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a b s t r a c t

State-and-transition models (STMs) have been successfully combined with Dynamic Bayesian Networks
(DBNs) to model temporal changes in managed ecosystems. Such models are useful for exploring when
and how to intervene to achieve the desired management outcomes. However, knowing where to
intervene is often equally critical. We describe an approach to extend state-and-transition dynamic
Bayesian networks (ST-DBNs) d incorporating spatial context via GIS data and explicitly modelling
spatial processes using spatial Bayesian networks (SBNs). Our approach uses object-oriented (OO) con-
cepts and exploits the fact that ecological systems are hierarchically structured. This allows key phe-
nomena and ecological processes to be represented by hierarchies of components that include similar,
repetitive structures. We demonstrate the generality and power of our approach using two models d

one developed for adaptive management of eucalypt woodland restoration in south-eastern Australia,
and another developed to manage the encroachment of invasive willows into marsh ecosystems in east-
central Florida.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bayesian networks (Pearl, 1988) are increasingly popular for
ecological and environmental modelling, decision support and
adaptive management (Nyberg et al., 2006; Korb and Nicholson,
2010; Aguilera et al., 2011). Ecosystem management problems
characteristically involve variable, complex and imperfectly un-
derstood biophysical, social and economic interactions. The itera-
tive knowledge-engineering process of developing BNs is
invaluable for: a) clarifying objectives; b) identifying and articu-
lating alternatives; c) synthesising available knowledge; d) quan-
tifying uncertainties and d) pinpointing critical assumptions to be
tested by purposeful monitoring. When fully parameterised, such
models help us explore and (where possible) resolve uncertainty
about the consequences of management decisions. This is integral
to adaptive management (sensuHolling, 1978;Walters and Hilborn,
1978) which supplies the broader framework for evaluating the
performance of decision actions and updating our knowledge base
to improve future management (Nichols and Williams, 2006;
Duncan and Wintle, 2008).

Despite the obvious value of using BNs to support learning over
time for adaptive management (see e.g., Ames et al., 2005; Chee
et al., 2005), most published examples of BNs for environmental
applications have focused on formalising static conceptual models
of the system in question, and do not explicitly represent ongoing
dynamics (e.g. multiple time steps and sequential decisions)
(Barton et al., 2012). Examples that incorporate spatiality explicitly
are even rarer. Yet it is critical to address these gaps because the
ability to understand change over time, and to account for spatial
context and interactions is often necessary for meaningful decision
support.

For instance, in our eucalypt woodlands case study, restoring
species composition, ecosystem structure and function is a long-
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term undertaking that needs to effectively manage threats like
weed establishment, so that the recovery process can build upon
successive gains. In our invasive willows management case study,
control efforts are long-term because adult willows have become
firmly established within the catchment. In both cases, spatial
considerations are crucial because the encroachment of weeds (in
woodlands) and willow seedlings (in marsh ecosystems) depends
on seed production and dispersal from surrounding areas, and
spatial characteristics also determine the applicability and effec-
tiveness of management actions.

State-and-transition dynamic Bayesian networks (ST-DBNs) as
described by Nicholson and Flores (2011) provide a viable approach
for explicitly modelling change over time. Here, we extend the
capabilities of ST-DBNs e first, coupling them to GIS data so we can
harness spatially relevant data, and then explicitly modelling key
spatial processes using spatial Bayesian networks (SBNs). Our
approach makes use of object-oriented (OO) concepts and exploits
the fact that ecological systems are hierarchically structured such
that key phenomena and processes of interest can be represented
by nesting components that include similar, repetitive structures.

First, we explain the ‘buildings blocks’ and concepts of the tools
we use for modelling spatial and temporal changes with BNs. We
then present and illustrate our approach using two modelsdone
developed for adaptive management of eucalypt woodland resto-
ration in south-eastern Australia (‘Woodlandsweed’model, Rumpff
et al. (2011)), and another developed to manage willow spread into
marsh ecosystems in east-central Florida, USA (‘Willows’ model,
Wilkinson et al. (2013)). Of course, incorporating spatial context
and processes can lead to a massive increase in the size and
complexity of the networks, which in turn generates computational
issues and difficulties with the probabilistic updatingdwe discuss
our approach to handling these challenges and provide a generic
system architecture, templates and algorithms for combining GIS,
object-oriented spatial BNs and object-oriented state-transition
DBNs.

To our knowledge, this is the first demonstration of the inte-
gration of these three tools. This novel and powerful approach al-
lows the incorporation of spatial context where it is critical for
decision-making.

2. Background: building blocks and OO concepts

State-and-transition models (STMs) are management-focused,
qualitative conceptual models that synthesise knowledge about an
ecological system, in the form of observed and/or hypothesised
system states and transitions that are of management interest
(Westoby et al., 1989; Jackson et al., 2002). STMs are a popular tool
for modelling changes over time in ecological systems that have
clear transitions between distinct states. They combine graphical
depiction of transitions and their causal factors with tables of
qualitative descriptions of the transitions. They have been widely
applied both to understand and help manage vegetation change in
ecosystems such as rangelands (e.g., Westoby et al., 1989;
Bestelmeyer et al., 2003; Bashari et al., 2009), grasslands (e.g.,
Sadler et al., 2010) and woodlands (e.g., Yates and Hobbs, 1997b;
Rumpff et al., 2011).

