Bayesian Networks - I : Definition and probabilistic inference

Philippe LERAY
philippe.leray@univ-nantes.fr

DUKe (Data User Knowledge) Research group
Laboratoire des Sciences du Numérique de Nantes - UMR 6004
Site de l'Ecole Polytechnique de l'université de Nantes

Reminders of basic probabilistic theory

Conditional probability

- let A and M denote two events
- a priori information about A :
- M happened : $P(M) \neq 0$
- if there is a link between A and M, this event will modify our knowledge about A
- a posteriori information :

$$
P(A \mid M)=\frac{P(A, M)}{P(M)}
$$

Reminders of basic probabilistic theory

Independence

- A and B are independent iff :

$$
\begin{aligned}
& P(A, B)=P(A) \times P(B) \\
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

Conditional independence

- A and B are independent conditionally to C iff :

$$
P(A \mid B, C)=P(A \mid C)
$$

Reminders of basic probabilistic theory

$\left\{M_{i}\right\}$ complete set of mutually exclusive events
Marginalization :

$$
P(A)=\sum_{i} P\left(A, M_{i}\right)
$$

Total probability theorem

Event A can result from various causes M_{i}. What is the probability of A if we know :

- the prior probabilities $P(M i)$
- the conditional probabilities of A given each Mi

$$
P(A)=\sum_{i} P\left(A \mid M_{i}\right) P\left(M_{i}\right)
$$

Reminders of basic probabilistic theory

$\left\{M_{i}\right\}$ complete set of mutually exclusive events

Bayes' theorem

Event A happened. What is the probability that the cause M_{i} is responsible of this event?

$$
P\left(M_{i} \mid A\right)=\frac{P\left(A \mid M_{i}\right) \times P\left(M_{i}\right)}{P(A)}
$$

- $P(M i \mid A)$: a posteriori probability

■ $P(A)$: constant w.r.t. Mi (cf. Total probability theorem)

Chain rule

$$
P\left(A_{1} \ldots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \ldots P\left(A_{n} \mid A_{1} \ldots A_{n-1}\right)
$$

Example

Bayesian network definition

Theoretical principle

- taking into account some extra knowledge (conditional independence between some variables) to simplify the joint probability distribution given by the chain rule.

Definition

- a Bayesian network (BN) is defined by

■ one qualitative description of (conditional) dependences/independences between variables directed acyclic graph (DAG)
■ one quantitative description of these dependences conditional probability distributions (CPDs)

Example

$$
\text { one topological order : } B, E, A, R, T \text { (not unique) }
$$

P(Radio|Earthquake)
$P($ Burglary $)=\left[\begin{array}{lll}0.001 & 0.999\end{array}\right]$ $P($ Earthquake $)=\left[\begin{array}{lll}0.0001 & 0.9999\end{array}\right]$

P(Alarm|Burglary,Earthquake)

	Burglary,Earthquake $=$			
	Y, Y	Y, N	N, Y	N, N
Alarm $=\mathrm{Y}$	0.75	0.10	0.99	0.10
Alarm $=\mathrm{N}$	0.25	0.90	0.01	0.90

BN as a dependence model

Dependence is a symmetrical relationship, so why using directed edges ?

Example with 3 nodes

- 3 simple structures between A, B and C :
- $A \rightarrow C \rightarrow B$: serial connexion
- $A \leftarrow C \rightarrow B$: divergent connexion
- $A \rightarrow C \leftarrow B$: convergent connexion (V-structure)

Serial connexion

- E and T are dependent

■ E and T are independent conditionally to R
■ if R is known, T will not give any new information about E

- $P(T \mid E, R)=P(T \mid R)=P(T \mid \operatorname{parents}(T))$

Divergent connexion

- A and R are dependent

■ A and R are independent conditionally to E

- if E is known, A will not give any new information about R
- $P(R \mid A, E)=P(R \mid E)=P(R \mid$ parents $(R))$

Convergent connexion - V-structure

- B and E are independent

■ B and E are dependent conditionally to A

- if A is known, E will give some new information about B
- $P(A \mid B, E)=P(A \mid$ parents $(A))$

Consequence

Chain rule

$$
P(S)=P\left(S_{1}\right) \times P\left(S_{2} \mid S_{1}\right) \times P\left(S_{3} \mid S_{1}, S_{2}\right) \times \cdots \times P\left(S_{n} \mid S_{1} \ldots S_{n-1}\right)
$$

Consequence with a BN

- $P\left(S_{i} \mid S_{1} \ldots S_{i-1}\right)=P\left(S_{i} \mid\right.$ parents $\left.\left(S_{i}\right)\right)$ so

$$
P(S)=\prod_{i=1}^{n} P\left(S_{i} \mid \text { parents }\left(S_{i}\right)\right)
$$

- the (global) joint probability distribution is decomposed in a product of (local) conditional distributions
- $\mathrm{BN}=$ compact representation of the joint distribution $P(S)$ given some information about dependence relationships between variables

Example

	Earthquake $=$	
	Y	N
Radio $=\mathrm{Y}$	0.99	0.01
Radio $=\mathrm{N}$	0.01	0.99

$$
P(B, E, A, R, T)=
$$

$P(B) \times P(E \mid B) \times P(A \mid B, E) \times P(R \mid B, E, A) \times P(T \mid B, E, A, R)$ $P(B) \times P(E) \times P(A \mid B, E) \times \quad P(R \mid E) \quad \times P(T \mid R)$

Markov equivalence

Definition

B_{1} and B_{2} are Markov equivalent iff both describe exactly the same conditional (in)dependence statements.

