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1 INTRODUCTION 

Wildland fires are a common phenomenon in re-
gions with wet, vegetation-growing winters and hot 
long, fuel drying periods, such as the Mediterranean. 
Fire occurrences are caused both naturally (e.g. by 
lightning) and by humans (e.g. through negligence 
or arson) (Moreno et al. 1998; Pausas 1999; Leone 
et al. 2009).  

Under favoring topographic and weather condi-
tions, such as steep slopes, high wind speeds with 
changing directions and heat waves, wildland fire 
events can develop into uncontrollable wildfires 
with severe consequences to humans and the envi-
ronment. Wildfires threaten public health, safety and 
welfare, and can result in damages both to humans 
and the environment, including fatalities and inju-
ries, property damage, agricultural losses, natural 
habitat degradation (Lynch 2004; Munich RE 2012). 
Studies predict more weather extremes in the future 
leading to more frequent uncontrollable fire events 
(Moritz et al. 2012). 

Wildfire risk prediction can support adequate 
prevention and mitigation planning and thus increase 
site resilience (Finney 2005). Wildfire risk assess-
ments documented in the literature vary strongly de-
pending on risk, vulnerability and cost definitions of  

 
 

study field. Wildfire cost analysis often focus on de-
tailed documentation of case studies but do not re-
sult in generalized models, which would allow per-
forming cost assessments in other sites with similar 
conditions (Butry et al. 2001; Lynch 2004; Snider et 
al. 2006). Reports on community wildfire protection 
plans use point systems to assess wildfire occurrence 
danger and consequences (Ohlson et al. 2003; Ore-
gon Department of Forestry 2004; ECONorthwest 
2007). Rating systems are often used to evaluate the 
susceptibility of items at risk and the degree of loss 
on the basis of expert knowledge (Tutsch et al. 
2010). 

Natural hazard risk assessments typically require 
interdisciplinary efforts (e.g. involving natural haz-
ard modeling, statistical modeling, economic and 
environmental impact assessments). The Bayesian 
Networks (BN) model framework is ideally suited to 
combine interdisciplinary domain knowledge and 
models (Straub & Der Kiureghian 2010). BN have 
been used to assess natural hazard risks, e.g. due to 
rock-fall hazard (Straub 2005), avalanches (Grêt-
Regamey & Straub 2006), seismic hazard 
(Bayraktarli et al. 2005) and wildfire danger 
(Dlamini 2009). These models combine human ex-
pertise with quantitative models and data, and ac-
count for the interdependencies between the in-
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ABSTRACT: Wildfire risk is a function of hazard occurrence probability and potential consequences. Wild-
fire consequences in turn are a function of the vulnerability and exposure of the biotic and abiotic systems af-
fected by the fire. These include among others human lives, property, infrastructure, biodiversity, soil and air 
quality, and agriculture production. This study focuses on the development of a wildfire building damage 
consequences assessment system at the meso scale, i.e. at a 1km2 resolution. We achieve this with the con-
struction of a Bayesian network (BN), due to its ability to facilitate the explicit modeling of the relevant pa-
rameters, their causal relationships and the associated uncertainties. Probability distributions are obtained both 
from observations and literature (e.g. for property values) and expert knowledge (e.g. for fire suppression per-
formance). Numerical investigations are made with spatial datasets for the Mediterranean island of Cyprus. 
Results of the estimated building damage cost for given fire type are shown in maps. The presented model can 
be attached to a wildfire hazard model to determine wildfire risk in a spatially explicit manner. 



volved processes (Grêt-Regamey & Straub 2006). 
BN can easily be extended to include potential miti-
gation actions or can be modified when additional 
information is available (Straub 2005). For these 
reasons, they appear to be an ideal modeling frame-
work for a quantitative hazard consequence assess-
ment system.   

This study develops a wildfire consequences as-
sessment system at the meso scale, i.e. at a 1km2 
resolution. Exemplarily, the system focuses on dam-
ages to buildings. It is based on a BN model, which 
includes variables expressing hazard characteristics, 
people and objects at risk and their susceptibility. As 
a case study, the proposed BN is applied to Cyprus. 
The BN is combined with a GIS and maps are pro-
vided to illustrate the results. 