Bayesian networks (BNs) are graphical models of cause-effect
relationships used for reasoning under uncertainty. More
formally, a Bayesian network (Pearl, 1988) is a directed, acyclic
graph whose nodes represent the random variables in the problem.
A set of directed arcs connect pairs of vertices, representing the
direct dependencies of variables. The set of nodes pointing to X are
called its parents and is denoted pa(X). BNs display key variables in
the system succinctly, showwhich variables are linked and how the
causal chain or argument links events to outcomes of interest. The
relationship between variables is quantified by conditional proba-
bility tables (CPTs) associated with each node, namely P(Xjpa(X)).
The CPTs together compactly represent the full joint distribution.
Users can set the values of any combination of nodes in the network
that they have observed. This evidence, e, propagates through the
network, producing a new posterior probability distribution P(Xje)
for each variable in the network. There are a number of efficient
exact and approximate inference algorithms for performing this
probabilistic updating, providing a powerful combination of pre-
dictive, diagnostic and explanatory reasoning.

Dynamic Bayesian Networks (DBNs) are a variant of ordinary
BNs (Dean and Kanazawa, 1989; Kjærulff, 1992; Nicholson, 1992)
that explicitly model changes over time and can be used to model
feedback functions in problem contexts where this is important. A
typical DBN has nodes for N variables of interest and for each
domain variable X1, there is one copy for each time slice for interest:
XT
i , X

Tþ1
i , XTþ2

i etc. Links in a DBN include those between nodes in
the same time slice, and those in the next time slice. Of the latter,
temporal arcs may link the same variable over time, XT

i /XTþ1
i , and

different variables over time, XT
i /XTþ1

j . Environmental applica-
tions employing DBNs are scarce (e.g., Shihab and Chalabi, 2007;
Dawsey et al., 2007; Shihab, 2008). This may be because they are
perceived to be “very tedious” (Uusitalo, 2007), or because DBN
algorithms are available only in software resulting from research
projects1, with DBN functionality less well supported in popular
commercial products.

State-and-transition Dynamic Bayesian Networks (ST-DBNs)
combine the advantages of graphical visualisation of transitions
and their influencing factors with quantitative representation of
dependencies and uncertainty, along with explicit representation
of time. Our example models are based on Nicholson and Flores
(2011)'s template.

ST represents the state of the system, has n possible values s1…
sn, and may directly influence any of the environmental and man-
agement factors, which are divided into m main factors, F1, …, Fm
(which directly influence transitions) and other sub-factors, X1, …,
Xr (which influence the main factors).

Transition nodes, ST1,…, STn, represent the transitions from each
state si. Each has at most nþ 1 values (usually fewer), one for each
“next” state plus “impossible”, giving explicit modelling of impos-
sible transitions. Like ordinary DBNs, there is an implied dT, which
can be included explicitly as a parent of all the ST nodes, if the time
step varies. Each transition node ST has only some of the causal
factors as parents. The CPT for the ST node is just a partition of the
corresponding CPT if the problem was represented as an ordinary
DBN, without the transition nodes. The next state node, STþ1, has to
combine the results of all the different transition nodes, given the
starting state S, and thus has nþ 1 parents. However, the rela-
tionship between the transition nodes and STþ1 is deterministic, so
the CPT can be generated from a straightforward equation.

It is important to note that ST-BNs that explicitly model all the
transitions, only remain tractable when there are natural con-
straints in the domain; that is, if the number of transitions from
each state is limited and only influenced by a small number of
causal factors such that the underlying state transition matrix for S
is sparse (Nicholson and Flores, 2011).

2.1. How does object-oriented (OO) thinking help?

The complexity of ecological systems is such that representing
even a moderate degree of ecological realism tends to lead to large
networks. The resulting visual ‘clutter’ of large networks makes
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working on submodels cumbersome and less readily communi-
cable to stakeholders. This problem of network size is compounded
when temporal and spatial dynamics are explicitly integrated.

Although examples in environmental modelling are scant
(Molina et al., 2010; Carmona et al., 2011; Johnson and Mengersen,
2012), OO modelling techniques can help: a) manage BN
complexity via abstraction and encapsulation, b) facilitate the
construction of classes of objects that are internally coherent and
potentially more reuseable, and c) formalise interfaces so that in-
formation flow between OOBNs is properly defined prior to inte-
gration (Koller and Pfeffer, 1997; Neil et al., 2000; Kjærulff and
Madsen, 2008; Korb and Nicholson, 2010; Molina et al., 2010).

We follow the definition of OOBNs used in Kjærulff and Madsen
(2008), and implemented in the Hugin BN software package. A
standard BN is made up of ordinary nodes, representing random
variables. An OOBN class is made up of both nodes, and objects,
which are instances of other classes. Thus an object may encapsu-
late multiple sub-networks (i.e. OOBNs can contain other OOBNs),
giving a composite and hierarchical structure.

Objects are connected to other nodes via some of its own or-
dinary nodes, called interface nodes. Interface nodes specify how
other objects may interact with it, and are divided into input nodes
and output nodes. Input nodes are the root nodes within an OOBN
class, and when an object (instance) of that class becomes part of
another class, each input node may be mapped to a single node
(with the same state space) in the encapsulating class. The output
nodes are the only nodes that may become parents of nodes in the
encapsulating class. Non-interface nodes are not visible to the
“outside world”, thus hiding information detail. An OOBN class can
therefore be thought of as a self-contained template for an OOBN
object, described by its name, its interface and its hidden part.
Potentially, this allows classes to be used as libraries, to be reused
and combined into a model in different contexts (Koller and Pfeffer,
1997).

