Bayesian Networks - II : Parameter and structure learning

Philippe LERAY
philippe.leray@univ-nantes.fr
DUKe (Data User Knowledge) Research group
Laboratoire des Sciences du Numérique de Nantes - UMR 6004
Site de l'Ecole Polytechnique de l'université de Nantes

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given
- structure learning

One model... but two learning tasks

BN $=$ graph G and set of CPDs Θ

- parameter learning / G given

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given

■ structure learning

BN dimension

Definition

number of independent parameters needed to describe all the CPDs related to one BN.

Examples

- $\operatorname{Dim}(B)=1+1+4+2+2$
- empty graph :
$\operatorname{Dim}\left(B_{0}\right)=$?
- completely connected graph: $\operatorname{Dim}\left(B_{c}\right)=$?

Knowledge acquisition

How to determine the structure by interacting with experts ?

- Identifying variables of interest
- Controlling the model dimension : variable cardinality + intermediate variables

How to determine the conditional distributions without data?
certain
probable expected

■ First find one cooperative expert

- Use some specific tools for determining numerical values without
uncertain asking for it [Drusdel, 2001] improbable impossible

Example

Let's assume that success in an exam results in a grade between A and C that may depend on many other variables (difficulty of the subject, level of the student, time spent revising, etc.) and may influence other variables.

■ Propose about 5 discrete relevant variables (and the values they can take). Tip: restrict your variables to no more than 2 or 3 possible values.

- Propose a BN (structure and parameters) modelling this problem, using these variables, justifying the choice of the structure and the values of the conditional probabilities. Tip: to avoid having a variable with too many parents, do not hesitate to add intermediate variables.
■ implement your model in pyAgrum, and show by careful choice of examples that exam success increases as observable variables become more and more favourable.

Simplify some CPDs

Noisy OR model [Pearl, 1986]

- $P\left(Y \mid X_{1} \ldots X_{n}\right)$ (boolean variables) $=2^{n}$ values !
- Let suppose that

■ we can estimate each $p_{i}=P\left(y \mid \bar{x}_{1}, \bar{x}_{2}, \ldots, x_{i}, \ldots, \bar{x}_{n}\right)$
\square there is no mutual effect between X_{i} variables and Y.

- SO
- if one X_{i} is true, then Y is almost true (with probability p_{i})
- is several X_{i} are true, then

$$
P(y \mid \mathcal{X})=1-\prod_{i / X_{i} \in \mathcal{X}_{p}}\left(1-p_{i}\right)
$$

where \mathcal{X}_{p} is the set of X_{i} equal to true.

Simplify some CPDs

Noisy OR model [Pearl, 1986]

- extension when Y is true when no cause is present (leaky noisy-OR gate) [Henrion, 1989]
- extension to multi-valued variables (generalized noisy-OR gate)
- this simplification can also be used for learning less parameters from data....

Noisy Or models

Example

Parameter learning with complete data

Parameter learning

- estimation of CPD parameters from \mathcal{D}
- usual statistical approach $=$ max. of likelihood (ML)

$$
\hat{\theta}^{M L}=\operatorname{argmax} P(\mathcal{D} \mid \theta)
$$

- probability of an event $=$ frequency of this event in data

Maximum of likelihood (ML)

$$
\begin{array}{r}
\hat{P}\left(X_{i}=x_{k} \mid \operatorname{Pa}\left(X_{i}\right)=x_{j}\right)=\hat{\theta}_{i, j, k}^{M L}=\frac{N_{i, j, k}}{\sum_{k} N_{i, j, k}} \\
N_{i, j, k}=\text { nb of occurences of }\left\{X_{i}=x_{k} \text { and } \operatorname{Pa}\left(X_{i}\right)=x_{j}\right\}
\end{array}
$$

Parameter learning with complete data

Demonstration

Parameter learning with complete data

Other approach

- one Bayesian approach = max. a posteriori (MAP)

$$
\hat{\theta}^{M A P}=\operatorname{argmax} P(\theta \mid \mathcal{D})=\operatorname{argmax} P(\mathcal{D} \mid \theta) P(\theta)
$$

