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ABSTRACT

Objectives: Immunoglobulin G4-related disease (IgG4-RD) is frequently accompanied by allergic/atopic manifestations, yet
its allergen-specific antibody landscape remains poorly defined. Therefore, we detected allergen-specific IgE and IgG4 levels in
patients with IgG4-RD to clarify their contribution to IgG4-RD pathogenesis.

Methods: In total, 826 plasma samples from 370 patients with IgG4-RD and 354 healthy controls were used to perform Phage
Immunoprecipitation Sequencing. Follow-up samples from 102 patients (median 3years) captured temporal dynamics. Machine
learning (XGBoost) was used to identify key allergen peptides. ELISA was used for validation in 51 IgG4-RD patients and 24
healthy controls, including an independent cohort of 20 treatment-naive patients.

Results: Abnormal IgE and IgG4 allergen reactivity was observed in IgG4-RD patients. Enhanced responses to Apis mellifera
and Arachis hypogaea were particularly prominent and correlated with lacrimal gland, parotid gland, paranasal, pulmonary,
renal (A. mellifera) and pancreatic (A. hypogaea) involvement. XGBoost achieved an AUC of 0.91-0.96 and consistently ranked
10 peptides, mainly from bee, peanut, vespid-venom and fish allergens. ELISA confirmed significantly elevated Ara h 1-specific
IgG4 in IgG4-RD. Follow-up sampling showed a global decline in reactivity to most top allergens and an IgE-to-IgG4 shift to
Staphylococcus aureus peptides, suggesting therapy-associated modulation and emerging tolerance.

Conclusions: Comprehensive pan-allergen profiling suggests distinct IgE and IgG4 signatures in IgG4-RD and links specific
environmental antigens to organ-selective disease patterns. These findings support a contributory role for aberrant allergen re-
sponses in IgG4-RD pathogenesis and provide a foundation for biomarker development and targeted allergen-based interventions,
especially for future mechanistic investigations.
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1 | Introduction

Immunoglobulin G4-related disease (IgG4-RD) is an autoim-
mune disease characterized by multi-organ involvement [1].
Elevated serum levels of IgG4 are evident in 55% to —97% of
IgG4-RD patients, although this wide range is influenced by
assay variations, population differences, and diagnostic cut-
offs. However, serum IgG4 is a highly sensitive initial screening
approach for IgG4-RD diagnosis [2].

Clinical observations indicate a strong atopic component in
IgG4-RD. Up to 71% of patients report lifetime allergy symptoms
including aero-allergy, food allergy, and skin allergy; rhinitis
and asthma are the most frequent allergic diseases; approxi-
mately 35% to —89% of patients have high IgE levels, and 20% to
—38% show peripheral eosinophilia [3-9]. In some individuals,
strict allergen avoidance leads to symptomatic and serological
improvement [10, 11]. Nonetheless, elevated IgE also occurs in
non-atopic patients [6], initiating the question of whether IgE
drives inflammation or is an epiphenomenon. Allergen-specific
IgE could plausibly initiate or amplify disease activity. A study
of 12 IgG4-RD patients and elevated IgE levels suggested posi-
tivity for at least one of four broad allergen panels (grass, mold,
tree, and nut mixes) [5]. However, the breadth of allergen rec-
ognition and its association with the clinical phenotype remain
undefined.

IgG4 biology is equally complex. Whereas 1gG4 may function
as a noninflammatory “blocking” antibody that competes with
IgE or IgGl, possessing both pathogenic potential [12-14].
Experimental data from an adoptive-transfer model show that
patient-derived IgG4 and IgGl both may drive tissue injury,
particularly in the pancreas and submandibular gland, both
of which are the common sites of IgG4-RD, and this effect was
attenuated but not abolished by co-administration of IgG1 and
IgG4, while the translational relevance of this mouse adoptive
transfer model to human pathophysiology requires further
clarification [15]. Parallel human studies have identified IgG4-
containing immune complexes and complement component 3
deposits in affected kidney and pancreatic tissues, indicating
that IgG4 may act as an effector antibody [16-18]. Conversely,
rising serum IgG4 might reflect a failed attempt to downregu-
late a primary immune response [19]. These seemingly conflict-
ing observations highlight that IgG4 may exhibit pathogenic or
beneficial roles in IgG4-RD based on the condition. Collectively,
these apparently conflicting data imply—but do not yet prove—
that qualitative differences in antigen specificity or antibody
architecture (e.g., Fab-arm exchange, Fc glycosylation) could
influence whether IgG4 responses are pathogenic or regula-
tory [16, 20]; however, definitive mechanisms remain to be
elucidated.

Evidence from other immune-mediated disorders further sup-
ports an antigen-driven IgG4 response. In pemphigus and
muscle-specific kinase-myasthenia gravis, pathogenic auto-
antibodies are predominantly IgG4, while in melanoma and
cholangiocarcinoma, tumor-derived antigens may induce IgG4
responses that blunt cell-mediated cytotoxicity [14]. In eosino-
philic esophagitis, food-specific IgG4 may accumulate within
the inflamed site [21]. Similarly, elevated wheat- and rice-
specific IgG/IgG4 titres have been reported in coeliac disease,

Helicobacter pylori gastritis, and IgE-mediated wheat allergy
[22]. A pilot study involving 24 IgG4-RD patients further docu-
mented broad polyclonal IgG4 reactivity to diverse food and an-
imal allergens [23]. Taken together, these findings suggest that
adaptive responses to environmental antigens may contribute to
tissue-specific inflammation in IgG4-RD.