Since ecological systems are hierarchically structured and key
phenomena and processes of interest can be represented by nested
components of similar, repetitive structures, we exploit this and
convert our example ST-DBNs and SBNs into submodels repre-
sented by objects. Being able to access and display submodels at
varying levels of abstraction within a time slice is useful for
communicating complicated nested model structure to different
audiences. A single time slice of a ST-OODBN can also be thought of
as an object, allowing model structure to be handily replicated over
multiple linked time periods.

3. Two case studies

Here we describe the problem domain and the spatial and dy-
namic processes that need to be modelled for each case study.

3.1. Woodlands case study

Temperate eucalypt woodlands were formerly widespread
throughout southern Australia. Extensive clearing and grazing has
dramatically reduced their extent to remnants of varying size,
quality and isolation (Yates and Hobbs, 1997a). These changes have
led to regional losses of woodland species diversity, community
structure and ecosystem function. Site and landscape level pro-
tection and restoration is necessary to halt and reverse degrading
processes such as further clearing, grazing, nutrient enrichment,
altered fire regimes and invasion of exotic species (Yates and Hobbs,
1997a).

Assessing the restoration requirements and recovery trajec-
tories of woodland sites with different histories, starting states and
variable environmental settings is complex and involves many
uncertainties. The Woodlands model (Rumpff et al., 2011, 2012) set
up the adaptive management conceptual framework in the form of
a ST-BN developed in collaboration with domain experts. A ST-
OODBN version of this model, representing change from time t to
tþ 1 at location (x, y), is shown in Fig. 1. Distinct woodland states
(e.g. “Reference”, “Oldfield”, “Native pasture”, “Thicket”; Fig. 1) are
characterised by different combinations of structural and compo-
sitional attributes (called state variables). These include attributes
such as native species cover and richness, woody recruitment and
weed cover. State variables may change in response to environ-
mental factors, process variables and management actions. In the
context of this model, environmental variables refer to ‘given’, non-
modifiable conditions such as the site's land-use history (e.g. time
since cropping). Process variables, on the other hand, represent site
conditions that are alterable (e.g. grazing pressure and soil phos-
phorus (P) enrichment), and these process variables are affected to
different degrees by the chosen type and level of intensity of
available management actions (e.g. stocking rate, weed control and
soil treatment). Management actions such as direct seeding and the
planting of tube stock can also directly influence state variables.
Threshold changes to state variables result in transitions between
woodland states.

Here we concentrate on modelling the spatial processes that
influence theweed cover state variable. Since weed cover at a site is
strongly influenced by whether there are weed sources in the
surrounding neighbourhood, spatially explicit modelling of this is
necessary for effective management.

3.2. Willows case study

The Upper St. Johns River in east-central Florida has been the
focus of considerable restoration investment (Quintana-Ascencio
et al., 2013). However, the original herbaceous marshlands are
increasingly being invaded by woody shrubs such as Carolina wil-
low (Salix caroliniana Michx.) (Kinser et al., 1997). This change is
undesirable because extensive willow thickets obscure viewsheds,
reduces local vegetation heterogeneity, habitat diversity, navigable
access and scope for recreation activities such as wildlife viewing,
fishing and hunting. The evapotranspiration rate of S. caroliniana is
much greater than that of herbaceous marsh vegetation and so,
large-scale vegetation changes in this headwater catchment may
reduce the amount of water available to both the riparian
ecosystem and humans. Managers seek to control the overall extent
of willows, their rate of expansion into other extant wetland types
and encroachment into recently restored floodplain habitats.
Spatial context matters because areas differ in biodiversity,
aesthetic and recreational value, “invasibility” and applicable in-
terventions; intact vegetation communities are less susceptible to
invasion and prescribed fire depends on the type of vegetation
present and its “burnability”.

The Willows model captures current knowledge and un-
certainties about how key life-history stages and attributes of S.
caroliniana respond to environmental factors and management
actions (Fig. 2). Its purpose is to serve as a decision support tool for
managers to test and learn about the landscape-scale consequences
of different management strategies (Nicholson et al., 2012;
Wilkinson et al., 2013).

Modelling willow spread requires spatially explicit data on
willow occupancy, an understanding of seed production, dispersal,
germination and survival, and how the key life-history stages
respond to environmental factors and management actions.

Model development drew upon knowledge derived from
ecological and physiological theory, field observations, field and
greenhouse experiments and experts (e.g., Kinser et al., 1997;
Pezeshki et al., 1998; Lee et al., 2005a, b; Ponzio et al., 2006;
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State Var(t)

State (t) State(t+1)

Management

State Var(t+1)

Woodlands ST-OODBNx,y,t% cover weeds
Very low
Low
Moderate
High

0
0
0
100

80 ± 12

Native species richness
Very low
Low
Moderate
High

100
0
0
0

10 ± 5.8

...

Weed control
None
Restricted
Extensive spraying
Fire
Crash graze

0
0
100
0
0

Soil treatment
Unmodified
Nutrient removal

100
0

...

Time since grazing
Recent
Mid
Long

100
0
0

1.5 ± 0.87

Time since cropping
Recent
Mid
Long

0
0
100

75 ± 14...

Soil N enrichment
Low
High

100
0 +

2.5 ± 1.4

Soil P enrichment
Low
High

81.5
18.5
13 ± 13...