- need to define an a priori distribution $P(\theta)$
- conjugated distribution associated to X distribution
- if $P(X)$ multinomial, associated $P(\theta)=$ Dirichlet :

$$
P(\theta) \propto \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}}\left(\theta_{i, j, k}\right)^{\alpha_{i, j, k}-1}
$$

where $\alpha_{i, j, k}$ are the cœfficients of Dirichlet distribution associated to parameter $\theta_{i, j, k}$

Parameter learning with complete data

Maximum a Posteriori (MAP)

$$
\hat{P}\left(X_{i}=x_{k} \mid \operatorname{Pa}\left(X_{i}\right)=x_{j}\right)=\hat{\theta}_{i, j, k}^{M A P}=\frac{N_{i, j, k}+\alpha_{i, j, k}-1}{\sum_{k}\left(N_{i, j, k}+\alpha_{i, j, k}-1\right)}
$$

Another bayesian approach

- expectation a posteriori (EAP) : Computation of the expectation of $\theta_{i, j, k}$ instead of the max. value

$$
\hat{P}\left(X_{i}=x_{k} \mid \operatorname{Pa}\left(X_{i}\right)=x_{j}\right)=\hat{\theta}_{i, j, k}^{E A P}=\frac{N_{i, j, k}+\alpha_{i, j, k}}{\sum_{k}\left(N_{i, j, k}+\alpha_{i, j, k}\right)}
$$

ML Example

$$
\begin{aligned}
& \hat{P}\left(M=m_{0}\right)=6 / 15=0.4 \\
& \hat{P}\left(M=m_{1}\right)=8 / 15=0.53 \\
& \hat{P}\left(M=m_{2}\right)=1 / 15=0.07
\end{aligned}
$$

$$
\hat{P}\left(F=O K \mid M=m_{0}\right)=1 / 6=0.17
$$

$$
\hat{P}\left(F=B A D \mid M=m_{0}\right)=5 / 6=0.83
$$

etc . . .

Problem

$\hat{P}\left(F=B A D \mid M=m_{2}\right)=0 / 1$
because this configuration is not present in the (small) dataset

M	F	R
m_{0}	BAD	O
m_{0}	BAD	N
m_{0}	OK	O
m_{1}	BAD	O
m_{1}	BAD	N
m_{1}	OK	O
m_{1}	OK	N
m_{1}	OK	O
m_{1}	OK	N
m_{1}	OK	O
m_{1}	OK	N
m_{2}	OK	N

Example

EAP Example

■ we have to give some a priori coefficients for each $\theta_{i, j, k}$
$■ \approx$ pseudo counts corresponding to N^{*} virtual measurements

- examples

■ Dirichlet coefficients associated to M $=\left[\begin{array}{lll}50 & 50 & 0\end{array}\right]$

$$
\hat{P}\left(M=m_{0}\right)=(6+50) /(15+100)=0.487
$$

$$
\hat{P}\left(M=m_{1}\right)=(8+50) /(15+100)=0.5043
$$

$$
\hat{P}\left(M=m_{2}\right)=(1+0) /(15+100)=0.0087
$$

- Dirichlet coefficients associated to $\left(F \mid M=m_{i}\right)=\left[\begin{array}{ll}9 & 1\end{array}\right]$

M	F	R
m_{0}	BAD	O
m_{0}	BAD	N
m_{0}	OK	O
m_{1}	BAD	O
m_{1}	BAD	N
m_{1}	OK	O
m_{1}	OK	N
m_{1}	OK	O
m_{1}	OK	N
m_{1}	OK	O
m_{1}	OK	N
m_{2}	OK	N

$$
\hat{P}\left(F=B A D \mid M=m_{2}\right) \quad=(0+1) /(1+10)=0.09
$$

Parameter learning with incomplete data

several types of incomplete data
 [Rubin, 1976]

■ MCAR : Missing Completely At Random
■ data loss = completely random phenomenon
■ how to estimate ML or MAP ?
■ Complete / Available Case Analysis ...
■ MAR : Missing At Random
■ probability one data is lost depends on some known variables