Despite this hypothesis, no large-scale investigation has simul-
taneously profiled allergen-specific IgE and IgG4 in IgG4-RD,
necessitating a study on the precise allergen repertoire and its
clinical relevance. Therefore, this large-scale phage immuno-
precipitation sequencing (PhIP-Seq) analysis was conducted to
characterize allergen-specific IgE and IgG4 antibody signatures,
thereby clarifying disease-specific allergen responses and laying
the groundwork for future mechanistic investigations.

2 | Materials and Methods
2.1 | Study Population

This study was conducted in accordance with the guidelines of
the Declaration of Helsinki and was approved by the Medical
Ethics Committee of Peking Union Medical College Hospital
(approval number: ZS-3193). The discovery cohort included 370
IgG4-RD patients and 354 age-, sex- matched healthy controls.
The follow-up cohort included 102 IgG4-RD patients. The inde-
pendent validation cohort for enzyme-linked immunosorbent
assay (ELISA) included 20 treatment-naive IgG4-RD patients.
Plasma samples from the discovery cohort were collected
during their initial course of disease. Sequential samples were
collected from the follow-up cohort at a median duration of
3years from the initial collection. All patients were diagnosed
according to 2020 revised Comprehensive Diagnostic Criteria
or the 2019 American College of Rheumatology/European
League Against Rheumatism classification criteria [24, 25].
Patients with other autoimmune diseases or malignancies
were excluded from this study. Healthy controls were from a
population who self-reported good health, had no abnormal
physical examination results, and did not take any medication
for the last 6 months. Written informed consent was obtained
from all participants.

2.2 | Comprehensive Allergen-Specific IgE
and IgG4 Detection

High-throughput analyses of allergen-specific IgE and IgG4
antibodies in plasmas were conducted using PhIP-Seq [26-28].
The allergen related phage display library comprised 10,750
peptides from 2195 allergen proteins, downloaded from the
AllergenOnline V21 [29]. The presence of peptide-specific an-
tibodies was based on the following enrichment cutoffs: Z score
>3, read count > 100, and positive rate >0.1. Allergens with at
least three distinct peptides enriched are supposed as reactive
allergen. Differentially expressed peptides were identified using
a log, fold change (log,FC) threshold of llog,FC| >0.263 (cor-
responding to FC > 1.2 or FC <0.833) and an adjusted p-value
threshold of —log,(adj. p) >1.301 (adj. p<0.05). The flowchart
outlining the study approach to data analysis is provided in the
Data S1 (Figure S1).
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2.2.1 | Library Construction

The allergen epitope (ALE) library was constructed follow-
ing previously described protocols from PhIP-Seq studies
[30]. Briefly, 10,750 peptides from 2195 allergen proteins were
downloaded from the AllergenOnline V21 [29]. To generate
polypeptide fragments covering all protein sequences, 40-
mer polypeptide fragments with seven-amino acid overlaps
were generated and clustered using CD-HIT at 95% sequence
identity at the amino acid level. They were reverse translated
to 120nt DNA oligonucleotides. Adaptor sequences (15-mer)
were added to both sides of the oligonucleotides to introduce
EcoRI and HindIII restriction sites; the sequences were syn-
thesized in TWIST Bioscience. Oligonucleotide pools were
amplified, cloned and packaged according to the manufactur-
er's instructions (T7 Select 10-3 Cloning Kit, EMD Millipore).
Briefly, Polymerase chain reaction (PCR) amplified pooled
oligos were digested and cloned into the EcoRI/HindIII sites
of the T7Select 10-3b vector (Novagen) with an average rep-
resentation of at least 100 copies of each peptide maintained
during each cloning step. The ligation reaction was incubated
overnight at 16°C and added directly to T7 Packaging Extracts
for in vitro packaging. The phage packaging reaction was in-
cubated at room temperature (22°C) for 2h. The amplified
library was titrated and stored in a medium containing 8%
glycerol at —80°C.

2.2.2 | Phage ImmunoPrecipitation
and Binding Protocol

For IgE (1:1 mixture of Omalizumab and Ligelizumab, with vari-
able regions grafted onto the murine IgG1 constant region) and
IgG4 (Mal4-09, Nittobo Medical) PhIP-Seq, biotinylated IgE-
or IgG4-specific antibodies were conjugated to Streptavidin-
bound magnetic beads (Dynabeads MyOne Streptavidin T1;
ThermoFisher-35602) at 5x binding capacity. Excess unbound
antibody was washed away with PBST (0.01% (W/V) Tween
in PBS, pH7.5). The binding efficiency of anti-human IgE and
anti-human IgG4 specific antibody coated magnetic beads was
40pg of antibody per 1mg of beads. For each immunoprecipi-
tation, 20 uL of IgE- or IgG4-coated T1s was used. Before bind-
ing, the beads were blocked with 2% fraction V bovine serum
albumin (BSA) in Phosphate-buffered saline (PBS) and washed
with PBST. A total input of 200ng IgG4 or 10ng IgE was used
to ensure sufficient reactivity based on the relationship be-
tween allergen-specific and total antibody levels, and as previ-
ously described [31]. Briefly, 20 uL of the coated magnetic bead
slurry was added to each well of a 96-deep-well plate. Plasma
samples were added to the wells, and adjusted to a final volume
of 500uL with PBST. The samples were incubated for 30min
at room temperature. The beads were washed five times with
500uL immunoprecipitation (IP) wash buffer (150mM Nacl,
50mM Tris-HCI, 0.1% (vol/vol) NP-40, and adjust pH to 7.5)
and once with PBS. The phage library was added to each well
containing immunoglobulin-bound beads. At least 10> PFU
plaque-forming units (PFU) per phage library were ensured.
The final volume was adjusted to 500 uL with PBS, and the sam-
ples were incubated for 30 min at room temperature. The beads
were washed six times with IP buffer. Finally, the beads were
resuspended in 100 uL of double-distilled water. All procedures

were automated using a 96-channel liquid handling workstation
(PP96, SciProtech).

