregate Oriented Database, M. Fowler, 19 Jan. 2012 5

Database Tuning

Overcome the performance bottleneck

- Hardware/system/software architecture (e.g. caching)
- Query workload and application-driven model

- Indexes, views, hints, SQL S-F-W rewriting

- Denormalization : introduce redundancy

- Clustering relations : speed up join queries
- Partitioning

The ultimate DB system

Pre-compute query answers and cache them locally!

Relational Database Limitations (bis)

Evolving/unknown structural requirements

Database refactoring

- alter schema + migrate data is expensive

- don't forget to sync apps

Original Schema Transition Period Resulting Schema

Address Address

Address
<<Table>> <<Table>>

<<Table>>

AddressiD: integer <<PK>> AddressiD: integer <<PK>> AddressID: integer <<PK>>

Street: char(40) Street: char(40) Street: char(40)
City: char(20) City: char(20) City: char(20)
StateCode: char(2) StateCode: char(2) StateCode: char(2)
ZipCode: integer ZipCode: integer {removal date = 2007-Mar-31}

PostCode: char(20)
PostCode: char(20) Country: char(40)
Country: char(40)

odePostCode() <<trigg
Copyright 2003-2005 {event = on insert, event = an update,
Copyright 2003-2005 e

Scott W, Ambler removal date = 2007-Mar-31}

Vertical scaling
- Upgrade hardware resources: CPU/RAM/Disk

- Expensive and limited to the most recent technologies

Parallel processing and data distribution
Not that easy

- Drawback n°1: global locking/logging for ACID Tx
- Drawback n°2: joins on multiple nodes

Relational Database limitations (ter)

Overhead cost at run time

- the price to pay for the friendly declarative layer :

- parsing, optimization, sub-optimal execution, buffer management
- the price to pay for the normalization :

- recomposition of entities with deadly joins
- the price to pay for the consistency of ACID Tx :

- latches, locks and logs management

Scale Up vs. Scale Out

T e

® System Cost
® Application Performance

‘Web/App Server Tier

el D

® System Cost

e ® Application Performance
- > ot
- e
Relational Database T thispont

Source: Database Scaling Made Simple, DZone (src. Paris Technology), 24 May 2017. 11

NoSQL

Key Concepts

- Aggregate data model
- group logical pieces of data units and distribute by key (DHT)
- duplicate pieces among aggregates if necessary
- must conform to data access patterns

- “Free structure”
- schema-less design

- Data distribution over many servers
- Horizontal partitioning (aka. sharding) w.rt. query scope: increase data volume
- Replication: increase fault tolerance (availability)

- Weak consistency (vs. ACID Tx)

- Low-level call interface (vs. SQL)

13

No(t only)SQL

No standard definition

New apps for new requirements

- “Cloud OLTP" vs. traditional [TPC-C]-like serving workload
- “big OLAP" addresses Volume-Velocity-Variety-Veracity

New (big) data

The Cambrian Explosion...of Data
60000

50000
40000

30000
20000
. e -mmull I I

90% of the World's data was
created in the last 2 years

Exabytes (billions of GB)

Structured Data @ Unstructured Data

Source: When Is Big Data Big?, Cprime.

The Aggregation Principle

Product
)
+ Frice

+ Description

Normalization . Aggregation

Product {
Type : Album
D

Price
De:

Source: NoSQL Data Modeling Techniques, Highly Scalable Blog, 01 March 2012. 14

Distribution: main techniques, main ideas

1. Distributed Hash Tables (DHT)
- Rendezvous Hashing, Consistent Hashing

2. Consistency: 2PC and Paxos (strong), Vector Clocks (eventual)
3. The CAP Theorem

Warning
- Much more to do with distributed systems rather than a databases course

- But super relevant to NoSQL

Ring DHT

Finger Table at Node Ng

N1
idx hashcode root
N56, N8 -
0 8+2"=9 Nz
N51 1 8+42'=10 Mg
N48 N14 2 8 + 22 =12 N14
3 8423=16 Ny
4 8+2=24 Ny
N21 5 8+2°=40 Ngp
N42
N38 e find root of K54 from Ng : to Ny, then

Ns1, and finally reach next node (Nsg)

Distributed Hash Table

Implements a distributed storage over N servers

- Each key-value pair (k, v) is stored at some server h(k)

- APl write(k,v); read(k)
Use standard hash function : service key k by server h(k)

- Problem n°1: a client knows only one random server, doesn’'t know how to
access h(k)

- Problem n°2: if new server joins, then N — N + 1, and the entire hash table
needs to be reorganized

- Problem n°3: we want replication, i.e. store the object at more than one
server

16

CAP Theorem : Pick 2 out of 3!