2  METHODOLOGY 

2.1 Vulnerability and exposure indicators 

Wildfire risk can be estimated as a function of oc-
currence probability and consequences. Wildfire 
consequences are a function of vulnerability and ex-
posure of the affected biotic and abiotic systems 
(e.g. human lives and properties, infrastructure, soil 
and air quality). Vulnerability describes the degree 
of expected damage as a function of hazard intensity 
(UNDRO 1991; Thywissen 2006). Exposure refers 
to the items at risk, such as people and property. 
Risk is the expected consequences of wildfires.  

Based on the above definitions, the risk � can be 
formulated as a function of the hazard �, the result-
ing damages � and the consequences  � as 
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E�,	 denotes the expected value with respect to � 
and �. Pr��|�� is the probability of damage � con-
ditional on the hazard �, i.e. it describes the vulner-
ability, and ���, �� is the cost as a function of dam-
age and hazard. 

The inner integral in Eq. (1) describes the ex-
pected consequences for given hazard: 
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Consequences can be classified based on their ability 
to be measured by market values as either tangible 
(e.g. building damage) or intangible (e.g. cultural 
heritage losses). Consequences can furthermore be 
classified according to whether they are direct (e.g. 

life/property losses) or indirect (e.g. erosion on 
slopes following the destruction of a stabilizing for-
est). Tangible direct damages can be measured by 
the costs of repairing or replacing damaged items, 
whereas intangible direct damages may be measured 
in terms of number of affected items (Paul 2011). 

In order to quantify consequences, vulnerability 
and exposure indicator are identified, which are re-
lated to the degree of loss and the items at risk. Se-
lecting the appropriate indicators is crucial for an 
accurate assessment of vulnerability and exposure. 
Indicators should be relevant, measurable, easy to 
interpret, analytically and statistically sound 
(Birkmann 2006). 

2.2 Bayesian Networks 

Bayesian Networks (BN) are directed acyclic graphs 
and consist of nodes, arcs and probability tables at-
tached to the nodes (Jensen, Nielsen 2007). In a dis-
crete BN considered here, each node represents a 
discrete random variable, whose sample space con-
sists of a finite set of mutually exclusive states. The 
arcs describe the assumed dependence structure 
among the random variables.  

A conditional probability table (CPT) is attached 
to each of the nodes, defining the probability distri-
bution of the variable conditional on its parents. If 
we consider a BN with discrete random variables 
� � 
��, … , ���, then the full (joint) probabilistic 
model of these variables is the joint Probability 
Mass Function (PMF), ���� � ����, … , ���, which 
can be specified with the help of the chain rule: 

���� � ����|����, … , ���������|����, … , ��� 
… ����|�������� (3) 

 
By making use of the independence assumptions en-
coded in the graphical structure of the BN, this chain 
rule reduces to:  
 

���� � � ��� |�!�� ��
�

 "�
 (4) 

 
wherein �!�� �, are realizations of the parents of � . 
In other words, the joint probability mass function 
(PMF) of all random variables in the BN is simply 
the product of the conditional PMFs of each individ-
ual random variable given its parents. Therefore, the 
graphical structure of the BN, together with the con-
ditional PMFs Pr�� |�!�� ��, are sufficient for spec-
ifying the full (joint) probabilistic model of � �

��, … , ���. 

Inference in the BN model is performed through 
updating. When one or several variables are ob-
served or fixed, this information (evidence #) is 
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propagated through the network and the joint prior 
probability of all nodes is updated to its posterior. 
The posterior joint probability of a set of variables $ 
in the network given the evidence # is:  

��$|#� � ��$, #�
��#�  (5) 

 
The joint probabilities ��$, #� and ��#� are comput-
ed following Eq. (4). Efficient algorithms for per-
forming these computations exist, which are imple-
mented in software such as GeNIe (Decision 
Systems Laboratory 2013) or Hugin (HUGIN EX-
PERT 2012).  

In the context of wildfire consequence assess-
ments, the advantage of the BN is not its computa-
tional effectiveness but that it facilitates the combi-
nation of information from various sources in a 
single model. 