2.2.3 | Sequencing and Bioinformatics

PCR reactions were conducted in 50puL samples containing
0.3mM each deoxynucleotide triphosphate, 2mM magnesium
ion, 0.3uM each primer, 1U KAPA HiFi HotStart Polymerase
(Roche), and one-tenth of the bead slurry per reaction, using
different index primers. The thermal cycling profile was as
follows: 95°C for 20min of denaturing and DNA release, fol-
lowed by 20cycles of 98°C 20s, 55°C for 15s, and 72°C for
15s. A final extension was conducted at 72°C for 1 min. Mock-
immunoprecipitation (mock IP) reactions (with no plasma
added) were included and sequenced in all experiments. PCR
products were purified using MagMAX Pure Bind Beads
(Thermo Fisher), and Illumina adaptors were added via PCR.
Next-generation sequencing was conducted using the Illumina
Novaseq platform to a read depth of approximately 2 million
reads per sample.

FASTQ sequencing results were demultiplexed and aligned to
the synthesized oligonucleotide pool using Bowtie 2 to obtain
a count matrix [32]. A pseudocount of 1.0 was added to each
peptide-encoding oligonucleotide to include zero-read peptides
in statistical analysis. All reads were normalized to reads per
million (RPM), and Z-scores for each peptide were calculated
using a Python-based software package, phippery [33]. Z-scores
were based on the read distribution of mock-IP samples (IgE-
or IgG4-coated T1s). Peptides with similar read abundance in
mock-IP samples were grouped into bins. The top and bottom
5% of peptides were disregarded. Z-scores were calculated using
the following formula:

Z — score = (counts — mean) / standard deviation

where “counts” denote the sequencing read counts for a specific
peptide within a bin, and “mean” and “standard deviation” de-
note the read distribution within that bin.

2.3 | XGBoost Classifier

The eXtreme Gradient Boosting (XGBoost) classifier was used
for outcome classification and to highlight allergen peptide
features that differentiate IgG4-RD patients from healthy
individuals. The “sample.split()” function from the caTools
package in R was used to divide the dataset into training (80%)
and testing (20%) sets. A random seed (e.g., set.seed(123)) was
applied to ensure reproducibility. A five-fold cross-validation
strategy was applied with 20 repetitions using the “train()”
function from caret package in R for hyperparameter tuning.
The XGBoost model was retrained with the best parameters
identified from xgb_model$bestTune (including eta, max_
depth, gamma, colsample_bytree, min_child_weight, and
subsample). Predictions were made on the independent testing
set. The “model_parts()” function from the DALEX package
was used to interpret the models and the effect of features on
classification. The permutation importance of a feature was
defined as the degradation in root mean square error after
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permutation (ARMSE) caused by randomizing its values, re-
flecting its predictive contribution. Random seeds were varied
five times to re-train and test the models, ensuring stability
and confidence in results. Performance of these models was
evaluated using receiver operating characteristic (ROC) and
confusion matrices.

2.4 | Validation of Results

Plasma Arachis hypogaea allergen Arah 1 specific 1gG4 levels
were measured with ELISA in 51 IgG4-RD patients and 24
healthy controls, including an independent IgG4-RD cohort
of 20 treatment-naive patients. Ninety-six-well immunoplates
(Corning) were coated with 200ng/well of A. hypogaea allergen
Arah 1.0101 (303-ARAHO0200, Sino Biological) overnight. ELISA
was conducted as described previously [34]. Briefly, the coated
plates were blocked with 2% BSA in PBS at 37°C for 2h. After
washing, the plasma diluted 1:20 in 2% BSA/PBS was added and
incubated at 37°C for 2h. The plates were washed and incubated
with anti-human IgG4 antibody (1 ug/mL) (AbM59499-29A30,
Beijing Protein Innovation) for 1h, followed by incubation in
horseradish peroxidase conjugated goat anti-mouse IgG an-
tibody (1:10,000) (BE0102, EASYBIO) for 1h. After washing,
tetramethylbenzidine was added to react and then stopped by
2M H,SO0,. Standard curves were generated by plotting optical
densities (OD . ) against known concentrations of the human
IgG4 standard (Beijing Protein Innovation) [35]. A blocking ex-
periment was conducted by pre-incubating plasma samples with
Arah 1.0101 at 1 ug/mL or unrelated poly-histidine (His)-tagged
protein (Protein-RdRP) overnight, followed by ELISA. Each
sample was assessed in duplicate.

2.5 | Statistical Analysis
2.5.1 | Data Collection

Demographic data (age, sex) and clinical data (organ involve-
ment, self-reported allergy history) were extracted from the
medical records. Laboratory findings included serum IgE and
IgG4 levels and the relative number of eosinophils in the periph-
eral blood.

2.5.2 | Statistical Analysis

FASTQ sequencing results were processed according to previous
studies [32, 33]. Data analysis was conducted using GraphPad
Prism 9.5 software (San Diego, CA, USA), SPSS Version 27.0
software (SPSS Inc., Chicago, IL, USA), R (version 4.2.3), and
the online BioLadder tool (bioladder.cn) [36]. Normality was
assessed using the Kolmogorov-Smirnov test or Shapiro-Wilk
test. Independent sample t-tests were used to compare differ-
ences between normally distributed data. The Mann-Whitney
test compared differences between non-normally distributed
data. Categorical variables were compared using the Chi-
squared test. A two-tailed p-value <0.05 was considered signif-
icant. For multiple comparisons, the Bonferroni correction was
applied (¢ =0.05, adjusted p-values = p-values X n, where n is the
number of comparisons).

