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ABSTRACT: Wildfire risk is a function of hazard occurrence probability ipotentialconsequences. Vd-
fire consequences in turn are a function of thaexability and exposure of the biotic and abiotistems af-
fected by the fire. These include among others lulwas, property, infrastructure, biodiversityjlsand air
quality, and agriculture production. This study uses on the development of a wildfire building dgema
consequences assessment system at the meso scade,a 1krhresolution. We achieve this with the con-
struction of a Bayesian network (BN), due to itdigbto facilitate the explicit modeling of the levant pa-
rameters, their causal relationships and the assacuncertainties. Probability distributions apéamed both
from observations and literature (e.g. for propediues) and expert knowledge (e.g. for fire supgian per-
formance). Numerical investigations are made wgétial datasets for the Mediterranean island ofrGyp
Results of the estimated building damage costif@rgfire type are shown in maps. The presentedeinmah
be attached to a wildfire hazard model to deternihéfire risk in a spatially explicit manner.

1 INTRODUCTION study field. Wildfire cost analysis often focus de-
tailed documentation of case studies but do not re-
Wildland fires are a common phenomenon in result in generalized models, which would allow per-
gions with wet, vegetation-growing winters and hotforming cost assessments in other sites with simila
long, fuel drying periods, such as the Mediterranea conditions (Butry et al. 2001; Lynch 2004; Snider e
Fire occurrences are caused both naturally (e.g. t. 2006). Reports on community wildfire protection
lightning) and by humans (e.g. through negligencglans use point systems to assess wildfire occoeren
or arson) (Moreno et al. 1998; Pausas 1999; Leom#anger and consequences (Ohlson et al. 2003; Ore-
et al. 2009). gon Department of Forestry 2004; ECONorthwest
Under favoring topographic and weather condi-2007). Rating systems are often used to evaluate th
tions, such as steep slopes, high wind speeds witlusceptibility of items at risk and the degreeassl|
changing directions and heat waves, wildland fireon the basis of expert knowledge (Tutsch et al.
events can develop into uncontrollable wildfires2010).
with severe consequences to humans and the envi- Natural hazard risk assessments typically require
ronment. Wildfires threaten public health, safatga interdisciplinary efforts (e.g. involving naturab+
welfare, and can result in damages both to humaread modeling, statistical modeling, economic and
and the environment, including fatalities and inju-environmental impact assessments). The Bayesian
ries, property damage, agricultural losses, naturdlletworks (BN) model framework is ideally suited to
habitat degradation (Lynch 2004; Munich RE 2012)combine interdisciplinary domain knowledge and
Studies predict more weather extremes in the futurmodels (Straub & Der Kiureghian 2010). BN have
leading to more frequent uncontrollable fire eventdeen used to assess natural hazard risks, e.godue
(Moritz et al. 2012). rock-fall hazard (Straub 2005), avalanches (Grét-
Wildfire risk prediction can support adequateRegamey & Straub 2006), seismic hazard
prevention and mitigation planning and thus inceeas(Bayraktarli et al. 2005) and wildfire danger
site resilience (Finney 2005). Wildfire risk assess(Dlamini 2009). These models combine human ex-
ments documented in the literature vary strongly depertise with quantitative models and data, and ac-
pending on risk, vulnerability and cost definitiasfs  count for the interdependencies between the in-
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volved processes (Grét-Regamey & Straub 2006)ife/property losses) or indirect (e.g. erosion on
BN can easily be extended to include potential-mitislopes following the destruction of a stabiliziray-f
gation actions or can be modified when additionakst). Tangible direct damages can be measured by
information is available (Straub 2005). For thesehe costs of repairing or replacing damaged items,
reasons, they appear to be an ideal modeling frameereas intangible direct damages may be measured
work for a quantitative hazard consequence assess-terms of number of affected items (Paul 2011).
ment system. In order to quantify consequences, vulnerability

This study develops a wildfire consequences asand exposure indicator are identified, which are re
sessment system at the meso scale, i.e. at & lkiated to the degree of loss and the items at 8sk.
resolution. Exemplarily, the system focuses on damlecting the appropriate indicators is crucial for a
ages to buildings. It is based on a BN model, whiclaccurate assessment of vulnerability and exposure.
includes variables expressing hazard charactesjsticindicators should be relevant, measurable, easy to
people and objects at risk and their susceptibiiyy interpret, analytically and statistically sound
a case study, the proposed BN is applied to CyprugBirkmann 2006).
The BN is combined with a GIS and maps are pro-
vided to illustrate the results. .