2.3 BN for building damage consequences due to 
wildfires 

Figure 1 introduces a BN for assessing consequences 
to buildings caused by wildfires. The BN includes 
variables that correspond to hazard, exposure, vul-
nerability and costs. Connecting arcs show the caus-
al relationships among the variables. The BN serves 
to model the probabilistic relation between damage 
� and cost � for given hazard �, allowing the com-
putation of expected cost (risk) for given hazard fol-

lowing Eq. 2. 
White nodes in the BN of Figure 1 represent the 

hazard. Wildfire hazard is characterized by the re-
sulting Burnt area and the Fire intensity. Fire inten-
sity is defined through the rate of energy or heat re-
lease per unit length of fire front [kW/m] (Byram 
1959; Alexander 1982). Wildfire severity is here ex-
pressed by the resulting burnt area. The variables de-
scribing the fire hazard should be a function of fur-
ther variables that are part of a fire hazard model 
(e.g. Papakosta & Straub 2013; Zwirglmaier et al. 
2013). However, since our interest in this study is 
only in the expected consequence conditional on the 
hazard, E	
� | ��, these models need not be includ-
ed here. Note that the burnt area of wildfires is rec-
orded in databases, but not fire intensity. Therefore, 
the conditional probability distribution of fire inten-
sity is here determined based on expert knowledge, 
conditional on the burnt area. This is contrary to the 
causal relationship between these variables, as high-
er fire intensities relate to longer fire flame lengths, 
typical for crown fires, which are difficult to sup-
press and can result in large burnt areas (Rothermel 
et al. 1980). 

Light grey nodes in the BN describe the exposure 
of the system (items at risk). Land cover type dis-
criminates urban from rural areas, which influences 
the building density [building/km²] and the building 
stock. Building stock describes the combination of 
building types in 1km², which include single houses, 
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Figure 1: Bayesian network for building damage cost due to wildfires 



semi-detached/row houses, and apartments. The 
building stock classification influences the costs of 
rebuilding, which is here taken as the construction 
value of the buildings in monetary terms. Construc-
tion type describes the combination of the building 
portfolio in the 1 km² cell. Distance to fire station 
describes the smallest distance of each location (cell 
center) to the next fire station. Road density express-
es the accessibility inside a cell. These two nodes 
have an impact on the response time and conse-
quently on the fire suppression performance. This 
neglects airborne fire suppression. 
     The dark grey node Building damage represents 
the degree of damage, i.e. the vulnerability of the 
building portfolio in the cell. The vulnerability is in-
fluenced by fire intensity, fire suppression perfor-
mance, construction type and building stock. It is 
expressed as percentage of damage of the building 
construction relative to the whole building.  
    The node Building damage costs (BDC) in Figure 
1 expresses the building damage cost in the 1 km² 
cell as a product of the building damage, the con-
struction value, the building density and the burnt 
area. BDC is expressed in monetary terms [€]. 

2.4 Coupling of BN and GIS 

BN can be coupled with a GIS as illustrated in Fig-
ure 2. Spatial feature groups, such as points, lines 
and polygons are processed, stored and managed in a 
GIS database. Georeferenced spatial features are 
projected on a grid with 1 km² cell size, which will 
serve as the spatial resolution of the model. In each 
cell, a copy of the BN of represents the wildfire con-
sequence. Spatial dependence is represented through 
the dependence of the observed indicator variables, 
but not through the BN itself. ArcGIS 10.1 is used 
for geospatial analysis and mapping (ESRI 2012).  

 

Figure 2: Coupling of BN and GIS 

3 NUMERICAL IMPLEMENTATION 

The proposed BN of Figure 1 for modeling building 
damage costs due to wildfires is implemented for a 
test-bed area. This BN will be expanded in the future 
to additionally include consequences related to hu-
man safety, agricultural capital or natural habitat 
damage.  
 

3.1 Test-bed area 

The parameters of the proposed model are learnt for 
Cyprus. The case study covers 5285 km² and the 
dominating natural vegetation is coniferous forests 
(e.g. pinus brutia). Due to Mediterranean climate 
and the mosaic landscape formed by humans, Cy-
prus is prone to fires. Fires occur with an annual 
mean occurrence rate of 5.5 · 10�, (Papakosta & 
Straub 2013). The average annual burnt area during 
2000-2009 was 29 km² (Joint Research Center (IES) 
2010). Besides safety risks to the population, the 
main assets at risk on Cyprus are buildings, protect-
ed natural habitats and agricultural areas.  