3 | Results
3.1 | Patient Characteristics

The clinical characteristics of the enrolled patients with
IgG4-RD are shown in Table 1. Patients with IgG4-RD analyzed
in this study included 228 men (58.5%) and 162 women (41.5%)
with a mean age of 55.5years at the time of plasma sampling.
Of these patients, 141/232 (60.8%) had a self-reported history of
allergies such as allergic asthma, allergic rhinitis, and allergic
dermatitis. In addition, 381/390 (97.7%) of patients had com-
plete medical record information regarding the involved organs.
Overall, 364/390 (93.3%), 281/344 (81.7%), and 77/388 (19.8%) of

TABLE1 | Clinical characteristics of IgG4-RD patients.

IgG4-RD
Characteristics (n=390)
Age, mean (range), years 55.5(17-88)

Sex, no. male/female
IgG4-RD RI, median (Q1, Q3)
Allergy history, n (%)
Allergic rhinitis, n (%)
Allergic asthma, n (%)
Allergic dermatitis, n (%)
Involved organs
Pancreas, n (%)
Bile duct, n (%)
Paranasal sinus, n (%)
Lacrimal gland, n (%)
Submandibular gland, n (%)
Parotid gland, n (%)
Retroperitoneum, n (%)
Kidney, n (%)
Lung, n (%)
Pituitary, n (%)
Lymph node, n (%)
Artery, n (%)
Liver, n (%)
Thyroid, n (%)
Skin, n (%)
Gastrointestinal tract, n (%)
Mediastinum, n (%)
Elevated serum IgG4 (> 1400 mg/L), n (%)
Elevated serum IgE (> 60KU/L), n (%)
Elevated eosinophils (> 5%), n (%)
Both elevated IgE and 1gG4, n%

228:162 (1.4:1)
6 (4, 10)
141/232 (60.8)
78/232 (33.6)
32/232(13.8)
2/232(0.9)

140/381 (36.7)
47/381 (12.3)
61/381 (16.0)
166/381 (43.6)
159/381 (41.7)
56/381 (14.7)
38/381 (10.0)
37/381 (9.7)
59/381 (15.5)
6/381 (1.6)
105/381 (27.6)
28/381 (7.3)
8/381 (2.1)
7/381 (1.8)
2/381(0.5)
1/381(0.3)
9/381 (2.4)
364/390 (93.3)
281/344 (81.7)
77/388 (19.8)
269/344 (78.2)

4
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these patients respectively exhibited elevated IgG4 levels, IgE
levels, and relative numbers of eosinophils. 269/344 (78.2%) of
these patients exhibited both elevated IgE and IgG4 levels in
their plasmas.

3.2 | Distinct Allergen-Specific IgE and IgG4
Profiles in IgG4-RD

Given that studies have reported that IgG4 competes with IgE
for allergens, we sought to explore the patterns of immuno-
dominance and reactivity that characterize allergic antibody
responses in IgG4-RD. Accordingly, the PhIP-Seq approach to
whole-human proteome seroreactivity analyses was utilized
[37], analyzing the reactivity of both IgE and IgG4 immuno-
captures in plasma samples from 370 IgG4-RD patients and
354 sex- and age- matched healthy controls. IgE and IgG4
reactivity to allergen peptides suggested heterogeneity be-
tween IgG4-RD patients and healthy controls (Figure 1A).
Differences in the distribution of antibody responses against
allergens and allergen reactive signatures are displayed in
Figure 1B,C. The identification of the differences between en-
riched allergen-specific IgE and IgG4 antibody signatures in
IgG4-RD represents a step toward understanding the poten-
tial pathogenesis of IgG4-RD.

3.3 | Identifying Disease-Specific Allergens in
IgG4-RD

Furthermore, differences in the composition of overall en-
riched allergen-specific IgE and IgG4 antibody repertoires
were explored in patients with IgG4-RD and healthy controls
by analyzing the proportions of reactive allergens and the
number of mapped peptides associated therewith (Figure 2A).
The results identified a total of 42 allergens. Enriched IgE
responses to 10 allergens were only observed in IgG4-RD
patients, including Equus caballus, Hevea brasiliensis, Lens
culinaris, Olea europaea, Penicillium citrinum, Periplaneta
americana, Polybia paulista, Prunus dulcis, Staphylococcus
aureus, and Vespula vulgaris; Similarly, IgG4 responses to-
ward 10 allergens were only observed in patients, including
Anisakis simplex, A. hypogaea, Fagopyrum esculentum, Lates
calcarifer, Lupinus angustifolius, Oryza sativa Japonica Group,
Poa pratensis, P. paulista, Tyrophagus putrescentiae, and V.
vulgaris. Notably, both IgE and IgG4 allergic responses toward
P. paulista and V. vulgaris were observed in patients but not in
controls. Moreover, IgE-based allergic responses to A. simplex,
A. hypogaea, L. calcarifer, and O. sativa Japonica Group were
observed among controls whereas these responses were IgG4-
associated among patients. Conversely, allergic responses to S.
aureus were IgE- and IgG4-dominant in patients and controls,
respectively.