2.2 Bayesian Networks

Bayesian Networks (BN) are directed acyclic graphs

2 METHODOLOGY and consist of nodes, arcs and probability tables a
tached to the nodes (Jensen, Nielsen 2007). Is-a di
2.1 Vulnerability and exposure indicators crete BN considered here, each node represents a

Wildfire risk can be estimated as a function of oc-JiSCréte random variable, whose sample space con-
sists of a finite set of mutually exclusive stat€se

currence probability and consequences. Wildfire rcs describe the assumed dependence structure
consequences are a function of vulnerability and ex P

L . mong the random variables.
posure of e afected bt and abite Sy Conitonal provabily tale (CPT) is atachec
and air quality). Vulnerability describes the degre [0 €ach of the nodes, defining the probability réist
of expected damage as a function of hazard ingensiution of the variable conditional on its parerits.
(UNDRO 1991: Thywissen 2006). Exposure referdve consider a BN with discrete random variables
to the items at risk, such as people and propert¥ = [X1, ..., Xy], then the full (joint) probabilistic
Risk is the expected consequences of wildfires. model of these variables is the joint Probability
Based on the above definitions, the riskcan be Mass Function (PMF)p(x) = p(x4, ..., x,), Which

formulated as a function of the hazafdthe result- can be specified with the help of the chain rule:
ing damage® and the consequencésas

p(X) = p(xnlXpn-1, -, X)) (Xn-11Xp—2, ..., %1) (3)

R =Eyp[C] P (2] x1)p(x1)

(1) By making use of the independence assumptions en-
coded in the graphical structure of the BN, thiaich

= f Pr(H) f Pr(D|H)C(D,H)dD dH
D rule reduces to:

H

Ey p denotes the expected value with respect to n
andD. Pr(D|H) is the probability of damage con- _

ditional on the hazard, i.e. it describes the vulner- p(x) = l_[p(xilpa(xi)) 4)
ability, andC(D, H) is the cost as a function of dam- =1

age and hazard. . L
The inner integral in Eq. (1) describes the ex\Vheréinpa(x,), are realizations of the parentsXf

pected consequences for given hazard: In other words, the joint probability mass function
(PMF) of all random variables in the BN is simply
the product of the conditional PMFs of each individ
ual random variable given its parents. Therefdre, t

Ep[C|H] = f Pr(DIH) €(D,H)dD (2) graphical structure of the BN, together with th@-co

D ditional PMFsPr(x;|pa(x;)), are sufficient for spec-

Conseguences can be classified based on the'lryabiliIfylrlg the full (joint) probabilistic model oX =

: : v X
to be measured by market values as either tanglb[é(l' nls :
(e.g. building damage) or intangible (e.g. cultural (Ijnfte_renc\szwl]n the BN model is Iperfo.rrgled througt;)
heritage losses). Consequences can furthermore He a(ljng. i eg ?rr]l_e (_)rf Sevet'fa Va”"."d €s are ob-
classified according to whether they are diredj.(e. served or fixed, this information (evidene is



propagated through the network and the joint priotowing Eq. 2.

probability of all nodes is updated to its posterio
The posterior joint probability of a set of variaby
in the network given the evideneas:

White nodes in the BN of Figure 1 represent the
hazard. Wildfire hazard is characterized by the re-
sulting Burnt areaand theFire intensity Fire inten-

sity is defined through the rate of energy or heat
lease per unit length of fire front [kW/m] (Byram
1959; Alexander 1982). Wildfire severity is here ex
pressed by the resulting burnt area. The variatdes
scribing the fire hazard should be a function af fu
ther variables that are part of a fire hazard model
(e.g. Papakosta & Strau®013; Zwirglmaier et al.

