# Bayesian Networks - III : Dynamic Bayesian Networks 

Philippe LERAY<br>philippe.leray@univ-nantes.fr

DUKe (Data User Knowledge) Research group
Laboratoire des Sciences du Numérique de Nantes - UMR 6004
Site de l'Ecole Polytechnique de l'université de Nantes

:
POLYTECH ${ }^{\circ}$
NANTES
IV Nantes
Université

## Introduction

## BN limitation

- BNs don't take time into account

■ for this reason, BNs are not able to model some situations :

- when a patient has a fever, he takes aspirin
- taking aspirin makes the temperature falling

$$
\text { Temperature } \rightarrow \text { Aspirin or Temperature } \leftarrow \text { Aspirin ? }
$$

## Introduction

## Answer : dynamic BN

- Taking aspirin is an "immediate" decision :

Temperature( t ) $\rightarrow$ Aspirin $(\mathrm{t})$

- Temperature evolution depends on past temperature and past aspirin decision :
$\{$ Temperature(t), Aspirin(t) \} $\rightarrow$ Temperature( $\mathrm{t}+1$ )



## Dynamic probabilistic graphical models

## Some existing models

- Markov chain
- Hidden Markov Model (HMM)
- Dynamic Bayesian Networks (DBN)


## Markov Chain

## Principle : stochastic modeling of a random process

- $X$ random process $=X_{t}$ random variable
- $t$ discrete $(t=1,2, \ldots)$
- $X$ discrete, described by $n$ distinct states
- In order to estimate $X_{t}$, we need the whole $\log X_{1}$ to $X_{t-1}$, and computation of $P\left(X_{t} \mid X_{1} \ldots X_{t-1}\right)$


## Markov Chain

## First order Markov Chain

■ Current state depends only on previous one

$$
P\left(X_{t} \mid X_{1} \ldots X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- stationary Markov chain : probability of transition is independent of $t$

$$
P\left(X_{t}=j \mid X_{t-1}=i\right)=A_{i j}
$$

- A : transition matrix

■ $\Pi$ : probability of chain initialization $\left(P\left(X_{1}\right)\right)$


## Example

## Albert the student

Albert the student knows only 3 places in his university: the table where he sleeps, the candy machine here he eats and the computer room where he plays. His days are all very similar, and his activity can be modeled by a Markov chain. Every minute, Albert can choose a new activity or continue the one he was doing :

- when he sleep, there is a $9 / 10$ chance he keeps sleeping the next minute
- when he stops sleeping, there is a $1 / 2$ chance he decides to eat and $1 / 2$ chance he decides to play.
- eating a candy doesn't take so much time, so he stops eating after 1 minute.
- when he stops eating, there is a $3 / 10$ chance he decides to play, and a $7 / 10$ chance he decides to sleep.
- playing is exhausting, there is a $80 \%$ chance he decides to sleep after one minute, otherwise he keeps playing and forgets he was exhausted.


## Other representation

## In state space

Another way to represent the transition matrix


## Use

## Several possible uses

- Let's suppose that the initial state is "sleeping"
- What is the probability Albert sleeps for the 5 next minutes?
- What is the probability he sleeps in 5 minutes ?


## Hidden Markov Models (HMM)

## Principle

- The observed variable $O_{t}$ is not a Markovian process

■ But this variable is "generated" by an hidden variable $H_{t}$

- and $H_{t}$ is a Markovian process
- A : transition matrix for $H, P\left(H_{t} \mid H_{t-1}\right)$
- $B$ : emission matrix $P\left(O_{t} \mid H_{t}\right)$, independent from $t$
$■ \square$ : probability of chain initialization $\left(P\left(H_{1}\right)\right)$



## HMM use

## Prediction $P\left(O_{t+1} \mid O_{1} \ldots O_{t}\right)$ ?

- Forward-Backward algorithm == Message Passing !
Explanation $\quad \operatorname{argmax}_{H_{1} \ldots H_{t}} P\left(H_{1} \ldots H_{t} \mid O_{1} \ldots O_{t}\right)$ ?
- Viterbi algorithm == abductive inference in BN


## Learning ?

- $\mathcal{D}$ : we observe one (or several) sequences $O_{1} \ldots O_{T}$
- incomplete data: $H$ never observed
- What are the parameters $\Pi, A, B$ which maximise the likelihood?
- Baum \& Welch algorithm == adaptation of EM algorithm


## Example

## Albert the student is back

Albert and his colleague Bertrand are discussing in the same room. As they are not able to do two things at the same time, they have to stop talking in order to listen the other one. Their vocabulary is limited to 3 words : Eat, Sleep, Wii.