State (t)
Reference
Oldfield
Native pasture
Simplified
Exotic pasture
Thicket
Derived

0
0
0
0
100
0
0

State (t+1)
Reference
Oldfield
Native pasture
Simplified
Exotic pasture
Thicket
Derived

0
0

12.7
0

87.3
0
0

Fig. 1. ST-OODBN of eucalypt woodland restoration showing the key input nodes (dotted and shaded outlines), and output nodes (bold and shaded outline). Round cornered boxes
represent OOBN classes of the main types of variables that define and ultimately drive changes in woodland state (in yellow). These include: state variables (in orange) which
represent sets of structural and compositional attributes that collectively define distinct woodland states; environmental variables (in purple) which describe non-modifiable site
environmental conditions such as land use history; process variables (in pink) that represent modifiable environmental factors (e.g. soil nitrogen (N) enrichment); and management
actions (in blue) that represent discrete actions (e.g. weed control) that can be implemented to influence state variables directly, or indirectly via process variables. The full model
has eight state variables, nine environmental, five process and ten management variables. For brevity, we show just two illustrative examples of each variable type (belief-bar boxes
indicated by dotted arrows). The reader is referred to Rumpff et al. (2011) for details of the complete set of model variables. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. ST-OODBN for willow management showing the key input nodes (dotted and shaded outlines) and output nodes (bold and shaded outlines). Note that Seed Availability (t) for
germination (in purple) depends on willow seed production and dispersal from a cell's surrounding region and this process is modelled by a separate OO network described in
Section 4. Round cornered boxes represent OOBN classes for the key processes we model. They include seedling germination and survival, annual growth of willow coverage and
stem diameter (in orange), management options (in red) and transitions between willow life stages (in blue). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Quintana-Ascencio and Fauth, 2010).
We used a modelling unit of 100 m � 100 m (1 hectare) in size

and a time step of one year. The stages of management interest
modelled in the Willow Life Stage node are: unoccupied, yearling,
sapling (non-reproductive juvenile) and adult. The key points of
interest are whether willows are present in a cell or not. If present,
what life stage are they in, what is the average size (Rooted Basal
Stem Diameter) and what is the coverage (i.e. proportion of the cell
that is occupied) (see outputs in Fig. 2).
For each cell (spatial unit), data on environmental attributes

such as water availability, soil, vegetation type and landscape po-
sition and context is supplied from GIS data. This data provides
inputs to parameterise the ST-OODBN and seed dispersal model.
The chosen cell size reflects the resolution of available spatial data
for environmental attributes, makes the computational demand
associated with seed dispersal modelling feasible, and is a
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reasonable scale with respect to candidate management actions. A
time step of one year was considered appropriate given the wil-
low's growth and seed production cycle (Nicholson et al., 2012).

4. Modelling spatial processes with object-oriented spatial
BNs (OOSBNs)

Scale is an inherent consideration in modelling spatial processes
because the interactions of interest may vary from highly localised
to spatially extensive. These contrasting situations are exemplified
by each of our case studies (described below). We therefore
developed a generic template with the flexibility to accommodate
different scales of interest.

In this generic OOSBN (Fig. 3), the Process of Interest takes into
account any salient OODBN inputs and can be represented by a
single node or modelled in greater detail by an object. The scale of
the Process of Interest is determined by what we call the spatial
region of influence (RoI) and this in turn, is defined by the Distance
Factor. Each cell (x, y) is influenced by all cells within its RoI (i.e.
ðx01; y01Þ to ðx0n; y0nÞ) and the contributions of these cells is depicted
by the multiple SpatialProcess objects shown within the OOSBN
(Fig. 3). These contributions are accumulated to provide inputs to
the Process of Interest and ultimately, to compute the required
output for the OOSBN.

We present a simple application of the generic OOSBN using the
woodlands study and a more sophisticated instance with the wil-
lows study.

4.1. Woodlands weed model

We are concerned here with clumping weed species whose
spread is localised, proceeding at a maximum rate of one cell unit
OODBN
Inputs

Cumulative
Output

Distance
Factor

Process
Intere

(Node/Ob

Generic OOSBNx,y,t

Spatial Processx',y',t

Fig. 3. Generic OOSBN template for modelling any spatial Process of Interest at variable spat
influence (RoI) is denoted by the multiple Spatial Process objects.
per time step. We used a modelling unit of 25 m � 25 m and a time
step of one year. The goal is to model expected weed cover at a
target cell after taking into account weed spread from its neigh-
bouring spatial region of influence (RoI). In this case, the Distance
Factor equals one and the RoI includes just the eight immediately
adjacent cells (Fig. 4, left). The process of weed spread is repre-
sented by a single node parameterised by expert elicitation (Weed
Spread Process in Fig. 4).

Because neighbouring weed contribution is a simple additive
function, we create a Cumulative Cover node and successively add
the weed contribution from each adjacent cell to the Cumulative
Cover (Fig. 4). This is equivalent to repeatedly “divorcing” parents to
reduce the size of the combinatorial state space (Jensen, 1996). The
modelling of localised weed contribution is thus achieved by
running the OOSBN (Fig. 4) over the spatial dimension of the eight
adjacent cells in a similar way to rolling out a DBN over time.

4.2. Willow seed production and dispersal

The goal here is to model to total amount of seed available for
germination at a target cell, after taking into account seed pro-
duction and dispersal from surrounding cells at a given distance.
Here, the Process of Interest incorporates separate, explicit models
for seed production and dispersal over a distance. The number of
seeds arriving at the target cell is then accumulated to compute the
total quantity of seed available for germination. The sub-models are
described in detail below.