. 013). However, since our interest in this study is
Systems Laboratory 2013) or Hugin (HUGIN EX- only in the expected consequence conditional on the

PERT 2012). - hazard E,[C | H], these models need not be includ-
In the context of wildfire consequence assess:

ments, the advantage of the BN is not its comput ed here. Note that the burnt area of wildfiresess r
tional ’effectiveness but that it facilitates themtn- “orded in _d_atabases, bl.lt not f|r_e |nf[en5|ty._Th_e Bfo
nation of information from various sources in athe conditional probability distribution of fire ten-
single model sity is here determined based on expert knowledge,
' conditional on the burnt area. This is contraryh®
causal relationship between these variables, ds hig
2.3 BN for building damage consequences due to er fire intensities relate to longer fire flame déms,
wildfires typical for crown fires, which are difficult to sup
. : . ress and can result in large burnt areas (Rothherme
Figure 1 introduces a BN for assessing consequencgt%al 1980)
to buildings caused by wildfires. The BN includes Light grey nodes in the BN describe the exposure
variab_l_es that correspond to_hazard, exposure, vu!)-f the system (items at riskl.and cover typedis-
nleralblltl_ty aﬂ.d costs. Co&nectlngba;rcs iuomee'cau?ﬁriminates urban from rural areas, which influences
al refationships among the variables. 1n€ BIv SeIVEg o 1 jiiding density [building/km?] and the builgin
to model the probabilistic relation between OIamag(%tock. Building stockdescribes the combination of

D and cost for given hazardf, allowing the com- 4o tvnes in 1kme, which include single houses

putation of expected cost (risk) for given haza#d f
/

p(y.e)
p(e)

p(yle) = ()

The joint probabilitie (y, e) andp(e) are comput-

ed following Eg. (4). Efficient algorithms for per-
forming these computations exist, which are imple
mented in software such as GeNle (Decisio
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semi-detached/row houses, and apartments. T8 NUMERICAL IMPLEMENTATION
building stock classification influences the costs
rebuilding, which is here taken as the constructiomhe proposed BN of Figure 1 for modeling building
value of the buildings in monetary tern@onstruc- damage costs due to wildfires is implemented for a
tion typedescribes the combination of the buildingtest-bed area. This BN will be expanded in theritu
portfolio in the 1 km? cellDistance to fire station to additionally include consequences related to hu-
describes the smallest distance of each locatielh (c man safety, agricultural capital or natural habitat
center) to the next fire statioRoad densitgxpress- damage.
es the accessibility inside a cell. These two nodes
have an impact on the response time and cons
qguently on the fire suppression performance. Thi
neglects airborne fire suppression. The parameters of the proposed model are learnt for
The dark grey nodBuilding damagerepresents Cyprus. The case study coves285 km?2 and the
the degree of damage, i.e. the vulnerability of th&lominating natural vegetation is coniferous forests
building portfolio in the cell. The vulnerabilitgiin-  (e.g. pinus brutig. Due to Mediterranean climate
fluenced by fire intensity, fire suppression perfor and the mosaic landscape formed by humans, Cy-
mance, construction type and building stock. It isprus is prone to fires. Fires occur with an annual
expressed as percentage of damage of the buildimyean occurrence rate &f5-107° (Papakosta &
construction relative to the whole building. Straub 2013). The average annual burnt area during
The nodeuilding damage cost®8DC) in Figure 2000-2009 was 29 km2 (Joint Research Center (IES)
1 expresses the building damage cost in the 1 kn#010). Besides safety risks to the population, the
cell as a product of the building damage, the conmain assets at risk on Cyprus are buildings, ptotec
struction value, the building density and the burned natural habitats and agricultural areas.
area. BDC is expressed in monetary terms [€].

.1 Test-bed area

3.2 Variables and data sources

2.4 Coupling of BN and GIS Table 1 summarizes the modeling of the BN varia-
BN can be coupled with a GIS as illustrated in Fig-bles for the test-bed area. The definitions ofdise
ure 2. Spatial feature groups, such as pointss linecrete states of the variables are provided as asll
and polygons are processed, stored and managed itha sources for the conditional probabilities defin
GIS database. Georeferenced spatial features aitee variables. It is reminded that the spatial Ikeso
projected on a grid with 1 km2 cell size, whichlwil tion of the model is 1 km2, which is of relevance i
serve as the spatial resolution of the model. bhea the definition of the variables. Figure 3a shows th
cell, a copy of the BN of represents the wildfiome test-bed area with its administrative borders and
sequence. Spatial dependence is represented througlure 3b the fire events registered during théoper
the dependence of the observed indicator variable2006-2010.

but not through the BN itself. ArcGIS 10.1 is used

for geospatial analysis and mapping (ESRI 2012).