Proof from S. Gilbert and N. Lynch (SIGACT News 2002)

@tm

tolerance |

Conjecture from E. Brewer (PODC 2000)

Consistency
All nodes see the same data at the same time

Availability N
Every request receives a response about whether it /
succeeded or failed

Partition tolerance

The system continues to operate despite arbitrary IMPOSSIBLE

partitioning due to network failures

Source: Big Data World, Part 5: CAP Theorem, P.

Finkelshteyn, JetBrains Blog, 3 June 2021.

The NoSQL Data Models K-V Store (cont’d)

Warning: Typical Ad for NoSQL but fake news inside... Data structure of an associative array, map or dictionary
wlisin Eiome o H.ash. partitioning with consistent hashing
Column Stores - Distributed Hash Tables (DHT)
g Document Database
2 (DGraph Database keys hash function buckets
§ 00
Typical Relational Database
o | 01 521-8976
RDBMS Performance Line oy ST 02 521-1234
Scale To Complexity 03
LIsaSmnh)
- There exist tons of data stores : see Nk SQL . SandaDee 3
T > 521-9655
- XML Stores are Doc. Stores and RDF Stores are Graph Stores 5
- Column Stores are actually stores of Extensible Records,
a.k.a. Columnar/Column-Family/Wide Column Stores 19 2
SVG source file “Hash table 4110010 LL" by J. Stolfi - Own work

Key-Value Store K-V Store (cont’d)

Think File system or LDAP repos. more than database
- Only primary index : lookup value v by key k

Products A A
Riak, Redis, Voldemort, Memcached, LevelDB ’ S|mpgle:(pke)rat|ons‘
- ge

- delete(k)

value—] - - Value is obfuscated
Key Value
AB5D — 0100011011011101010110100
AC4F —» 0110111010001111100100010 Ordered K-V Store
2A45 —» 1101110011111010100001011 Bng g
. - Sorted keys b.t.w. of range partitioning
- short-scan range queries [k, k + n]
20 2

Column-Family Store

Products
Cassandra, HBase, Hypertable

emallAddress
bob@example.com

1485676562

emailAddress

gender
male

1ag5676582

gender

Britey briGexample.com female
145676432 1485676432
emailadress ountry
Tort tor@example.com Sweden
1435536158 1435636158
Source: What is a Column Store Database?, lan, Database Guide, 23 June 2016.

age
35

1485676582

hairColor
Ble

1465633654

23

Column-Family Store (cont’d)

-+ Column Family is close to relational table
- 1CF =1file: expose the physical model to the user

- Group columns by query scope/logical units :
- {name, adress}, financial info, login info

- Random sharding by hash code from keys onto DHT

Popularized by Google BigTable

25

Column-Family Store (cont'd)

CF Store encodes a 4-level hash map
[Keyspace][ColumnFamily][Key][Column]

Example

"ApplicationData": {
"UserInfo": {

"Alice": {
"age": 258
"email": "aliceamit.org",

"state": "MA" } } }

- Keys are shared among CF's
- Columns are sorted (not row keys)
- May have one more level of nesting (Super Columns)

24

Document Store

<Document>
| Key f

{
"customerid”: "fc986ed8cab”
"customer":

{

“"firstname": "Pramod",
"lastname": "Sadalage"”,
"company"”: "ThoughtWorks"

}
"billingaddress”:
{ "state": "AK",
"city": "DILLINGHAM",
“type": "R"
}

"likes": ["Biking","Photography"

26

Document Store (con’t)

A document is a pointerless object

- eg. JSON

- nested values + extensible records (schema-less)

In addition to K-V store : may have secondary indexes

27

SQL Freaks

Stop following me, you fucking freaks!

29

Graph Store

1d:3
Type: Group
Name: Chess

P
Lape, % 10,
Srent s e
205, /;'Jbe,
7

Originally uploaded by Ahzf (Transferred by Obersachse)
- Partitioning is not that easy ! It is not a “truly NoSQL” data model

28

Polyglot Persistence

How to Choose the Right Database System ?

The sixty-four-thousand-dollar question !
150+ options on the N*saL repos ...

- First attempt : Pros & Cons
- Second attempt : compare

- Too many offers, too many criteria !

What about your own requirements ?