3.2 Variables and data sources  

Table 1 summarizes the modeling of the BN varia-
bles for the test-bed area. The definitions of the dis-
crete states of the variables are provided as well as 
the sources for the conditional probabilities defining 
the variables. It is reminded that the spatial resolu-
tion of the model is 1 km², which is of relevance in 
the definition of the variables. Figure 3a shows the 
test-bed area with its administrative borders and 
Figure 3b the fire events registered during the period 
2006-2010.  
 

 
Figure 3: Cyprus test-bed area: (a) Municipalities, (b) Fire 
events during 2006-2010 classified by the burnt area [km²] 

 
Figure 4 shows selected exposure indicators of the 
test-bed area.   
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Figure 4: Exposure indicators (a) land cover types (b) house 
(dwelling) density [Nr. dwellings/km²] (c) road density 
[km/km²] (d) distance to fire stations [km] on Cyprus case 
study 

4 RESULTS 

4.1 Building Damage Cost (BDC) 

Figure 9 illustrates the BN estimate of the building 
damage cost conditional on the lowest hazard condi-
tions, i.e. with burnt area 0 - 0.01 km² and fire in-
tensity 0 - 346 kW/m. In each node, the posterior 
marginal distribution of the variable is shown to-
gether with the expected cost given the correspond-
ing state. In this example, even variables that are 
known for a given location are considered as ran-
dom, such as land use. The results are therefore rep-
resentative for an average cell in the test-bed area. 
Note that since burnt area states 0 - 0.01 and 
0.01 - 0.1 [km²] are only associated with fire inten-
sity states 0 - 346 and 346 - 1730 [kW/m], the 
expected BDC cost for fire intensity 2
 1730 [kW/m] is zero.  

Figure 5 - Figure 7 show the computed expected 
BDC in an average cell, with given evidence in the 
variable. Figure 5 shows the BDC for different states 
of burnt area. As expected, the cost increases with 
increasing burnt area. Burnt area 2 1 
km�� exceeds 
the area of the cell, and in these cases the cost in an 
average cell is overestimated. The neighboring cells 
are then assumed to have similar characteristics with 
the cell, where fire occurs. For burnt area 10 -
20 km² the cost is 2.28 · 105 
€�. 

Figure 6 shows expected building damage cost 
conditional on fire intensity. Fire intensities higher 
than 1730 kW/m are associated with crown fires and 
are therefore expected to result in higher costs. 

 

Figure 5: Building damage cost [€] conditional on burnt area 
[km²] 

Building damage is modeled to increases 
exponentially with higher fire intensity to express 
vulnerability to crown fires.  
 

 

Figure 6: Building damage cost [€] conditional on fire intensity 
[kW/m]  

Figure 7 shows expected building damage cost 
conditional on house density. Cells with high house 
density (urban areas) are expected to register higher 
building damage cost when affected by wildfires.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Building damage cost [€] conditional on dwelling 
density [Nr. Dwellings/km²] 

Figure 8 shows the estimated building damage cost 

x 108 €� for each cell under two different hazard 
conditions. The maps result from the coupling of the 
BN with the GIS. Figure 8a shows expected damage 
cost conditional on burnt area � 0 - 0.01  km² and 
fire intensity � 0 - 346  kW/m. 
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Table 1: Description of BN variables and data sources for the definition of conditional probability tables 

Variable #states States Source of probability distribution 
Fire intensity 
[kW/m] 

4 0-346  
346-1730 
1730-4000 
>4000 
 

Classification based on 
(Sugihara et al. 2006), p.63 (Box 4.1, 4.2 ‘Heinselman’s fire regimes’) and p.68, 
 
(Ryan et al. 2012), p.56, Table A-1 (‘Representative ranges for fire behavior characteristics’) (Ryan 
2002) 

Burnt area 
[km²] 

6 

 

 

0-0.01    
0.01-0.1 
0.1-0.5 
0.5-1 
1-5 
5-10 
10-20 
 

Historical fire events (2006-2010)  
 
Data source: 
Department of Forest, 
Ministry of Agriculture Cyprus 

Road density 
[km/km²] 

3 0-2 
2-5 
5-15 

Edited from road map  
 
Data source: 
Open Street Map 

Distance to next  
fire station 
[km]  

3 0-5    
5-10 
10-30 
 

Edited from fire station locations 
 
Data source: 
Cyprus Fire Service 

Fire suppression  3 poor 
medium 
effective 

Conditional on fire intensity based on: 
(Smith 2011) 
p.18, Table 4 (‘Fire intensity limits for various suppression options’) 
 