Because the discrepancies in antibody responses toward the
same allergens may account for varying allergic trajectories
between patients and controls, differential analyses were con-
ducted by calculating fold change (FC) and adjusted p-values
based on the RPM. For each peptide, FC values were calcu-
lated by dividing the RPM value of each IgG4-RD sample by
the mean RPM of all matched HC samples [27]. Volcano plots

suggested significant differences in allergen peptides associated
with IgE and IgG4 responses between patients and controls (FC
> 1.2, adjusted p <0.05) (Figure 2B). In total, IgE responses to-
ward 15 peptides of 11 allergens were found to be enhanced in
individuals with IgG4-RD compared to matched controls. Of
these, eight allergens were consistent with the allergens associ-
ated with IgE responses only observed in patients in the above
analyses. The remaining four peptides were derived from three
allergens including Apis mellifera, Dermatophagoides farina,
and Triticum aestivum. In addition, IgG4 responses toward one
peptide from Aspergillus fumigatus was observed to be upregu-
lated in patients compared to controls. IgG4 responses against
19 peptides mapped to 13 allergens including Aedes aegypti, A.
mellifera, Canis lupus familiaris, Corylus avellana, D. farinae,
Dermatophagoides pteronyssinus, Dolichovespula maculata,
Gallus gallus, Pangasianodon hypophthalmus, P. americana,
Sarcoptes scabiei, S. aureus, and Zea mays were overrepresented
among healthy controls relative to patients. This could be as-
sociated with greater tolerogenicity against these allergens in
controls but does not exclude the possibility that some IgG4-
mediated allergic responses against certain allergens may be
linked to the pathogenesis of IgG4-RD.

3.4 | Identification of the Top 10 Disease-Specific
Allergen Peptides in IgG4-RD

A total of 40 peptides associated with 13 allergens were selected
as candidate IgE-reactive peptides, while 45 peptides associ-
ated with 11 allergens were selected as candidate IgG4-reactive
peptides. Subsequently, XGBoost-based machine learning was
applied to predict IgG4-RD onset using these allergen pep-
tides. XGBoost models were trained and tested repeatedly with
10/15/20 repetitions of five-fold cross-validation with five dis-
tinct random seed initializations for both training and testing
phases (Figure 3A). ROC curves and confusion matrices eval-
uated the model's performance. Outputs encompassed feature
importance plots for both training and independent test data-
sets, and ROC curves and confusion matrices for independent
datasets. The models achieved an area under the ROC curve
(AUC) ranging from 0.91 to 0.96 (Figure 3A,B). The frequency
of allergen peptides and their representative proteins ranked
in the top 10 for feature importance across repetitions. These
peptides made up the core features differentiating patients
with IgG4-RD from controls (Figure 3C). Principal component
analysis (PCA) was conducted to visualize individual diversity
in allergen repertoires based on the top 10 allergen-associated
peptides (Figure 3D). Furthermore, allergic responses toward
these peptides were compared based on RPM (Figure 3E). The
prevalence and corresponding odds ratios (ORs) for these re-
sponses are shown in Figure 3F. Detailed description about top
10 and other main allergen peptides in this study can be found
in Data S1 (Table S1) and Data S2.

3.5 | Identification of Allergens Related to
IgG4-RD Clinical Characteristics

To further explore the association between allergen-specific an-
tibody response and serum levels of total IgE and total IgG4, as
well as peripheral blood eosinophils, patients were stratified by
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FIGURE1 | Patterns of allergen-specific IgE and IgG4 reactivity. (A) Principal component analysis (PCA) of reactive allergen peptides suggests

heterogeneity in allergen-specific IgE and IgG4 antibody responses between IgG4-RD patients and healthy controls. (B) Venn diagram showing
the number of reactive allergens recognized by IgE and IgG4 antibodies in patients with IgG4-RD and matched controls. (C) Scatter diagrams for
allergen-specific IgE and 1gG4 responses in patients with IgG4-RD and matched controls.

these parameters, as well as confounding factors, such as age and
sex. Heatmap showed enrichment patterns of IgE/IgG4 reactiv-
ity among the top 10 peptides. Cluster A showed stronger IgE re-
sponses to peptides ALE008081330-370 from Dermatophagiodes

farinae, ALE0175410-40 from P. paulista, ALE0017911386-1426
and ALE001721363-403 from A. mellifera, while cluster B ex-
hibited stronger IgG4 responses to peptides ALE00302/66-106
from A. fumigatus, ALE00197I231-271 from A. hypogaea,
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FIGURE 2 | The identification of disease-specific allergens in IgG4-RD. (A) Donut charts showing the proportions and numbers of mapped pep-
tides for reactive allergens identified in the allergen-specific IgE and IgG4 antibody repertoires of patients and matched healthy controls. (B) Volcano
plots of IgE- and IgG4-reactive allergen peptides that differed significantly between patients and matched controls. Differentially expressed peptides
are identified using a log, fold change (log,FC) threshold of llog,FC|>0.263 (corresponding to FC>1.2 or FC <0.833) and an adjusted p-value thresh-
old of -log, ,(adj. p)>1.301 (adj. p <0.05). Corresponding allergen names and more peptide details are available in the Data S2.
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FIGURE 3 | Antibody binding to candidate peptides in patients and matched controls (A) Development and evaluation of an XGBoost-based ma-

chine learning model for IgG4-RD onset. (B) The ROC curve and confusion matrix of an XGBoost-based machine learning model (seed: 498, five-fold

cross-validation, 20 repetitions) (C) Top 10 most frequently occurring allergen peptides in feature importance plots from training and testing data-

sets. (D) Principal component analysis (PCA) of the top 10 allergen-associated peptides. (E) Levels of antibody responses toward the top 10 allergen-
associated peptides. (F) Odds ratios (ORs) and 95% confidence intervals (CIs) for these peptides. *adjusted p <0.05; **adjusted p <0.01; ***adjusted

p <0.001; ****adjusted p <0.0001.