30

Data Model

- Complexity

- determine the degree of structure : from FS to Graph
- denormalize : no need to recompose entities in queries

- embed one-to-many relationships
- anyway, joins in apps for
(a) many-to-many relationships
(b) frequent updates (e.g, msgs of a user)

- Volume
- Schema flexibility
- Integrity constraints

- Data access patterns

32

Examine and segment the data

- Event

- Domain
- Critical

- Business
- Temporal
- Geo

- Meta

- Session
- Log

- Message

31

Queries

Typical Queries look like ? SQL needed? LINQ needed ? BI/Analytic-Tools needed?
MapReduce needed ? Ad-Hoc Queries needed? Background Data Analytics ?
Secondary Indices? Range queries ? Complex Aggregations ? ColumnDB needed
for Analytics ? Views needed ? ...

33

Queries (cont'd)

Carefully profile the workload
Example - Altoros Tech. Report, 2013

Source : Yahoo Cloud Serving Benchmark (YCSB) [Cooper et al., SoCC 2010]

- update-heavily : e-commerce

- read-mostly : content tagging

- read-only : user profile cache

- 95/5 read/insert ratio : user status updates or inbox messages
- scan-short-ranges : threaded conversations

- 50/50 read-modify-write/read ratio : access to a user database

- 10/90 read/insert ratio : data migration

Similar approaches in CouchBase and Datastax (Cassandra) Whitepaper 34

Polyglot Persistence

“One Size Does Not Fit All”

Rapid access for reads Needs transactional
and writes. No need to updates. Tabular
be durable structure fits data

Needs high availability across
multiple locations. Can merge

inconsistent writes

n

Web A
Shopping Cart

Rapidly traverse links
between friends, product

purchases, and ratings

\Lots of reads, infrequent
writes. Products make Large-scale analytics on
natural aggregate large cluster

SQL interfaces well with
reporting tools

This i a very
hypothetical example,
we would not make
techmology
recommendations
without more
contextval information

High volume of writes on

multiple nodes

36

The Many Other Requirements

- Persistence design
- on-disk, on-memory, SSTable, append-only, ...
- Consistency model
- strong, weak, eventual, read-your-writes, ...
- Performance
- latency, throughput, degree of concurrency
- Architecture
- distributed, grid, cloud, mobile, p2p, replication, auto-scaling, load balancing,
partitioning, ...
- Any non-functional requirement!

- refactoring frequency, 24/7 system, dev. qualification, simplicity, security,
licence model, community support, documentation, ...

35

NewSQL

Back to the Future

The Six SQL Urban Myths by M. Stonebraker

- Myth n°1: SQL is too slow, so use a lower level interface

- Myth n°2: I like a K-V interface, so SQL is a non-starter

- Myth n°3: SQL systems don't scale

- Myth n°4: There are no open source, scalable SQL engines
- Myth n°5: ACID is too slow, so avoid using it

- Myth n°6: In CAP, choose AP over CA

37

Web application that needs to display lots of customer information; the user’s
data is rarely updated, and when it is, you know when it changes because updates
go through the same interface.

Store this information persistently using a K/V store

39

Auxiliary activities of an R-DBMS

TPC-C on the Shore prototype

[S. Harizopoulos et al. SIGMOD 2008]

- logging 17% : everything written twice, log must be forced

- latching 19% : dbms is multithreaded (latch for the lock table)
- locking 177% : required for ACID semantics

- B-tree and buffer management operations 35%

- Useful work is 12% only!

Recipe to Scalable R-DBMS = NewSQL

Give up with the 4 time-consuming activities yet keeping SQL and ACID Tx
whenever it is necessary

38

Department of Motor Vehicle (DMV) : lookup objects by multiple fields (driver's
name, license number, birth date, etc) ; “eventual consistency” is ok, since
updates are usually performed at a single location.

Document store

40

App #3 Database Landscape

(" Non-Relational
Database-as-a-Service
eBay style application. Cluster customers by country ; separate the rarely changed /" Dacument Stares Armszom Aurora
‘core’ customer information (address, email) from frequently-updated info Couchbase MongaDB
- ' < D _ Rethinkp OrientDB CouchDB
(current bids). Key-Valua Stores
Memcached Amazon DynamoDB
L Redis Riak KV Azure CosmosDB
Wide column Stores
Apache Cassandra Azure Table Storage Google NuoDB

Column-Family store HBase Accumulo | Google Bigtable Spanner SAP HANA

7 Apache Ignite

Cl i
Neodj Virtuoso | Amazon Neptune ustrix MemSQL
_ DatastaxGraph Giraph)J VoltDB (H-Store)
4 43

App H4

Everything else (e.g. a serious DMV application)

Scalable R-DBMS

42