4.2.1. Seed production
S. caroliniana flowers in early spring and produces vast numbers

of small seeds (a median of ~165,000 seeds annually; Quintana-
Ascencio et al., unpublished data). We model seed production
OODBN
Inputs

Cumulative
Quantity

Influencing
Variable

Distance
Factor

Cumulative
Quantity

of
st
ject)

OOSBN
Output

OODBN
Inputs

Cumulative
Quantity

Influencing
Variable

Distance
Factor

OODBN
Inputs

Cumulative
Quantity

Cumulative
Output

Distance
Factor ...

ial scales (via Distance Factor). The contribution of individual cells within the region of



Distance
Factor

Cumulative
Cover

Influencing
Variable

Weed
Cover

Weed
Cover

Cumulative
Cover

Neighbouring
Weeds Contrib

Distance
Factor

Weed Spread
Process

Neighbouring
Weeds Contrib

Distance
Factor

Cumulative
Cover

Influencing
Variable

Weed
Cover

Distance
Factor

Cumulative
Cover

Neighbouring
Weeds Contrib

Weed
Cover

Neighbouring Weeds
Contribution OOSBNx,y,t

WeedSpreadx',y',t
...

Target

Fig. 4. Neighbouring Weeds Contribution OOSBN used in Woodlands model. As weed spread is localised, the Distance Factor is set at one cell unit and the RoI is restricted to the eight
immediately adjacent cells (i.e. x01; y

0
1 to x08; y

0
8) of the target cell (x, y) (left). The contributions from these cells are shown by the multiple WeedSpread objects.
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with a WillowSeedProduction OOBN, which is embedded in the
broader Seed OOSBN shown in Fig. 5. The number of seeds pro-
duced by an adult is given by the product of the number of In-
florescences, the number of Fruits per inflorescence and the number
of Seeds per fruit. Fruits per inflorescence and Seeds per fruit are
defined by distributions estimated from empirical data. The num-
ber of Inflorescences increases as a function of adult size (repre-
sented by Rooted Basal Stem Diameter) and this relationship is
estimated from empirical data.

Coverage is the percentage of a 1 hectare cell that is occupied by
willows and Average Canopy Area is modelled as a function of
Rooted Basal Stem Diameter. Together these two variables provide
an estimate of the number of reproductive stems. Overall seed
Coverage
(t)

Seed OOSBNt
TotalSeedAvailabilityx,y,t
WillowSeedProductionx',y',t

WindDispersalKer

Rooted Basal
Stem Diameter

(t)

Average Canopy
Area

Inflorescences

Seeds per
Fruit

Adult Stems

Fruits per
Inflorescence

Seed
Production

Seeds per
Hectare

Seeds per
Hectare

Alph

See
Dispe

cell (x',y') as
seed source

Fig. 5. Willow Seed OOSBN architecture showing the embedded OOBNs used to compute se
Rooted Basal Stem Diameter and Coverage are used to estimate the Seeds per Hectare produced
depends on Seeds per Hectare from (x', y') and the Distance between cell (x, y) and (x', y'). Fin
arrived from (x', y') with Cumulative Seed Availabilitydthe seed arriving from source cells p
production within a cell, Seeds per Hectare, is then simply the
product of the seed production per stem, by the number of repro-
ductive stems.

4.2.2. Seed dispersal
We model seed dispersal phenomenologically rather than

mechanistically. Wind-mediated seed dispersal is calculated using
the Clark et al. (1999) dispersal kernel:

SDx
0
;y

0

x;y ¼ SPx0 ;y0 �
1

2pa2
e
�
�

d
a

�
(1)
nel(x',y') (x,y),t SeedAvailabilityx,y,t

Distance

a

ds
rsed

Seed
Availability

Seeds
Dispersed...

Cumulative Seed
Availability

(x',y') to
(x,y)

new total seed
at (x,y)

from
(x',y')

from source cells
already processed

ed production, dispersal by wind and total seed availability for germination. Inputs for
within source cell (x', y') at time t. The amount dispersed to each destination cell (x, y)
al Seed Availability for germination at cell (x, y) combines the amount of seed that has
rocessed previously).
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where SDx0 ;y0
x;y is the number of seeds arriving at cell (x, y) from those

produced at a cell (x0, y0); it is the product of seed produced SPx0 ,y0
and an exponential kernel where d is the distance between cells (x,
y) and (x0, y0), and a is a distance parameter.

To simulate stochasticity in dispersal events, a is a random
variable that can be sampled from distributions designed to reflect
the expected nature of dispersal, such as short versus long distance
dispersal (Fox et al., 2009). This seed dispersal model is captured
within theWindDispersalKernel(x0 ,y0)/(x,y),t OOBN (Fig. 5), where the
inputDistance node is set as the distance between cells (x, y) and (x',
y'), and a is set as a discretised normal distributionwith a mean of 1
and a variance of 0.25.

4.2.3. Seed availability for germination
The number of seeds dispersed from a seed-producing cell de-

clines exponentially with increasing distance from that cell such
that after a certain distance, the number of seeds dispersed is
effectively negligible. We model this by specifying a RoI. Seed
availability SAx,y for a target cell (x, y), is then the sum of the seeds
dispersed to it from every seed-producing cell in its RoI:

SAx;y ¼
X

x0 ;y02RoI

SDx
0
;y

0

x;y (2)

The RoI can be designed to take on different shapes and sizes to
reflect potentially important influences on wind dispersal such
wind direction, wind strength and terrain characteristics. For
simplicity in this example however, we assume a circular RoIwith a
radius of 800 m (eight cells). This implies p82, or ~201 cells
providing parents to the final Seed Availability node. If the Seed
Availability node is discretised to n states and the Seeds Dispersed
node discretised to m states, the CPT for Seed Availability would
include n�mp82

probabilities e a massively infeasible number for
any realistic m!