and ALE017541264-304 from P. paulista (Figure 4A). We ob-
served that IgE/IgG4 reactivity to top 10 allergen peptides are
possibly different in IgG4-RD patients with different levels of
EOS%, IgE, IgG4, and IgG4-RD responder index (RI) score, but
have a weak capacity of differentiating patients with different
urban residency and self-reported allergy history (Figure 4B,
Figure S2A-E). Notably, patients with higher IgG4 response to
ALE01201/1122-1162 showed a tendency toward higher IgG4,
EOS%, and IgE levels (Figure 4A,C). Additionally, the associa-
tion between organ susceptibility and the top 10 peptides was
investigated, organ-specific subgroups containing fewer than
10 positive patients were omitted from analyses. For the most
frequently involved organs in our cohort, higher responses to P.
paulista and A. mellifera were associated with lacrimal gland and
submandibular gland involvement, A. hypogaea and L. calcar-
ifer with pancreas involvement. Additionally, higher responses
to A. mellifera were associated with parotid gland, kidney, and
lung involvement, and L. calcarifer with bile duct, paranasal
sinus, and lymphnode. Hence, allergen-specific responses may

be associated with organ involvement (Figure 4D). Pie charts
display the relative contribution of each peptide to specific organ
involvement, without implying causal associations.

3.6 | Verification of A. hypogaea Allergen Arah 1in
IgG4-RD Patients

A. hypogaea allergen Arah 1 was selected to validate these
findings based on the feature importance of ALE00197 across
XGBoost models, the importance of Arah 1 protein in A. hypo-
gaea, and the other five candidate peptides from A. hypogaea in
the initial selection (Table 2, Figure 5A).

ELISA was conducted to identify IgG4 levels against A. hypo-
gaea allergen Arah 1 in plasma samples from IgG4-RD patients,
compared with healthy controls. Samples from 51 IgG4-RD pa-
tients and 24 healthy controls were collected, including samples
from 20 additional patients independent of the previously tested
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FIGURE4 | Correlations between identified allergens and patient characteristics. (A) Nonbiased hierarchical clustering of patients based on anti-
body responses to the top 10 peptides, stratified by age, sex, EOS%, IgG4, and IgE levels. (B) Principal component analysis of allergen peptide respons-
es among different subgroups. (C) Comparison of EOS%, IgE, and IgG4 in patients with higher and lower [gG4 response to ALE01201/11122-1162.
(D) Allergen response relative contribution in IgG4-RD patients with different organ involvement.

TABLE 2 | All candidate allergen peptides from Arachis hypogaea.

Antibody

Allergen peptide response Allergen IUIS Sequence
ALEO001971231-271 I1gG4 A. hypogaea Arah1 NLREGEPDLSNNFGKLFEVKPDKKNPQLQDLDMMLTCVEI
ALE002311396-436 I1gG4 A. hypogaea Arah1 EPDLSNNFGRLFEVKPDKKNPQLQDLDMMLTCVEIKEGAL
ALE002241396-436 I1gG4 A. hypogaea Arah1 NLREGEPDLSDNFGRLFEVKPDKKNPQLQDLDMMLTCVEI
ALE001961330-370 I1gG4 A. hypogaea Arah3 TICTATVKKNIGRNRSPDIYNPQAGSLKTANELNLLILRW
ALE0021010-40 IgG4 A. hypogaea Arah 10.0101 MTDRTQPHTVQVHTTAGRFGDTAAGTNRYPDRGPSTSKVI
ALE00234|CTERMISTOP IgG4 A. hypogaea Arah 12.0101 TNASCDDHCKNKEHFVSGTCMKMACWCAHNC
A B

Independent validation cohort

ALE00197|231-271/Arah1/ Arachis hypogaea : Arah1 Arah1

Stable and repetitive occurrence in top 10

allergen peptides in XGBoost models 30 ol 15
4 * kK

Six allergen peptides from Arachis hypogaea identified g 20 E 1
only enriched in IgG4 responses in IgG4-RD compared é‘:’ 2 104
to HC, consisting of 3 Arah1 allergen peptides o 8 1

° s 1 -
g 10 E 1
| Arah1-key allergen protein in Arachis hypogaea allergy | 2 . g 5

| Selecting Arah1 for validation | Sl — “"‘"'I"“"' """" o T 0T
1gG4-RD HC IgG4-RD He

FIGURE 5 | Validation of Arahl-specific IgG4 levels assessed by ELISA. The results are normalized as the ratio of the OD value to median
OD +3MAD obtained in HCs per experiment. (A) Rationale of selecting Arahl for validation. (B) ELISA results for 51 IgG4-RD patients and 24
HCs, including 20 additional patients independent of peptide-based high-throughput immunoprecipitation sequencing cohort. ***adjusted p <0.001;
*#x*kadjusted p <0.0001. OD, optical density, HC, healthy control, MAD, Median absolute deviation.

cohorts. Arahl-specific IgG4 levels were significantly higher in
IgG4-RD patients than in healthy controls, with similar results

TABLE 3 | Treatment of follow-up patients with IgG4-RD.

observed in independent validation cohort (adjusted p<0.05, Follow-up cohort IgG4-RD
Figure 5B). Results for Arahl blocking experiment eliminated Treatment received, N (%)
interference of nonspecific binding (Figure S3).
GC monotherapy 13/102 (12.7)
GC+IMs 69/102 (67.6)
3.7 | Temporal Analysis of the Top 10 Allergen
Peptides in IgG4-RD IMs monotherapy 11/102 (10.8)
Watchful waiting 9/102 (8.9)

Next, a follow-up analysis of 102 IgG4-RD patients was con-
ducted after a median period of 3years (median, Q1, Q3, 3.0,
2.1, 4.0), evaluating their IgE and IgG4 responses to allergens
as above. Treatment details of follow-up cohort are shown in

Note: IMs were primarily Mycophenolate mofetil (n = 34), Methotrexate (n=15),
Leflunomide (n=14), Azathioprine (n=>5), and others.
Abbreviations: GC, glucocorticoids; IM, immunosuppressive therapy.

