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Pure shear Simple shear

When each grain of material undergoes the same deformation without any 

viscosity contrast, the deformation is said to be passive

The pure shear is a coaxial deformation with 50% dextral and 50% sinistral flux of 

material (blue arrows) while simple shear is not coaxial and display 100% dextral 

(clockwise) or sinistral (anticlockwise) material flux (dextral in the present figure).   
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In case of iso-surface pure shear deformation, the shape ratio of the ellipse of 

deformation is equal the quadratic elongation l and its shortening is equal to the 

inverse of the elongation 
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The shape ratio is also proportional to  the angle of invariant radius during the 

deformation
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The shape ratio of an ellipse deformed by simple shear is proportional to the 

shear angle y usually converted in simple shear rate g as it follows

yg tan0  llc

The shape ratio of the ellipse of deformation is also proportional to  and can 

be estimated as it follows
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So a simple shear can be decomposed 

in a rotation and an elongation
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Combination of pure and simple shear

2D simulations on the (X,Y) section of a pure shear, a simple 

shear and a combination of both shear applied towards the [Y] 

direction. The simple shear rotation y twist the axis [X] which 

causes a non-coaxial deformation characterized by an 

asymmetric matrix of deformation.    
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Let now consider 2 vectors with an initial length l and a final one l’

'sin''

'cos''

y

y





ly

lx

V’ = M V

y

x

y

x


1

2 0

'

'

lg

l

and simulate a deformation

It is possible to retrieve the deformation rate by using the cosine directions as seen in 

PO chapter. But this method only considers the rotation between initial and final stage  
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V’ = M V

R V’ = M R V

R-1 R V’ = R-1 M R V

V’ = R-1 M R V

L = R-1 M R 
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There is no easy determination of deformations including non coaxial simple shear 

component forming asymmetric matrix M. If V is one of the vectors forming the initial 

ellipse, V’ is the final ellipse in which X and Y loose their perpendicularity. A simplification 

of the problem consists in the determination of a rotation R from initial XY to the final 

X’Y’ orthonormal coordinate system of the new ellipse. Afterward, a back rotation R’

reorient the final vectors in the initial XY coordinate system. This rotation  gives access 

to the eigenvectors R diagonalizing M in a matrix of eigenvalues L giving the intensity of 

an equivalent pure shear. 

Thus, a combination of pure and simple shear is decomposed in one rotation and one 

pure shear.
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(AB) plane seen on AC section
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The detection of a simple shear component required on external reference such 

as a marker of the shear plane

The plane of schistosity S corresponds to the structural (X,Y) plane noted (A,B) in 

the convention of this course. The angle measured between the S (A,B) plane and 

the shear plane C on a section (A,C) is equal to the characteristic angle . It ranges 

from 45° with the first shearing deformation increment to 0° for an infinite 

deformation.

Shear plane C

(XY) structural plane seen on 

(XZ) structural section

Warning

(X,Y,Z) is the 

image 

coordinate 

system which 

should not be 

confused with

(A,B,C) the 

ellipsoid 

deformation 

coordinate 

system
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Let now simulates an ellipse with the calculation of their radius l and 

test the vector distribution matrix around their gravity centers xc ,yc
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The main eigenvector of M effectively 

retrieves the ellipse orientation  and their 

eigenvalues ratio is equal to its shape ratio R
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The drawing of an ellipse with a regular step of 10° gives 

case 1 plot.

In case 2, the drawing of an ellipse with a step 

proportional to its elongation direction  is required for the 

true simulation of an ellipse

All the radius of an initial disk undergoing a deformation 

converge towards  its main direction of elongation a.

This will be an important property for the following image 

analyses which tend to explore the images with constant 

angular step.

The shape ratio of the ellipse is 3 and we found:

Case 1

Case 2

Case 1 Case 1 Case 2

RLc 2.978 R 1,726 2.983 3

aLc 1.604 a 1.221 1.727 1.732

bLc 0.539 b 0.807 0.579 0.577

12a

22b

a

b

a

b

The analysis with a constant angular step misses the rotation due to the deformation 

similarly to the cosine direction which misses the vector elongation. In such cases the 

true shape ratio is given by Rf (eigenvalue ratio) instead of R (eigenvalue ratio square 

root). Alternatively the ratio of the weighted sizes aLc and bLc can be used to calculate R.
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Further simulations can be done with various shape weighting:

Vector lengths of J lines

weight = lj
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Flinn diagram

Let the ellipsoid a, b, c be respectively b1, b2, b3 :

P' = exp[2(l1
2 + l2

2+ l3
2)]1/2,  with ln = ln(bn/bB)   and   bB = (b1.b2.b3)/3

T = [2(lnb2 - lnb3)/(lnb1 - lnb3)] – 1

T =  1 for a = b > c

T =  0 for a > b > c with a / b = b / c

T = -1 for a > b = c

Jelinek, V., (1981)