However, because Seed Availability (like neighbouring weed
contribution) is a simple additive function, we can add Seed
Dispersed from each source cell, using the Cumulative Seed Avail-
ability node to store the running total (Fig. 5). So in this example, we
run the seed OOSBN p82 times for each cell (x', y') in the study area
to compute seed production, dispersal and availability for germi-
nation at every cell.
4.3. Belief updating

In both case studies, the OOSBNs for every cell within the
defined spatial RoI can be linked together to produce a single very
large OOBN. However, in the BN software, the exact belief updating
algorithm used to compute the posterior probability distributions
first compiles the BN into a different underlying tree structure
(Jensen et al., 1990), which for such a complex BN produces huge
probability tables that far exceed even what a high-end computer
can store in memory, thus rendering belief updating impossible.

We therefore developed an algorithm (Algorithm 1) to provide a
scalable and computationally feasible solution for belief updating
of the weed spread and seed dispersal OOSBNs. The PROPAGATE
function in Algorithm 1 starts by taking the OOSBN, a list of
PTLayers whose cells correspond to the study area, and the user-
defined RoI.

PTLayers are simply a type of internal data structure that com-
bines the spatial structure of a GIS, with distributions for the (dis-
cretised) nodes in the networks. In the first instance, GIS data
representing initial conditions such as starting Weed Cover for the
woodlands weed study or Coverage for the willows study is stored
in the PTLayer for each node. Each PTLayer contains a number of
fields, one for each of the node states of the linked input (I) and
output (O) nodes. Each field stores the probability mass of the
corresponding node state. In our scheme, PTLayers are used to
provide intermediate storage across the spatial grid. More specif-
ically, we use PTLayers to store and pass the spatially referenced
prior distributions of input (I) nodes and posterior distributions of
output (O) nodes for both the OOSBNs (Figs. 4 and 5) and ST-
OODBNs (described in Section 5).

Algorithm 1 works in an analogous manner in both case studies,
but here we describe how it works with respect to the more
complex willow seed production and dispersal OOSBN.
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In Algorithm 1, I(OOSBN) and O(OOSBN) denote functions that
return the OOSBN interface input and output nodes respectively.
getLayer(PTLayers,V) denotes a function that returns the PTLayer
corresponding to a node V. At commencement, a PTLayer that tracks
seed contributions (cf. Cumulative Seed Availability in Fig. 5) is ini-
tialised to 0 at all (x', y') co-ordinates. Algorithm 1 then loops
through each cell (x', y') in the study area, setting the distribution
for the other input nodes I1…M (e.g., Rooted Basal Stem Diameter and
Coverage, Fig. 5) from their corresponding PTLayer cell. The algo-
rithm then enters a second loop for every cell (x, y) that is a possible
seed destination based on the RoI. The Cumulative Seed Availability
input node is set (via the PTLayer) to the previous seed availability
output, as the model maintains a running total of seed that has
arrived (x, y) at from source cells already processed. The Distance
node is set using a distance function (getDistance). In the wind
dispersal kernel, this is the Euclidean distance between the current
cell and the target co-ordinates. Finally, belief updating is done
within the OOSBN (Fig. 5) and the beliefs (posterior probability
distributions) from the output (Seed Availability) node at each cell
are saved back to the appropriate PTLayer. In our Willows example,
the SAx,y PTLayer will contain the overall RoI-derived total seed
available for germination in each cell. Given a study area of N�N
cells, with a region of interest with radius r cells, the upper bound
on the computational complexity of Algorithm 1 is O(N2r2).
This approach of iteratively rolling out a single OOSBN instance
across space is equivalent to the standard “roll-out” followed by
“roll-up” operation done with two time slice DBNs (Boyen and
Koller, 1998) to avoid the computational complexity of rolling out
a DBN all at once over a large number of time steps. This mitigates
the problem of infeasibly large tables and converts the problem to
one of computation time. This opens up the possibility of improving
computation efficiency via parallel computing.
5. System architecture and algorithm for integrating GIS data,
the ST-OODBN and the OOSBN

Fig. 6 illustrates our system architecture, showing the in-
teractions between GIS data and the input (I) and the output (O)
nodes of the spatial (OOSBN) and temporal (ST-OODBN) networks.
For each cell in the study area, there is conceptually one OOSBN and
one ST-OODBN. In practice, we do not require multiple individual
copies of OOSBNs and ST-OODBNs, but rather re-use network
structures, whose input nodes are re-parameterised for each cell, at
each time step.

With reference to Fig. 6 and Algorithm 2, the main steps are as
follows:

1. At time t, GIS data for initial conditions at each cell (x, y) in the
study area are read into the relevant PTLayers. In situations
where no GIS layers are available for input, a user-defined (and
properly justified) prior distribution can be used.

2. PTLayers1…l are used to initialise the priors of nodes I1…m and I1…
M of ST-OODBNx,y,t and OOSBNt respectively.

3. After propagationwithin OOSBNt using Algorithm 1, beliefs from
the output node O are stored in PTLayerOOSBN, and used to update
the priors of the Seed Availability input node, S, of the ST-
OODBNx,y,t.