Table 3. The results showed that a single peptide among the
top 10 peptides—ALE0196010-40 belonging to S. aureus—re-
mained reactive in IgG4-RD patients at this follow-up time
point (Figure 6A,B). Significantly, the IgE-to-IgG4 transition of

allergic responses to ALE0196010-40 was observed in patients
with IgG4-RD (Figure 6B), suggesting the potential establish-
ment of allergic tolerance against S. aureus, in line with the
stronger 1gG4 responses against S. aureus observed in healthy
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FIGURE6 | Temporal verification of candidate allergens and their peptides. (A) Scatter diagrams corresponding to allergen-specific IgE and IgG4
responses in IgG4-RD patients at the follow-up time point. (B) Identification of 1 of the top 10 peptides at both time points, and the overall transition
of antibody responses. (C) Responses toward the top 10 allergens in sequential samples. *adjusted p <0.05; ****adjusted p <0.0001.

controls (Figure 2B). Furthermore, patient responses toward the
top 10 allergens were characterized in the sequential samples,
and 8 of them were significantly decreased, which may be attrib-
utable to the general inhibition of abnormal immune responses
when undergoing treatment (Figure 6C).

4 | Discussion

This study involved a pan-allergen-specific IgE and IgG4 tra-
jectory assessment and sequential analysis in a large cohort
of IgG4-RD patients, compared with those from sex- and age-
matched healthy controls via PhIP-Seq. This study offers novel
insights into the distinct allergic responses that may differenti-
ate individuals with IgG4-RD and healthy controls, while also
exploring their association with clinical features. The top 10
allergen peptides linked to the pathogenesis of IgG4-RD were
identified through XGBoost-based machine learning. The anal-
ysis suggested significant differences in IgE and IgG4 responses
toward particular allergens, notably A. mellifera and A. hypo-
gaea, implying their potential roles in IgG4-RD pathogenesis
and associated organ involvement. Although experimental con-
firmation remains necessary, delineating these allergen specific
antibody signatures furnishes a focused roadmap for future
mechanistic and translational investigations in IgG4-RD.

The allergens detected in healthy controls in this study are
consistent with frequently reported common allergens in other
domestic and international studies published to date, empha-
sizing the strong credibility of our results. In 1981, the Codex
Alimentarius Commission (CAC) defined the eight most im-
portant food allergens as gluten, crustaceans, eggs, fish, pea-
nuts, soybeans, milk, and nuts, accounting for more than 90%
of all allergic reactions to foods [38, 39]. In China, a 13-year
multicenter retrospective study found that the top three most
common aeroallergens among allergic rhinitis patients were D.
farinae, Dermatophagiodes pteronyssinus, and Blatella german-
ica [40]. These reported allergens were also largely represented
in our dataset.

To the best of our knowledge, our study presents the first detailed
description of a predominant association between A. mellifera
and allergen-induced IgE allergic responses in patients with
IgG4-RD. Regarding bee allergies, research has shown that the
frequency of IgG4-switched phospholipase A2 (PLA)-specific
memory B cells were increased in allergic patients during aller-
gen immunotherapy (AIT) and healthy beekeepers after venom
exposure, while circulating IgE-switched PLA-specific B cells
cannot be detected, which may be due to the very low frequencies
of these circulating IgE-switched memory B cells [41]. Increased
expression of IL-10 and IgG4 are observed in B cells specific for
PLA isolated from nonallergic beekeepers [42]. In our results,
we identified specific allergens uniquely recognized by either
IgE or IgG4 antibodies in IgG4-RD patients, underscoring the
complexity of the immune mechanisms underlying this disease.

Notably, enhanced IgE reactivity against allergens such as A.
mellifera was more frequently observed in patients with involve-
ment of organs like the lacrimal glands, parotid glands, parana-
sal sinuses, lungs, and kidneys. Conversely, the stronger 1gG4
reactivity observed among healthy controls suggests potential
immunoregulatory mechanisms that are impaired or dysregu-
lated in IgG4-RD, contributing to disease onset or progression.

Validation of increased IgG4 responses to A. hypogaea aller-
gen Arah 1 by ELISA in independent cohorts further supports
the hypothesis of allergen-driven immune dysregulation in
IgG4-RD. Notably, this elevated response was linked to pancre-
atic involvement, suggesting a possible mechanistic connection
between allergen exposure and organ-specific inflammation.
While previous research has reported aberrant IgG4 responses
to peanut allergens [23], our comprehensive analysis provides
stronger empirical evidence, highlighting the importance of de-
tailed allergen-specific profiling.