Data {Points, Lines, Polygons, Rasters)
e —
e Attribute table
id ¢ 3 w —_— B
Grid (1km?) Exposureindicators

Burnt area 2006-2010 [km?]
o 0.00-0.01
o 0.01-0.10
O 0.10-0.50
@ 0.50-1.00
@ 1.00-5.00

@ 5.00-10.00
// @ 10.00-2000
[Eayesian etwors \
0 10Km
‘ ? ayesian Networ!| A L
Figure 3 Cyprus test-bed area: (a) Municipalities, (b)eFir
| Expected damage cost events during 2006-2010 classified by the burna gken?]

A -

Grid (1km?) Damage cost map Figure 4 shows selected exposure indicators of the
test-bed area.

Figure 2: Coupling of BN and GIS
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Figure 9 illustrates the BN estimate of the buiddin Fire intensity [<Wim]

damage cost conditional on the lowest hazard Condi:'igure 6: Building damage cost [€] conditional e intensity
tions, i.e. with burnt are@ — 0.01 km2 and fire in-  [kw/m]

tensity 0 — 346 kW/m. In each node, the posterior _ o

marginal distribution of the variable is shown to-Figure 7 shows expected building damage cost
gether with the expected cost given the correspondonditional on house density. Cells with high house
ing state. In this example, even variables that ar@ensity (urban areas) are expected to registerehigh
known for a given location are considered as ranPuilding damage cost when affected by wildfires.
dom, such as land use. The results are therefpre re g _ .
resentative for an average cell in the test-bed.are
Note that since burnt area stat@s— 0.01 and
0.01 — 0.1 [km?] are only associated with fire inten-

10

ge cost | Dwell. dens

sity states0 — 346 and 346 — 1730 [KW/m], the 1071 .
expected BDC cost for fire intensity> -
1730 [kW/m] is zero. 10%

Figure 5 - Figure 7 show the computed expectedg
BDC in an average cell, with given evidence in the <10
variable. Figure 5 shows the BDC for differentetat 5
of burnt area. As expected, the cost increases withg 9 so 50-250  250-500  500-1500
increasing burnt area. Burnt areal [km?] exceeds Duelling density [Nr.Dwelings/kr]
the area of the cell, and in these cases thee@sti o - _
average cell is overestimated. The neighboringcellFigure 7: Building damage cost [€] conditional owetling

i et -density [Nr. Dwellings/km?]
are then assumed to have similar characteristitts wi

the Cill’ where fire occurs. For burnt aré@—  Figure 8 shows the estimated building damage cost
20 km? the cost i2.28 - 10° [€]. %&X 103 €] for each cell under two different hazard
Figure 6 shows expected building damage costonditions. The maps result from the coupling @f th

conditional on fire intensity. Fire intensities h& BN with the GIS. Figure 8a shows expected damage
than 1730 kW/m are associated with crown fires and,st conditional on burnt area 0 — 0.01 km?2 and

are therefore expected to result in higher costs.  fire intensity= 0 — 346 kW/m.
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Table 1: Description of BN variables and data sesifor the definition of conditional probabilityoias

Variable #states States Sour ce of probability distribution
Fire intensity 4 0-346 Classification based on
[kw/m] 346-1730 (Sugihara et al. 2006), p.63 (Box 4.1, 4.2 ‘Heins®i’s fire regimes’) and p.68,
1730-4000
>4000 (Ryan et al. 2012), p.56, Table A-1 (‘Representatanges for fire behavior characteristics’) (Ryan
2002)
Burnt area 6 0-0.01 Historical fire events (2006-2010)
[km2] 0.01-0.1
0.1-0.5 Data source:
0.5-1 Department of Forest,
1-5 Ministry of Agriculture Cyprus
5-10
10-20
Road density 3 0-2 Edited from road map
[km/km?] 2-5
5-15 Data source:
Open Street Map
Distance to next 3 0-5 Edited from fire station locations
fire station 5-10
[km] 10-30 Data source:
Cyprus Fire Service
Fire suppression 3 poor Conditional on fire intensity based on:
medium (Smith 2011)
effective p.18, Table 4 (‘Fire intensity limits for variougppression options’)