4. Belief updating is then done with the ST-OODBNx,y,t, and the
beliefs from output nodes O1…n copied back to the relevant
corresponding PTLayers1…l, ready to provide updated priors for
nodes I1…m and I1…M at time tþ 1.

When running the model for T time steps, the computational
complexity of Algorithm 2, which calls Algorithm 1, is O(N2r2T).
In our scheme, PTLayers are used to provide intermediate stor-
age across the spatial grid, and inputs for the next time step, tþ 1,
come not only from the network for the same cell, but from outputs
of networks for other cells. This is necessary for modelling the
processes of seed production, dispersal and availability for germi-
nation, as described in Section 4.

In effect, the PTLayers replace both the spatial arcs between the
networks for different cells (i.e. the cross-network arcs from seed
production in one place to seed availability in another), and the
temporal arcs if the network was rolled-out over many time steps.
This method is limited to prediction only; we cannot reason back-
wards from some given state to identify the starting states and
management actions required to achieve a preferred end-state. The
specific tools used to implement the software architecture are
described in Appendix A.
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Fig. 6. An abstract representation of our system architecture for integrating GIS data, and spatial and dynamic OOBNs (refer to text for detailed description).
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6. Model demonstration and results

6.1. Example scenarios for model demonstration

To demonstrate our working implementation, we ran the
woodlands weed model for an area of grassy eucalypt woodlands
nearWollert, Victoria (86 by 80 cells). Weed cover in the target area
was initialised using GIS data (White et al., unpublished data) and
the timeframe of interest was 15 years. We investigated two sce-
nariosd a) no management intervention at all, and b) intervention
when weed cover is low.

For the willows study, we ran themodel for a portion of the Blue
Cypress Marsh Conservation Area (44 � 45 cells) within the Upper
St. Johns River basin, for a management horizon of 20 years. Wil-
lows coverage was initialised using GIS data from 2008 to 2009
(SJRWMD, unpublished data). At commencement (t ¼ 0), adult
willows occupied ~15% of the total study area. We investigated
three scenarios d a) no intervention, b) burn management of cells
when the probability that willow stage ¼ yearling is >10%, and c)
burnmanagement of cells when the probability that stage¼ sapling
is >10%.

6.2. Results

In the woodlands weed study, weed cover across the target area
is initially low, with a scattering of small, spatially disjunct patches
0 3 6 9
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Fig. 7. Woodlands weed model results: maps of (most likely value of) predicted weed cov
intervention in cells where weed cover is expected to be low.
of moderate weed cover (Fig. 7). In the absence of management
intervention however, the patches of weed cover increase from
moderate to high and then very high cover over time d eventually
coalescing into large swathes of very high weed cover that domi-
nate the target area (Fig. 7a).

The strategy of applying management whenever weed cover in
a cell is expected to be low does not stop patches with initially
moderate cover increasing to very high cover over time. But it helps
to “contain”and isolate such patches so that relatively weed-free
areas can persist in spaces within a matrix of heavily infested
patches (Fig. 7b).

In the willows case study we present the distribution of three
model outputs d the probability of each willow stage, the proba-
bility of willow coverage and the most likely seed availability level
d for each management option (Fig. 8). We first consider the ‘no
intervention’ option (Fig. 8a): at t ¼ 5, there is a clump of adult
willows at the bottom-centre of the study area with very high
probability of very high cover. Immediately bordering this clump is
a band of cells where willows are most likely to be at the sapling
stage, and to be at a low level of cover. A substantial proportion of
the remaining study area north of the clump of adults is most likely
unoccupied by willows. However, due to the productivity of wil-
lows and the effectiveness of dispersal, seed availability is high to
very high in the areas surrounding the adults, but also moderate to
high in patches where there are likely to be saplings. In the absence
of intervention, the bottom clump of adult willows expands over
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er at three yearly time slices when there is (a) no management intervention, and (b)



Fig. 8. Willows model results: maps of probability of willow stage and coverage, and most likely seed availability level at five-yearly time slices. The scenarios are (a) no man-
agement intervention, (b) burn management of cells when probability that stage ¼ yearling > 10% and (c) burn management of cells when probability that stage ¼ sapling > 10%.
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time, eventually occupying just under a third of the study area
(~32.5%). The ‘northern’ patch of saplings from t ¼ 5 also matures
over time turning into a separate expanding clump of adults
(Fig. 8a, t ¼ 15 and t ¼ 20). By t ¼ 20, adult willows occupy ~41% of
the total area and ~20% of the total area now has high to very high
seed availability.

The strategy of burning cells when the probability that
stage¼ yearling is >10% is effective at containing the bottom-centre
patch of adult willows and inhibiting its expansion to surrounding
cells. However, by t ¼ 20, the small ‘northern’ clump of saplings
seen at t ¼ 5, has most likely matured and become established as
adults, though the level of cover is mostly low (Fig. 8b). The prev-
alence of adult willows at t ¼ 20 is much lower for this strategy
than that under no intervention (~20% of the total area vs ~41%).
Seed availability however, remains high to very high across large
portions of the study area (Fig. 8b).

Strategy (c) of burning cells when the probability that
stage ¼ sapling is >10% produces a similar outcome to that of
burning when probability that stage ¼ yearling is >10%, but is
arguably slightly more effective (Fig. 8c). This seems unintuitive
and one would expect strategy (b) to be superior to strategy (c)
because burning is more effective at killing yearlings than saplings.
However, because yearlings are a transient stage, the probability
mass of stage¼ yearling is typically very low, whichmeans the burn
intervention is rarely triggered (see stage¼ yearling in Fig. 8(a)-(c)).
In contrast, burn intervention is triggered more frequently with the
rule probability that stage ¼ sapling is >10%.