Another significant observation from our study was the shift
from IgE to IgG4 antibody responses against S. aureus aller-
gens during follow-up. Though S. aureus is not a typical aller-
gen with common knowledge, several research has reported that
it can induce IgE/IgG4 responses in allergic diseases [43, 44].
Additionally, as an infectious factor, S. aureus has been reported
as a risk factor for relapses in granulomatosis with polyangiitis
(GPA) [45-48]. Behind the GPA, the possible role of S. aureus car-
riage condition has been explored in other autoimmune diseases
such as rheumatoid arthritis and systemic lupus erythematosus
[49]. Prior studies have also reported a shift from IgE to IgG/
IgG4 reactivity in response to AIT [26, 41, 50]. Our finding could
indicate the emergence and establishment of allergic tolerance
against this bacterial species in line with the stronger 1gG4 re-
sponses against S. aureus we observed in healthy controls, but
we cannot exclude alternative explanations such as the influence
of natural half-lives of different antibody isotypes or the broad
effects of immunosuppressive therapy. The shift from disease-
associated to healthy-like antibody responses against S. aureus
is possibly induced by reduced inflammation, therapy-mediated
modulation, or epithelial barrier repair. This phenomenon, evi-
dent in our longitudinal data, suggests that therapeutic interven-
tions may favorably modulate immune responses, reflecting the
dynamic antibody-mediated immune regulation in IgG4-RD.

IgG4 antibodies uniquely undergo Fab-arm exchange, a sto-
chastic and dynamic process involving swapping of a heavy-
light chain pair (half-molecule) with another molecule,
resulting in bispecific antibodies [51]. Additionally, IgG4 anti-
bodies exhibit increased glycosylation within variable domains
[13]. Conventionally, IgG4 is viewed as an anti-inflammatory or
tolerogenic antibody due to its limited ability to cross-link anti-
gens and form immune complexes [51, 52]. However, advances
in analytical and structural methods have progressively un-
veiled potential pathogenic roles of IgG4 in allergic conditions
such as allergic rhinitis, asthma, and atopic dermatitis [52].
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Notably, in eosinophilic esophagitis, significant IgG4 deposi-
tion in esophageal tissue has been reported, implying that IgG4
molecules can accumulate and form immune complexes under
certain conditions, such as high antibody concentrations, cross-
linking among antibodies from a single source, and optimal al-
lergen size and conformation [21, 53]. Therefore, the function
of IgG4 is complex and requires further investigation. IgG4
biological function may depend on multiple factors including
antibody isotype proportion and concentration, antigen concen-
tration and physical properties, immune microenvironment, as
well as genetic background of individuals. Our findings suggest
heterogeneous IgG4 responses toward different allergens. Some
responses appear consistent with the known anti-inflammatory
properties of IgG4, exemplified by an IgE-to-IgG4 class switch
against S. aureus peptides observed in IgG4-RD patients follow-
ing treatment, and elevated IgG4 reactivity to various allergens
even among healthy individuals. In contrast, other responses
may reflect pathogenic contributions of IgG4 in IgG4-RD, exem-
plified by significantly increased IgG4 reactivity against A. hypo-
gaea correlating with pancreatic involvement in patients relative
to controls. The precise mechanisms underlying these diverse
IgG4-mediated effects remain unclear, necessitating additional
mechanistic studies to elucidate these relationships fully.

By integrating machine learning (XGBoost), our study robustly
identified the most predictive allergen peptides, offering poten-
tial biomarkers for diagnosing and monitoring IgG4-RD. The
high predictive accuracy (AUC: 0.91-0.96) suggests the clinical
relevance of allergen-specific IgE and IgG4 signatures, which
may facilitate personalized therapeutic approaches. However,
additional research is required to elucidate the biological impli-
cations of these identified allergen-antibody interactions fully.

Our findings align with globally recognized allergens such as D.
farinae and D. pteronyssinus, reinforcing the external validity of
our allergen repertoire. Nevertheless, although extensive, our al-
lergen set was not exhaustive, and inherent limitations of PhIP-
Seq—including the inability to detect discontinuous epitopes
and post-translational modifications—must be acknowledged.
Moreover, the bispecific nature of IgG4 antibodies resulting
from Fab-arm exchange was not explicitly addressed, high-
lighting another critical area for future investigation. Another
limitation is that we did not ascertain the isotype purity of the
immunoprecipitation eluates. The bead-bound state and low
concentrations of bead-enriched IgE and IgG4 precluded pre-
cise isotype quantification of the eluates; accordingly, we re-
stricted measurements to plasma IgE and IgG4 concentrations
and cannot exclude low-level co-elution of IgG1/IgA that could
confound downstream assays. Although we used highly specific
capture antibodies and low-nonspecific-binding magnetic beads
to minimize carryover, residual uncertainty remains. Future
studies incorporating direct analysis of eluate composition will
be essential to confirm and refine these findings. In addition, we
did not perform stratified analyses by clinical phenotype (e.g.,
pancreas, lacrimal gland, submandibular gland) due to small
subgroup sizes in our cohort; therefore, definitive conclusions
regarding organ-specific antibody signatures in IgG4-RD will
require larger, phenotype-enriched cohorts.

Despite these limitations, this study substantially enhances
understanding of IgG4-RD pathogenesis by highlighting the

importance of allergen-directed immune responses and provid-
ing a foundation for mechanistic work. Abnormal IgE and IgG4
reactivity to certain allergens was more prevalent in patients
than in matched healthy controls and may be associated with
organ involvement. These findings are compatible with a possi-
ble role for allergen-directed antibody responses in the inflam-
mation and immune activation underlying IgG4-RD and may
inform future mechanistic studies; nevertheless, confirmation
and refinement through assays that directly quantify isotype
carryover remain necessary. Our results also underscore the
emerging association between allergy/atopy and IgG4-RD, al-
though the precise roles of allergy/atopy in disease onset remain
to be defined. Further research is warranted to clarify these
mechanistic links and to evaluate whether allergen profiling
can improve clinical monitoring or inform targeted therapeutic
strategies for this complex disease.
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