Graphical properties

- B_{1} and B_{2} have the same skeleton, V-structures and inferred edges.
- all the equivalent graphs (= equivalence class) can be summarized by one partially directed DAG named CPDAG or Essential Graph

Markov equivalence

Faithfulness

Definition

a Bayesian network structure G and an associated probability distribution P are faithful to one another if and only if every conditional independence relationship valid in P can be read in G

Very simple counterexample

- $G=X_{1} \longrightarrow X_{2}$
- $P\left(X_{2} \mid X_{1}=0\right)=P\left(X_{2} \mid X_{1}=1\right)=\left[\begin{array}{ll}0.8 & 0.2\end{array}\right]$
- X_{1} and X_{2} are dependent in G but independent in P

BN as a generative model

Principle

- $\mathrm{BN}=$ compact representation of the joint distribution $P(S)$
- we can use classical sampling methods to generate data from this distribution

Example : forward sampling

Example - Minesweeper

Principle

- bombs are places in a grid
- each square (i, j) independently has a bomb ($B_{i, j}=$ true $)$ with probability b
- what you can observe for a given square is a reading $N_{i, j}$ of the number of bombs in adjacent squares (not including the square itself)

Example - Minesweeper

Bayesian network ?

- draw a Bayesian network for a one-dimensional 4×1 Minesweeper grid, showing all eight variables ($B_{1} \ldots B_{4}$ and $N_{1} \ldots N_{4}$). Show the minimal set of arcs needed to correctly model the domain above
- fully specify the CPTs for each variable, assuming that there is no noise in the readings (i.e. that the number of adjacent bombs (or bomb) is reported exactly, deterministically). Your answers may use the bomb rate b if needed
- what are the posterior probabilities of bombs B_{i} in each of the four squares, given no information? If we observe $N_{2}=1$, what are the posterior probabilities of bombs in each square?
- check your model with pyAgrum

What is probabilistic inference?

Inference

- computation of any $P\left(S_{i} \mid\left\{S_{j}=x\right\}\right)$
- evidence $\varepsilon=$ set of observable variables $\left\{S_{j}=x\right\}$
\square Exact inference algorithms - Mecsage Dassing (Dearl 1088) for trees or poly-trees - Junction Tree (Jensen 1990) - Shafer-Shenoy (1990) Problem $=$ combinatorial explosion for strongly connected graphs.
Approximate inference algorithms - sampling - variational methods

What is probabilistic inference?

Inference

Exact inference algorithms

- Message Passing (Pearl 1988) for trees or poly-trees
- Junction Tree (Jensen 1990)
- Shafer-Shenoy (1990)

Problem $=$ combinatorial explosion for strongly connected graphs.

What is probabilistic inference?

Inference

Exact inference algorithms

- Message Passing (Pearl 1988) for trees or poly-trees
- Junction Tree (Jensen 1990)
- Shafer-Shenoy (1990)

Problem $=$ combinatorial explosion for strongly connected graphs.
Approximate inference algorithms

- sampling
- variational methods

Message Passing

(Pearl 1988)

Principle

- designed for tree structures (generalized to poly-trees)

■ every node send messages to its parent and children

■ $\varepsilon=$ set of instantiated/observed variables.
$\varepsilon=N_{x} \cup D_{x}$ instantiated (non) descendants of X

■ we can demonstrate that $P(X \mid \varepsilon=e) \propto \lambda(X) \pi(X)$ with $\lambda(X) \propto P\left(D_{x} \mid X\right)$ and $\pi(X) \propto P\left(X \mid N_{x}\right)$

- 2 types of messages $\vec{\lambda}$ and $\vec{\pi}$ will help to compute these λ and π values for every X

Message Passing : $\vec{\lambda}$ messages
$\lambda(X) \propto P\left(D_{x} \mid X\right)$ information from descendants

$\lambda(X)$ initialization

- if X is an unobserved leaf: $\lambda(X)=[1 \ldots 1]$ (no information)
- if X is an observed node : $\lambda(X)=[001 \ldots 0]$ (exact info.) (1 at i-th position corresponds to the observed value $X=i$)

$\vec{\lambda}$ propagation and aggregation

■ for every child Y of X,

$$
\overrightarrow{\lambda_{Y}}(X=x)=\sum_{y} P(Y=y \mid X=x) \lambda(Y=y)
$$

- aggregation : $\lambda(X=x)=\Pi_{Y \in \operatorname{Child}(X)} \overrightarrow{\lambda_{Y}}(X=x)$

Message Passing : $\vec{\pi}$ messages
$\pi(X) \propto P\left(X \mid N_{x}\right)$ information from non descendants

$\pi(X)$ initialization

- if X is the unobserved root : $\pi(X)=P(X)$ (a priori info.)
- if X is an observed node : $\pi(X)=[001 \ldots 0]$ (exact info.)

$\vec{\pi}$ propagation and aggregation

- for Z, unique parent of X,

$$
\overrightarrow{\pi_{X}}(Z=z)=\pi(Z=z) \prod_{U \in \operatorname{Child}(Z) \backslash\{X\}} \overrightarrow{\lambda_{U}}(Z=z)
$$

- aggregation : $\pi(X=x)=\sum_{z} P(X=x \mid Z=z) \overrightarrow{\pi x}(Z=z)$

Message Passing complexity

Worst case

■ each node send 2 messages : time complexity is linear in the number of nodes

- work done in a node is proportional to the size of its CPD : linear for trees, but need to be bounded for poly-trees

Example : Animals

Example : Animals

	Monkey	0.2
	Penguin	0.2
	Platypus	0.2
	Robin	0.2
	Turtle	0.2