Conditional on road density and distance to fie¢ish based on fire response times:
(ECONorthwest 2007), Appendix C, page C-5
Land cover 2 Urban/Rural  Edited from
Corine Land Cover map
(version 13)
Data source:
European Environmental Agency

Building Stock 2 40s_25r_35a s: single houses
70s_20r_10a r: row houses
a: apartments

(% percentage)

Edited from data from
(Cyprus Statistical Service 2010)

Construction Type 2 5t 15s 80i t: traditional house, stone/mud wall
10t_25s_65i s: single brick wall/flat roof house
i insulated brick/inclined roof
(% percentage)

Edited from

(Statistical Service Cyprus 2012)
(Florides et al. 2001), p. 228
(Nemry, Uihlein 2008), p.A147
(Cyprus Statistical Service 2010)

Building density 5 0-50 Based on Nr.dwellings (houses) statistics and nipality borders
[Nr.dwelings/km?] 50-250

250-500 Data source:

500-1000 Statistical Service Cyprus

>1000
Building damage 2 minor minor: 20%

major major: 80%

Conditional on fire intensity based on fire seweavaluation of different fire intensities:
(Sugihara et al. 2006), p.68
assumed minor for fire intensities<346 kW/m

Conditional on construction type based on sconinmf
(Oregon Department of Forestry 2004), p.11-12
(ECONorthwest 2007), Appendix C, page C-8

Conditional on building stock (defensible spaceydshon scores from:
(Long, Randall 2004), p.6-7
(Oregon Department of Forestry 2004), p.11-12

Construction value 4 0-100 Customized to Building Stock based on mean vahgerange for each building type, data from:
[x 103 €] 100-200
200-500 (Cyprus Statistical Service 2010), p. 160 (TableBudlding permits authorized by type of project

500-1500 2010)




opment for wildfire probability estimation (Tutseh

@ 5 T o al. 2010), hindering wildfire risk assessment. The
o Y Bulking demage cost (€) consequence estimation may be facilitated by BNs,
7 % btoss] which, as demonstrated in this paper, allow model-
i 17.7-220 ing the building damage cost of wildfires in the
G 0-i20 meso scale with respect to different hazard charac-
(®) o teristics. The meso scale modeling requires that th
P - r o 1200-2000 indicators are representative for a 1 km? spatiétl u
il f T 0006500 This makes the modeling more demanding, as it is
¥ N-“‘“)‘w"‘“’ necessary to identify representative states nan-of
» A 010 Km dividual buildings, but rather of portfolios of I
L ings, e.g. building stock, construction type. Tims

troduces uncertainties in building damage estimatio

at the meso scale. In this study, airborne fire- sup
Figure 8: Expected building damage cost [€joconditional  pression is neglected. When included, airborne fire
on burnt area =-0.01 km?, and (a) fire intensity= 0-346 kW/m gynpression is expected to reduce the resulting cos
and (b) fire intensity= 346-1730 kw/m of wildfire events with high fire intensity>( 1730

Figure 8b shows expected damage cost conditiong}V/m). The further steps of this study include sens
on burnt area= 0 — 0.01 km2 and fire intensity = V1Y analysis of the results, validation of thedel
346 — 1730 kW/m. As expected, the building with published data and an extension of the mamlel t

damage cost under higher fire intensity (Figure 8szsess consequences related to human safety an

is higher than under lower fire intensity (Figum 8 nabitat losses.
The highest values of building damage cost are

estimated, as expected, in urban areas (see also

Figure 4a), due to their higher house densities. g CONCLUSION

A BN model was developed to quantify building
damage cost caused by wildfires at the meso scale.
The model was applied to the Mediterranean island
4 Cyprus. Coupling of BN and GIS resulted in
maps providing the expected building damage cost
for different hazard intensities.

5 DISCUSSION

Research on wildfire consequence estimation h
made limited progress, comparing to model devel
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Figure 9: Expected building damage cps1 03 €] for average cell, estimated for burnt area 0-Qkdi2] and fire intensity 0-346
[kW/m]. Screenshot from Hugin EXPERT (201
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