7. Discussion and conclusions

The adoption of an OO approach allowed us to design an ar-
chitecture for using Bayesian networks to reason about change over
both time and space. The use of abstraction and encapsulation via
components with formalised input and output interfaces helped
manage the complexity. We have demonstrated the generality and
power of our approach through two environmental management
case studies.

We note, however, that throughout the research and integration
process we encountered challenges with the development, man-
agement and use of OOBNs. The tools we used to design and
implement our OOBNs still lack powerful refactoring, making the
management of object interface changes a time-consuming and
error-prone task. Integrated version control is non-existent and
documentation tools rudimentary. Improvements in these areas,
which are now standard in modern software engineering IDEs,
would make working with OOBNs easier and more robust.

As mentioned earlier, incorporating spatial and temporal pro-
cesses can result in networks with large numbers of parents and
child nodes with state space sizes so massive that they are effec-
tively “uncompilable” because the total size of the compiled
network exceeds the memory capacities of current hardware. We
get around this problem by iteratively “rolling-out” a single OOSBN
instance across the.

RoI, and using a “roll-out, roll-up” approach for the ST-OODBN
from one time slice to the next. The example scenarios we pre-
sent provide a proof-of-concept demonstration of how our
approach can be used tomodel spatial and temporal changes in real
world case studies. An important caveat however, is that the “roll-
out, roll-up” approach is an approximation e errors can (and do)
accumulate and compound over space and time. This means that
model estimates of weed cover in the woodlands weed study are
probably over-estimated. Similarly, the progression of willow to
later life stages, higher coverage and greater seed availability levels
is also exaggerated, and worse than might be expected over the
given timeframe.
We recognise this problem, and future work should focus on
quantifying the magnitude of errors, and understanding their im-
plications for decisionmaking. One possible approach, is to compile
spatially explicit input data at known points in time, matched with
detailed knowledge of management actions that were undertaken.
We could then calibrate our models for each of the case studies
using these historical settings, and track how convergent or
divergent our model outputs are relative to what occurred histor-
ically. Compiling and verifying the requisite data for this exercise
however, is a non-trivial undertaking, and is beyond the resources
and scope of the current paper. This important step remains as
future work.

A potential solution for avoiding “roll-out, roll-up” approxima-
tion errors is to generate the complete model, but then use sto-
chastic simulation to generate approximate belief distributions,
instead of compiling it to perform exact belief updating. Stochastic
simulation (Shachter and Peot, 1989) uses the network to generate
a large number of cases from the network distribution, which are
then used to estimate the posterior probabilities of the target
nodes. By the Law of Large Numbers from statistics, as more cases
are generated, the estimate converges on the exact probability.

As with exact inference, there is a computational complexity
issue with approximate updating (Dagum and Luby, 1993). How-
ever, in practice, stochastic simulation approaches for approximate
inference converge fairly quickly (Korb and Nicholson, 2010). For
example, Woodberry et al. (2014) used stochastic simulation
updating for an OODBN grasslands management model that
involved up to 30 nodes per time slice, run in prediction mode for 4
seasons per year for a total of 20 years. The simulation took
approximately 8 hours of CPU run-time on a powerful desktop
computer. This suggests that scaling up the stochastic simulation
updating across a spatial grid should be computationally feasible on
high-performance computing clusters (such as those now available
on the Cloud). However, this remains as future work.

7.1. Conclusion

For coherent, coordinated and effective landscape-scale decision
support, managers need the capability to predict state changes
across space and time. We have tackled these challenges by syn-
thesising ideas and techniques from object-oriented knowledge
engineering, dynamic BNs, GIS-coupled BNs and dispersal model-
ling. To our knowledge, the resultant general framework, using
OOBNs tomodel spatially-explicit process interactions, is the first of
its kind.

We have demonstrated the generality and power of the frame-
work via models for two real-world case studies. Whilst these
methods are computationally demanding, this modelling is valu-
able for adaptive management because it allows us to examine the
consequences of spatially explicit alternative management actions.
Uncertainty in predicted consequences is also explicit; together
these outputs can be combined with cost and utility data to eval-
uate and select among alternative actions using formal decision
analysis.

There are challenges still to be resolvedwhen building and using
such complex spatial-temporal models, including the need for
better development tools and improved approximate computation.
However, we hope that our proof-of-concept demonstration, model
templates and algorithms for spatial and temporal scenario simu-
lations will pave the way for future improvements.
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Appendix A. Implementation tools

We used Hugin Researcher 7.7 (Hugin Expert A/S, 2013) to
develop the ST-OODBNs and OOSBNs, the Hugin Researcher Java
API 7.7 (2013) to provide programmatic access to the developed
networks, the Image-IO-ext (GeoSolutions, 2013) Java library to
provide access to GIS raster layer formats, and the Java program-
ming language to implement the algorithms tying the components
together. Hugin was chosen as the OOBN development platform as
it currently has one of the most complete OOBN implementations.
Java was chosen as the implementing language as it is platform
independent and provides for a well established and understood
OO development environment. We implemented the tool as a
standalone program allowing pre-processing of GIS data and post-
processing of outputs to be performed in whatever program the
end user wasmost familiar with. In our case we used a combination
of ArcGIS (ESRI, 2013), Quantum GIS (Quantum GIS Development
Team, 2013) and SAGA GIS (SAGA Development Team, 2013).
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