Conditional on road density and distance to fire station based on fire response times: 
(ECONorthwest 2007), Appendix C, page C-5 

Land cover 

 

 

2 

 

 

Urban/Rural 

 

 

 

Edited from  
Corine Land Cover map 
(version 13) 
Data source: 
European Environmental Agency 

Building Stock  

 

 

2 

 

40s_25r_35a 
70s_20r_10a 

s: single houses   
r: row houses 
a: apartments 
(% percentage) 
 
Edited from data from 
(Cyprus Statistical Service 2010) 

Construction Type 2 5t_15s_80i 
10t_25s_65i 

t: traditional house, stone/mud wall 
s: single brick wall/flat roof house 
i: insulated brick/inclined roof 
(% percentage) 
 
Edited from  
(Statistical Service Cyprus 2012) 
(Florides et al. 2001),  p. 228 
(Nemry, Uihlein 2008), p.A147 
(Cyprus Statistical Service 2010) 

Building density 
[Nr.dwelings/km²] 

5 0-50   
50-250 
250-500 
500-1000 
>1000 

Based on Nr.dwellings (houses) statistics and municipality borders  
 
Data source: 
Statistical Service Cyprus 

Building damage 2 minor 
major 
 

minor: 20% 
major: 80% 
 
Conditional on fire intensity based on fire severity evaluation of different fire intensities: 
(Sugihara et al. 2006), p.68 
assumed minor for fire intensities<346 kW/m 
 
Conditional on construction type based on scoring from: 
(Oregon Department of Forestry 2004), p.11-12 
(ECONorthwest 2007),  Appendix C, page C-8 
 
Conditional on building stock (defensible space) based on scores from: 
(Long, Randall 2004), p.6-7 
(Oregon Department of Forestry 2004), p.11-12 

Construction value  

[x 10³ €] 
4 0-100 

100-200 
200-500 
500-1500 

Customized  to Building Stock based on mean value and range for each building type, data from: 
 
(Cyprus Statistical Service 2010), p. 160 (Table 14: Building permits authorized by type of project 
2010) 
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Figure 8: Expected building damage cost  [x 103 €] conditional 
on burnt area = 0-0.01 km², and (a) fire intensity= 0-346 kW/m 
and (b) fire intensity= 346-1730 kW/m 

Figure 8b shows expected damage cost conditional 
on burnt area � 0 - 0.01  km² and fire intensity = 
346 - 1730 kW/m. As expected, the building 
damage cost under higher fire intensity (Figure 8b) 
is higher than under lower fire intensity (Figure 8a). 
The highest values of building damage cost are 
estimated, as expected, in urban areas (see also 
Figure 4a), due to their higher house densities. 

5 DISCUSSION 

Research on wildfire consequence estimation has 
made limited progress, comparing to model devel-

opment for wildfire probability estimation (Tutsch et 
al. 2010), hindering wildfire risk assessment. The 
consequence estimation may be facilitated by BNs, 
which, as demonstrated in this paper, allow model-
ing the building damage cost of wildfires in the 
meso scale with respect to different hazard charac-
teristics. The meso scale modeling requires that the 
indicators are representative for a 1 km² spatial unit. 
This makes the modeling more demanding, as it is 
necessary to identify representative states not of in-
dividual buildings, but rather of portfolios of build-
ings, e.g. building stock, construction type. This in-
troduces uncertainties in building damage estimation 
at the meso scale. In this study, airborne fire sup-
pression is neglected. When included, airborne fire 
suppression is expected to reduce the resulting cost 
of wildfire events with high fire intensity (2 1730 
kW/m). The further steps of this study include sensi-
tivity analysis of the results, validation of the model 
with published data and an extension of the model to 
assess consequences related to human safety and 
habitat losses.  

6 CONCLUSION 

A BN model was developed to quantify building 
damage cost caused by wildfires at the meso scale. 
The model was applied to the Mediterranean island 
of Cyprus. Coupling of BN and GIS resulted in 
maps providing the expected building damage cost 
for different hazard intensities. 

 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 9: Expected building damage cost 
x 108 €� for average cell, estimated for burnt area 0-0.01 [km²] and fire intensity 0-346 
[kW/m]. Screenshot from Hugin EXPERT (2012). 
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