- how to estimate ML or MAP ?
- Expectation Maximisation ...
- NMAR: Not Missing At Random
- probability one data is lost depends on some external unknown variables
- need to improve the model by identifying and adding these variables

Complete / Available Case Analysis

Complete Case Analysis

■ extract samples completely observed from the incomplete dataset

■ advantage : we come back to complete dataset situation
■ inconvenient : important missing rate \Rightarrow few complete samples
\square

Complete / Available Case Analysis

Complete Case Analysis

Available Case Analysis

- principle : we don't need to observe C to estimate the CPD $P(A \mid B)$ parameters
- for $P(A \mid B)$ estimation, extract samples for which A and B are observed
- advantage : we come back to complete dataset situation

Expectation Maximisation Algorithm

Very general algorithm [Dempster, 1977]

- parameter estimation with incomplete data

Principle

- iterative algorithm
- parameter initialization $\theta^{(0)}$
- E estimate missing data distribution from current model $\theta^{(t)}$ $=$ compute $P\left(X_{\text {missing }} \mid X_{\text {observed }}\right)$ in current BN
$=$ use probabilistic inference
- M estimate again $\theta^{(t+1)}$ from this new "completed" dataset - by using ML, MAP, or EAP approach

Example

One model... but two learning tasks

BN $=$ graph G and set of CPDs Θ

- parameter learning / G given
- structure learning

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given
- structure learning

Structure learning is a complex task

What is the number of DAGs with 3 nodes?

Structure learning is a complex task

Size of the "solution" space

- the number of possible DAGs with n variables is super-exponential w.r.t n [Robinson, 1977]

$$
\begin{aligned}
& N S(n)=\left\{\begin{array}{cl}
1 \\
\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} 2^{i(n-1)} N S(n-i), & n=0 \text { or } 1 \\
n>1
\end{array}\right. \\
& \quad N S(4)=543 \\
& \\
& N S(5)=29281 \\
& \\
& N S(10)=4.2 \times 10^{18}
\end{aligned}
$$

■ an exhaustive search is impossible !
One thousand millenniums $=3.2 \times 10^{13}$ seconds

Structure learning algorithms

How to search a good BN ?

- constraint-based methods
$\mathrm{BN}=$ independence model
\Rightarrow find Cl in data in order to build the DAG
- score-based methods
$\mathrm{BN}=$ probabilistic model that must fit data as well as possible
\Rightarrow search the DAG space in order to maximize a
scoring/fitness function
- hybrid methods

Score-based methods

How to search a good BN ?

- constraint-based methods
$\mathrm{BN}=$ independence model
\Rightarrow find Cl in data in order to build the DAG
- score-based methods
$\mathrm{BN}=$ probabilistic model that must fit data as well as possible
\Rightarrow search the DAG space in order to maximize a
scoring/fitness function
- hybrid methods

Notion of score

General principle : Occam razor

- Pluralitas non est ponenda sine neccesitate plurality should not be posited without necessity
- Frustra fit per plura quod potest fieri per pauciora It is pointless to do with more what can be done with fewer
$=$ Parcimony principle : find a model
- fitting the data \mathcal{D} :
likelihood: $L(\mathcal{D} \mid \theta, B)$
dimension of $B: \operatorname{Dim}(B)$

Score examples

AIC and BIC

- compromise between likelihood and complexity
- application of AIC [Akaïke, 1970] and BIC [Schwartz, 1978]

$$
\begin{gathered}
S_{A I C}(B, \mathcal{D})=\log L\left(\mathcal{D} \mid \theta^{M V}, B\right)-\operatorname{Dim}(B) \\
S_{B I C}(B, \mathcal{D})=\log L\left(\mathcal{D} \mid \theta^{M V}, B\right)-\frac{1}{2} \operatorname{Dim}(B) \log N
\end{gathered}
$$