- Albert essentially speaks about sleeping ( $85 \%$ ) or with the same probability about eating and Wii
- Bertrand essentially speaks about Wii (85\%), then eating (10\%) and Wii (5\%)
- Albert is often listening Bertrand : when Albert says one word, there is a $2 / 3$ chance he stops speaking in order to listen his colleague
- Bertrand keeps talking with a $80 \%$ probability
- Usually, Albert starts talking.


## Application

- One microphone in the room records the discussion: Eat Eat Sleep Sleep Wii Wii Wii Wii Sleep Sleep Sleep Sleep Eat Eat
- What is the next word the most probable ?
- What is the most probable sequence of speakers ?


## Extensions

## HMM extensions



■ Factorial HMM

■ Input Output HMM
(E) (D) (E) (D)


■ Hidden Markov Decision Tree

## Dynamic Bayesian networks (DBNs)

## k slices temporal BN (k-TBN) [Murphy, 2002]

- $k$ - 1 Markov order
- prior graph $G_{0}+$ transition graph $G_{\rightarrow}$
- for example : 2-TBNs model [Dean \& Kanazawa, 1989]

(a) Prior network (b) Transition network
$\square$
$\square$ [Dojer, 2006][Vinh et al, 2012]


## Dynamic Bayesian networks (DBNs)

## k slices temporal BN (k-TBN) [Murphy, 2002]

- $k-1$ Markov order
- prior graph $G_{0}+$ transition graph $G \rightarrow$
- for example : 2-TBNs model [Dean \& Kanazawa, 1989]


## Simplified k-TBN

■ k -TBN with only temporal edges
[Dojer, 2006][Vinh et al, 2012]

(c) Transition network with only inter time-slice arcs

## One example

FUI Hyperwind - windfarm modelling [Gherasim et al., 2016]


## Inference in DBN = NP hard

## Exact inference

- Adaptation of Forward-backward convert DBN in HMM, practical if $N_{H}$ is low
■ Unrolled junction tree : unroll the DBN over $T$ and apply an usual inference algorithm, problem = size of cliques !
- Frontier algorithm [Zweig, 1996]
- Interface algorithm [Murphy, 2001]

■ Kalman filtering [Minka, 1998]

- Deterministic algorithms
- Stochastic algorithms (sampling)


## Inference in DBN = NP hard

## Exact inference

- Adaptation of Forward-backward convert DBN in HMM, practical if $N_{H}$ is low
■ Unrolled junction tree : unroll the DBN over $T$ and apply an usual inference algorithm, problem = size of cliques !
- Frontier algorithm [Zweig, 1996]
- Interface algorithm [Murphy, 2001]

■ Kalman filtering [Minka, 1998]

## Approximated Inference

- Deterministic algorithms

■ Stochastic algorithms (sampling)

## DBN structure learning

## Score-based methods

■ dynamic Greedy Search [Friedman et al., 1998], genetic algorithm [Gao et al., 2007], dynamic Simulated Annealing [Hartemink, 2005], ...

- for $k-T B N\left(G_{0}\right.$ and $G_{\rightarrow}$ learning)
- but not scalable (high $n$ )


## DBN structure learning

## Score-based methods

■ dynamic Greedy Search [Friedman et al., 1998], genetic algorithm [Gao et al., 2007], dynamic Simulated Annealing [Hartemink, 2005], ...

- for $k-T B N\left(G_{0}\right.$ and $G_{\rightarrow}$ learning)
- but not scalable (high $n$ )


## Hybrid methods

■ [Dojer, 2006] [Vinh et al., 2012] for simplified k-TBN, but often limited to $k=2$ for scalability

- dynamic MMHC for "unsimplified" 2-TBNs with high n [Trabelsi et al., 2013]

