Applications with tutorials
01 - Intercepts processing in grey levels of Adamello Batholith images
02 - SPO basic processing of classified images
03 - SPO processing of one classified norite of the Bushveld
04 - Intercepts processing in greyscale and classified images of Rooi Rand dykes
05 - Intercepts processing in grey levels of faults and lineaments

Pr. Patrick Launeau
patrick.launeau@univ-nantes.fr

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This application uses a set of images of the site 50B from J-B Auréjac (2004) thesis and Auréjac et al. (2003) poster. It is a step by step tutorial of SPO2003 and Ellipsoid2003 programs from 2D images orientation to 3D ellipsoids calculation with useful warning.

Auréjac (2004)

sites

Auréjac, J.-B., 2004. Etude pétrostructurale de gabbros lités de la Zone Critique Supe'rieure, Complexe du Bushveld (Afrique du Sud). Thèse de doctorat, Université Paul Sabatier, Toulouse, France.J.B. Aurejac, P.

Launeau, J. Girardeau, J.L. Bouchez (2003) "New Textural constraints on the origin of layered igneous cumulates: the Bushveld Complex case". EGS - AGU - EUG Joint Assembly, Nice, France, April 2003
J.B. Auréjac, P. Launeau, J. Girardeau and J.L. Bouchez (2001) "Evidences for a dynamic formation of the layering in the Eastern Upper Critical Zone, Bushveld Complex, South Africa". EUG XI, 8-12 april 2001, Strasbourg.

Bushveld East lob Site 50 Auréjac (2004)

The minerals identification in thin section used the F. Fueten and Goodchild (2001) rotating polarizer stage allowing the identification of orthopyroxene (opx) as summarized in this sketch.

Maximum polarized light

Natural light

Directions of maximum light intensity

Isolated OPX
A computer-controlled rotating polarizer stage for the petrographic microscope. Computers \& Geosciences, 23, 203-8. Fueten, F. \& Goodchild, J.S. (2001)

The set of images is composed of 3 perpendicular thin sections taken on the block sample 50B. All orthopyroxene (opx) crystals were classified and segmented by Auréjac (2004). This set of images was reprocessed with the new version of SPO published in 2005 with 9 masks of measurement (see course 6 p 10 and Launeau and Robin (2005)).

Block sample (xy) relative orientation is $0 / 0$

Initial block sample orientation is $0 / 0 / 0$
Geographic block sample orientation is $317 /-10 /-10$
137/10/170
The (xy) top of the block sample was tilted upwards by 10° which is -10° in the NED convention. It is all right here while signs are not forgotten. We will see at the end of this application that orientations will be converted with a warning about the upward negative orientation of $[y]$.

Let now start the program SPO2003

First, type the size of the image width : 4.5 here and click enter to visualize the scale. Select also the unit : cm . You may zoom back on the image to visualize its full area like in this example with a magnification divided by 2 .

Then click on one opx to select its color code. Default is black $\operatorname{RGB}(0,0,0)$ but any color can be used with the exception of the $\operatorname{RGB}(255,255,255)$ white reserved for the background making future impressions or windows metafiles building easier.

You are now ready to enter the selected color of the phase A Add eventually a caption: OPX
Click with left button on the < button. A right click on the same button would delete the image phase or class.

You can now click on Stat button.
This activates the other buttons allowing different processing.
Select tab Inertia and enter the image internal orientation.
ase A with current color or apply a new color (Left Bt) - Remove a phase, turn it white (Ric

[^0]
Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Each opx crystal now has a color code of orientation. Moving the mouse pointer on it allows to visualize object number \#, shape ratio r, default image orientation angle, phase/class letter and associated color here

A click on one object pop up a new window focused on that object with results display.

Inertia tensor ellipse,
Ellipse of the same surface,
Bounding box,
Circle of the same surface, Short axis B, and Long axis A are selectable.

Click on tab "Phases" to change the color code.
All cut objects have been erased for inertia tensor calculation so modal fraction are biased by missing areas. The thickness of the boundaries between objects also biases that modal fraction.

Intercepts
 palette

 pala

 pala}Click on the checkbox "+ border" to dilate all boundaries to fill the space between objects and improves the modal fraction.

Click on the checkbox " +av grain" for the correction of the area in

Dash line $=$ mask of unbiased modal fraction calculation

Go back to Inertia and click on "Mean shape" to visualize it.

One click on button "/ A" calculates the mean shape of crystals weighted to their surface area giving results without scale (left below) and one click on button "E" replaces each inertia tensor by its corresponding inverse shape matrix for the calculation of mean shapes proportional to the smaller crystals (right below).

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Click on " \gg Ellipsoid" button to pop up the window of exportation of the data to Ellipsoid.
 Shape Preferred Orientation

Enter the initial relative orientation of the block sample section which is 0 / 90 for (XZ). The rake comes from the internal orientation of the image.

By default the exportation concerns short and long axis of mean shapes which can be calculated from inertia tensor to bounding box by a click on its corresponding checkbox.

Then select the number of windows of measurement allowing to evaluate the invariance of the results with translation. A cut of 3×3 windows gives a total of 9 windows of measurement which can be visualized by a click on visible checkbox.

All windows of measurement overlap 50\% with their neighbors.