Bayesian scores : BD, BDe, BDeu

- $S_{B D}(B, \mathcal{D})=P(B, \mathcal{D})$
- $B D e=B D+$ score equivalence
[Cooper et Herskovits, 1992]
[Heckerman, 1994]

$$
S_{B D}(B, \mathcal{D})=P(B) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(N_{i j}+\alpha_{i j}\right)} \prod_{k=1}^{r_{i}} \frac{\Gamma\left(N_{i j k}+\alpha_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}
$$

Score properties

Two important properties

Decomposability

$$
(\text { Global }) \operatorname{Score}(B, \mathcal{D})=\sum_{i=1}^{n}(\text { local }) \operatorname{score}\left(X_{i}, p a_{i}\right)
$$

Score equivalence

If two $\mathrm{BN} B_{1}$ and B_{2} are Markov equivalent then $S\left(B_{1}, \mathcal{D}\right)=S\left(B_{2}, \mathcal{D}\right)$

Example

Empty graph G_{0}

- estimate CPDs $P\left(X_{1}\right)$ and $P\left(X_{2}\right)$ (with ML approach)
- log-likelihood of G_{0} ? AIC score ?

Complete graph G_{C}

- estimate CPDs $P\left(X_{1}\right)$ and $P\left(X_{2} \mid X_{1}\right)$ (with ML approach)

X_{1}	X_{2}
Y	N
Y	Y
Y	Y
Y	Y
N	N
N	Y
N	Y
N	Y

■ log-likelihood of G_{c} ? AIC score ?
What is the best graph according to likelihood ? according to AIC ?

Heuristic exploration of search space

Search space and heuristics

- space \mathcal{B}
- restriction to tree space : Chow\&Liu, MWST
- DAG with node ordering : K2 algorithm
- greedy search
- genetic algorithms, ...
- space \mathcal{E}
- greedy equivalence search

Restriction to tree space

Principle

- what is the best tree connecting all the nodes, i.e. maximizing a weight defined for each possible edge ?

Answer : maximal weighted spanning tree (MWST)

- [Chow and Liu, 1968] : weight $=$ mutual information :

$$
W\left(X_{A}, X_{B}\right)=\sum_{a, b} \frac{N_{a b}}{N} \log \frac{N_{a b} N}{N_{a .} N_{. b}}
$$

- [Heckerman, 1994] : any local score local :

$$
W\left(X_{A}, X_{B}\right)=\operatorname{score}\left(X_{A}, \operatorname{Pa}\left(X_{A}\right)=X_{B}\right)-\operatorname{score}\left(X_{A}, \emptyset\right)
$$

Restriction to tree space

Remarks

■ MWST returns an undirected tree

- this undirected tree $=$ CPDAG of all the directed tree with this skeleton
- obtain a directed tree by (randomly) choosing one root and orienting the edges with a depth first search over this tree

Example : obtained DAG vs. target one

MWST can not discover cycles neither V-structures (tree space !)

Example

local score $s\left(X_{i} ; \mathrm{Pa}_{i}=X_{j}\right)$

$X_{i} \backslash P a_{i}$	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}
X_{1}	5	15	13	7	10
X_{2}	16	6	13	7	10
X_{3}	11	10	3	6	9
X_{4}	6	5	7	4	4.5
X_{5}	15	14	16	10.5	10

diagonal contains $s\left(X_{i} ; P a_{i}=\emptyset\right)$.

What is the corresponding MWST and its score ?

Heuristic exploration of search space

Search space and heuristics

■ space \mathcal{B}
■ restriction to tree space : Chow\&Liu, MWST

- DAG with node ordering : K2 algorithm
- greedy search
- genetic algorithms, ...
- space \mathcal{E}

■ greedy equivalence search

Greedy search

Principle

- exploration of the search space with traversal operators
- add edge
- invert edge
- delete edge
- and respect the DAG definition (no cycle)
- exploration can begin from any given DAG

Example

- global score decomposition of this graph ?

■ neighborhood ?
■ local score computed to evaluate each neighbor ?

Example : obtained DAG vs. target one

start $=$ empty graph. GS result $=$ local optimum :-(

Example : obtained DAG vs. target one

start $=$ MWST result. GS result is better

