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Definition Basic concepts Inference

Reminders of basic probabilistic theory

Reminders of basic probabilistic theory

Conditional probability

let A and M denote two events

a priori information about A : P(A)

M happened : P(M) ̸= 0

if there is a link between A and M, this event will modify our
knowledge about A

a posteriori information : P(A|M) = P(A,M)
P(M)
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Reminders of basic probabilistic theory

Independence

A and B are independent iff :
P(A,B) = P(A)× P(B)
P(A|B) = P(A)
P(B|A) = P(B)

Conditional independence

A and B are independent conditionally to C iff :
P(A|B,C ) = P(A|C )
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Reminders of basic probabilistic theory

{Mi} complete set of mutually exclusive events

Marginalization : P(A) =
∑

i P(A,Mi )

Total probability theorem

Event A can result from various causes Mi . What is the probability
of A if we know :

the prior probabilities P(Mi)

the conditional probabilities of A given each Mi

P(A) =
∑

i P(A|Mi )P(Mi )
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Definition Basic concepts Inference

Reminders of basic probabilistic theory

Reminders of basic probabilistic theory

{Mi} complete set of mutually exclusive events

Bayes’ theorem

Event A happened. What is the probability that the cause Mi is
responsible of this event ?

P(Mi |A) = P(A|Mi )×P(Mi )
P(A)

P(Mi |A) : a posteriori probability

P(A) : constant w.r.t. Mi (cf. Total probability theorem)

Chain rule

P(A1 . . .An) = P(A1)P(A2|A1)P(A3|A1,A2) . . .P(An|A1 . . .An−1)
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Reminders of basic probabilistic theory

Example
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BN definition

Bayesian network definition

Theoretical principle

taking into account some extra knowledge (conditional
independence between some variables) to simplify the joint
probability distribution given by the chain rule.

Definition [Pearl, 1985]

a Bayesian network (BN) is defined by

one qualitative description of (conditional)
dependences/independences between variables

directed acyclic graph (DAG)
one quantitative description of these dependences

conditional probability distributions (CPDs)
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Example

Example

one topological order : B,E ,A,R,T (not unique)

R  Radio

E  Earthquake

A  Alarm

B  Burglary

T  TV

P(Alarm|Burglary,Earthquake)

         Burglary,Earthquake =
     Y,Y Y,N         N,Y      N,N

Alarm=Y     0.75 0.10       0.99     0.10
Alarm=N     0.25 0.90       0.01     0.90

P(TV|Radio)

   Radio =
 Y          N

TV=Y 0.99     0.50
TV=N 0.01     0.50

P(Radio|Earthquake)

Earthquake =
   Y          N

Radio=Y 0.99     0.01
Radio=N 0.01     0.99

P(Burglary)=[0.001 0.999] P(Earthquake)=[0.0001 0.9999]
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BN as a dependence model

BN as a dependence model

Dependence is a symmetrical relationship, so why using directed
edges ?

Example with 3 nodes

3 simple structures between A,B and C :

A→ C → B : serial connexion
A← C → B : divergent connexion
A→ C ← B : convergent connexion (V-structure)

Ph. Leray BN I : Definition - Inference 9 / 26



Definition Basic concepts Inference

Serial connexion

Serial connexion

R  RadioE  Earthquake T  TV

E and T are dependent

E and T are independent conditionally to R
if R is known, T will not give any new information about E

P(T |E ,R) = P(T |R) = P(T |parents(T ))
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Divergent connexion

Divergent connexion

R  Radio

E  Earthquake

A  Alarm

A and R are dependent

A and R are independent conditionally to E
if E is known, A will not give any new information about R

P(R|A,E ) = P(R|E ) = P(R|parents(R))
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V-structure

Convergent connexion – V-structure

E  Earthquake

A  Alarm

B  Burglary

B and E are independent

B and E are dependent conditionally to A

if A is known, E will give some new information about B

P(A|B,E ) = P(A|parents(A))
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BN factorization

Consequence

Chain rule

P(S) = P(S1)× P(S2|S1)× P(S3|S1, S2)× · · · × P(Sn|S1 . . . Sn−1)

Consequence with a BN

P(Si |S1 . . . Si−1) = P(Si |parents(Si )) so
P(S) = Πn

i=1P(Si |parents(Si ))
the (global) joint probability distribution is decomposed in a
product of (local) conditional distributions

BN = compact representation of the joint distribution P(S)
given some information about dependence relationships
between variables
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Example

Example

R  Radio

E  Earthquake

A  Alarm

B  Burglary

T  TV

P(Alarm|Burglary,Earthquake)

         Burglary,Earthquake =
     Y,Y Y,N         N,Y      N,N

Alarm=Y     0.75 0.10       0.99     0.10
Alarm=N     0.25 0.90       0.01     0.90

P(TV|Radio)

   Radio =
 Y          N

TV=Y 0.99     0.50
TV=N 0.01     0.50

P(Radio|Earthquake)

Earthquake =
   Y          N

Radio=Y 0.99     0.01
Radio=N 0.01     0.99

P(Burglary)=[0.001 0.999] P(Earthquake)=[0.0001 0.9999]

P(B,E ,A,R,T ) =

P(B)× P(E |B)× P(A|B,E )× P(R|B,E ,A)× P(T |B,E ,A,R)
P(B)× P(E )× P(A|B,E )× P(R|E ) × P(T |R)
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Markov equivalence

Markov equivalence

Definition

B1 and B2 are Markov equivalent iff both describe exactly the
same conditional (in)dependence statements.