Click now on "Tab" button to pop up the table and on "Transfer" button to send the data into it.

Tableau									
	\#	strike	dip	rake	long axis	short axis	weight	xc	yc
1	1XZ	0	90	88.825	0.074362	0.056504	1	550.75	142.00
2	$2 \times Z$	0	90	85.859	0.073862	0.056808	1	1101.50	142.00
3	3×2	0	90	86.552	0.071123	0.055281	1	1652.25	142.00
4	$4 \times Z$	0	90	87.964	0.074931	0.058350	1	550.75	284.00
5	$5 \times$	0	90	85.417	0.075052	0.057694	1	1101.50	284.00
6	6XZ	0	90	87.382	0.073199	0.056280	1	1652.25	284.00
7	782	0	90	91.414	0.072140	0.057274	1	550.75	426.00
8	$8 \times Z$	0	90	93.567	0.071497	0.056314	1	1101.50	426.00
9	$9 \times Z$	0	90	91.926	0.071571	0.055313	1	1652.25	426.00

While "visible" is checked click on any table row to highlight the position of the corresponding area with a negative window.

Uncheck "visible" to hide the negative window

It is recommended to save its work before continuing with the next step. The file saved contain the image, all calculations and all orientations.

It is also recommended to save all SPO file (xy), (xz) and (yz) prior 2D exportation towards the 3D Ellipsoid program.

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

While the Table is visible click on "Copy".
Open Ellipsoid (or select it if it is already open) and click on "Paste" for the first file.

Then click on "Add" for the two other sections. The ellipsoid calculation require a minimum of 3 sections roughly perpendicular to each other.

You must click at least one time on "Ellipsoid" (which pop up the window below) to calculate it and save your work by a click on "Save" in a file *.elli

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

The use of internal $0 / 0,0 / 90$ and $90 / 90$ block sample section's orientation the program automatically selects the right combination of section.

If the frame "Combinations" is empty use "Option" menue to select the right code of section family 123 or A B C or YZ XZ XY. For instance in this example one could select YZ XZ XY.

The "Test sections" button run a routine checking the compatibility of the sections. 3 parallel sections cannot retrieve a 3D ellipsoid which have to be as perpendicular as possible.
3×3 windows per image section $\times 3$ sections give $9^{3}=729$ potential combinations of ellipsoids.

So, check "active" to activate the calculation of the 729 combinations, then click again on "Ellipsoid".

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

This output is in the relative block sample orientation $0 / 0 / 0$

It is now necessary to rotate it at once in the geographic coordinate system with the strike dip rake of the top (xy) of the block sample and the rake orientation of $[x]$ on that plane.

Geographic block sample orientation is $317 /-10 /-10$ 137 / 10 / 170

Geographic block sample orientation is $317 /-10 /-10$ $137 / 10 / 170$

Both orientation give the same results. The main axis of the block sample are visualized with this checkbox.

As mentioned p. 4 the axis [y] is plunging upwards towards the NE with a negative angle. This is highlighted here with a red Y-1 warning in the graphic.

12. Ellipsoid 2003 (\times						
File Option Contact Examples (see Ref. 2) Rotation [xyz]						
Number of section \qquad Calculation display section \# WITH measured scale factor /mean L WITHOUT measured scale factor Г 3 sections			mean L 0.0643			
			Help			
C +sufface	729	Add	Bedding			
C +density	Γ density \% $50 \rightarrow$ dip 10	Test sections	Ellipsoid			
(c) long \& short axis	$\alpha^{\circ} 15 \rightarrow \mathrm{~L} \rightarrow$ pitch/rake ${ }^{15} 170$	Copy results	Save			

The ellipsoid is now in the geographic coordinate system and can be save again for recording its new orientation.

Eigenvalues are calculated on inverse shape matrix as shown by their invers order of intensity.

See course 6 p. 11 to 13 for comments.

Save a windows metafile of the plot with A bitmap of it with Copy the results with see next page.

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Example of output

Click on one row of the following table of incompatibility index to visualize the results of one section

F1/2			$\boxed{\square}$
	with	without	e[ab]
18		2.9\%	
2B		2.7\%	
3 B		1.9\%	
4 B		1.2\%	
5 B		3.0\%	
6 B		2.2\%	
7 B		1.9\%	
8 B		3.3\%	
98		2.9\%	
10 C		1.8\%	
11-		2.2\%	
12C		2.3\%	
13C		5.3\%	
14C		2.1\%	
15C		2.5\%	
16 C		7.4\%	
17 C		4.7\%	
18C		4.0\%	
19A		2.7\%	
20A		3.5\%	
21A		1.5\%	
22A		2.9\%	
23A		3.4\%	
24A		4.8\%	
25A		5.1\%	
26A		5.0\%	
27A		2.0\%	

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Calculation of unweighted (L set to 1) data density with a Gaussian function normalized to 50% of the data and having 15° width at mid height

Example of output via windows metafile open in a drawing software

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Back to SPO for other available outputs
"wmf" for drawing on a white page with an option to save it as a windows metafile.
" \rightarrow image" for drawing on the image at its pixel resolution

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

An other possible output in 2D, not recommended for 3D transfer (!), but useful for the analysis of local orientations.

[^0]: Default internal image orientation $0 / 0 / 0$ compatible with NED