Graphical properties

B1 and B2 have the same skeleton, V-structures and inferred
edges.

all the equivalent graphs (= equivalence class) can be
summarized by one partially directed DAG named CPDAG or
Essential Graph
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Example

Markov equivalence

A S

T L B

O

X D

A S

T L B

O

X D
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Faithfulness

Faithfulness

Definition

a Bayesian network structure G and an associated probability
distribution P are faithful to one another if and only if every
conditional independence relationship valid in P can be read in G

Very simple counterexample

G = X1 −→ X2

P(X2|X1 = 0) = P(X2|X1 = 1) = [0.8 0.2]

X1 and X2 are dependent in G but independent in P
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BN as a generative model

BN as a generative model

Principle

BN = compact representation of the joint distribution P(S)

we can use classical sampling methods to generate data from
this distribution

Example : forward sampling

R  Radio

E  Earthquake

A  Alarm

B  Burglary

T  TV

P(Alarm|Burglary,Earthquake)

         Burglary,Earthquake =
     Y,Y Y,N         N,Y      N,N

Alarm=Y     0.75 0.10       0.99     0.10
Alarm=N     0.25 0.90       0.01     0.90

P(TV|Radio)

   Radio =
 Y          N

TV=Y 0.99     0.50
TV=N 0.01     0.50

P(Radio|Earthquake)

Earthquake =
   Y          N

Radio=Y 0.99     0.01
Radio=N 0.01     0.99

P(Burglary)=[0.001 0.999] P(Earthquake)=[0.0001 0.9999]if rand1 < P(B = Y ),
B = Y , else N

if rand2 < P(E = Y ),
E = Y , else N

if rand3 < P(A = Y |B = b,E = e),
A = Y , else N

...
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BN as a generative model

Example - Minesweeper

Principle

bombs are places in a grid

each square (i , j) independently has a
bomb (Bi ,j = true) with probability b

what you can observe for a given square
is a reading Ni ,j of the number of bombs
in adjacent squares (not including the
square itself)
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BN as a generative model

Example - Minesweeper

Bayesian network ?

draw a Bayesian network for a one-dimensional 4x1
Minesweeper grid, showing all eight variables (B1 . . .B4 and
N1 . . .N4). Show the minimal set of arcs needed to correctly
model the domain above

fully specify the CPTs for each variable, assuming that there
is no noise in the readings (i.e. that the number of adjacent
bombs (or bomb) is reported exactly, deterministically). Your
answers may use the bomb rate b if needed

what are the posterior probabilities of bombs Bi in each of the
four squares, given no information? If we observe N2 = 1,
what are the posterior probabilities of bombs in each square?

check your model with pyAgrum
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Definition

What is probabilistic inference ?

Inference

computation of any P(Si |{Sj = x}) (NP-hard)

evidence ε = set of observable variables {Sj = x}

Exact inference algorithms

Message Passing (Pearl 1988) for trees or poly-trees

Junction Tree (Jensen 1990)

Shafer-Shenoy (1990)

Problem = combinatorial explosion for strongly connected graphs.

Approximate inference algorithms

sampling

variational methods
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Message passing

Message Passing (Pearl 1988)

Principle

designed for tree structures (generalized to poly-trees)

every node send messages to its parent and children

ε = set of instantiated/observed variables.
ε = Nx ∪ Dx instantiated (non) descendants of X

we can demonstrate that P(X |ε = e) ∝ λ(X )π(X )
with λ(X ) ∝ P(Dx |X ) and π(X ) ∝ P(X |Nx)

2 types of messages
−→
λ and −→π will help to compute these λ

and π values for every X
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Lambda messages

Message Passing :
−→
λ messages

λ(X ) ∝ P(Dx |X ) information from descendants

λ(X ) initialization

if X is an unobserved leaf : λ(X ) = [1 . . . 1] (no information)

if X is an observed node : λ(X ) = [001 . . . 0] (exact info.)
(1 at i-th position corresponds to the observed value X = i)

−→
λ propagation and aggregation

for every child Y of X ,

−→
λY (X = x) =

∑
y

P(Y = y |X = x)λ(Y = y)

aggregation : λ(X = x) = ΠY∈Child(X )
−→
λY (X = x)
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Pi messages

Message Passing : −→π messages

π(X ) ∝ P(X |Nx) information from non descendants

π(X ) initialization

if X is the unobserved root : π(X ) = P(X ) (a priori info.)

if X is an observed node : π(X ) = [001 . . . 0] (exact info.)

−→π propagation and aggregation

for Z , unique parent of X ,

−→πX (Z = z) = π(Z = z)
∏

U∈Child(Z)\{X}

−→
λU(Z = z)

aggregation : π(X = x) =
∑

z P(X = x |Z = z)−→πX (Z = z)
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Message Passing complexity

Message Passing complexity

Worst case

each node send 2 messages : time complexity is linear in the
number of nodes

work done in a node is proportional to the size of its CPD :
linear for trees, but need to be bounded for poly-trees
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Example : Animals

Example : Animals
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