Jelinek diagram
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Prolate  linear, elongated, constrictive deformation

Planolinear  simple shear, uniaxial pure shear

Oblate  planar, flattened, divergent deformationplanolinear
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Oblate
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The characterization of 3D ellipsoid is possible with Flinn and Jelinek parameters
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Flinn, D., (1962)

Let note Flinn the parameter k to avoid confusion with the shape 

parameter k

Flinn = 0 for a = b > c

Flinn = 1 for a > b > c with      a / b = b / c

Flinn =  for a > b = c

Jelinek’s parameters varying from -1 to 1 are more often used in 

SPO and AMS studies than Flinn parameters varying from 0 to 

Prolate

linear

Oblate

planar

planolinear
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3D ellipsoid deformation with a constant volume                          or

can displays surface area changes. 

The 2D hypothesis of constant surface area is not valid in 3D for which 

compensations between sections maintain the volume constant

Prolate, linear

Oblate, planar

Plano-linear

1321  lll 1321  lll

3
3211 lll  lanNormalization to an unitary volume: 

Decreasing area

Increasing area

Constant area
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Prolate  linear, elongated, constrictive deformation

Planolinear  simple shear, uniaxial pure shear

Oblate  planar, flattened, divergent deformation
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Let now considers 2 ellipses with individual shape ratio r forming an angle  with the 

mean direction. 2 perpendicular ellipses would simulate an isotropic initial angular 

distribution with a resulting mean shape ratio R = 1 and PO Rf = 1 with  = 45°.

A rotation of both ellipses as rigid bodies toward each other makes them parallel with 

 = 0, R = r and Rf infinite. 

Mean SPO

In such case a normalization to the shape parameter k

can retrieve a PO Rn independent to the shape ratio r. 

   30
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K: Willis (1977), Fernandez et al. (1983); Kn Launeau (2004)



Particle interactions

may slow down the 

rigid body rotation

Slow rotation // flow

Fast rotation ^ flow
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A low contrast of viscosity produces 

the passive deformation of 

enclave in magma

An infinite contrast of viscosity 

between rigid crystals and its 

embedding viscous magma 

produces active deformation 

which is a free rotation of rigid 

bodies suspended in a flowing 

viscous matrix. In such case the 

crystals keep their shape and rotate 

progressively towards the shear 

plane forming crystal shape 

preferred orientation with an 

individual cyclicality proportional to 

their crystal shape ratio  

A rigid body can not deform, it turns on itself to 

allow the deformation of the magma

15Launeau (2004)
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2D simulation of crystals 

rigid body rotation

analyzed with the cosine 

direction method

2D simple shear equation 

of G.B. Jeffery (1922) 

giving the final orientation 

’ to the shear plane as a 

function of its initial 

orientation , r and g

Rf is cyclic with Rfmax = r2

at the critical gc

(A. Fernandez et al. 1983)

Enclave

Passive deformation of 

an enclave compared to

Preferred Orientation

  0

  45

  45

Launeau (2004)
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3D simulation of rigid 

body rotation analyzed 

with the cosine direction 

method.

Equation of axisymmetric 

prolate boby (a > b = c)

The shape ratio r = a/c

Each body rotates faster 

at high angle with the 

shear plane and slows 

down along that shear 

plane

a : b : c

17
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Rf


homogeneous 

population [2]

heterogeneous 
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Mean Ellipsoid 2:1:1   ra/c = 2   gc = 3.93

Let build a population with random orientation and typical distribution of body shape 

ratio ranging from 1.15 to 3.4 with a mean shape ratio 2 and simulate a 3D shear flow.

g

Each shape ratio sub population displays a perfect 

cyclic rotation whereas the accumulation of all 

populations quickly looses this cyclic rotation after 

gc and tend to become stable over the shear plane 

with a maximum rRf max

gc

18Launeau (2004)

Initial random orientation
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prolate initial PO

oblate initial PO
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Mean Ellipsoid 2:1:1   ra/c = 2   gc = 3.93

The initial orientation does not matter either since strongly oblate and prolate orientation 

distributions of rigid bodies tend to stabilized themselves on the shear plane with 

increasing deformation.

mean

individual 

orientation

PO along directions a b c

Launeau (2004)
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To summarize, the passive deformation of a body with its matrix produces a mean 

shape proportional to the strain whereas the free rotation in the active deformation of 

rigid body produces a mean shape more or less aligned along the matrix shear plane

(1) Envelope of the magma bubble recording the strain 

(2) Mean shape preferred orientation of passive bodies recording the strain

(3) Mean shape preferred orientation of rigid bodies converging towards the shear flow plane (// flow plane at gc)

r = 2   gc = 3.93

The obliquity between passive elongation direction of an enclave and its internal 

crystal SPO potentially gives the shear sense of the magma flow 

Launeau (2004)
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(1) Initial position of a magma bubble

(2) Final position of its vertical section in blue, its shape in purple, the preferred orientation of its microlithes in green

(3) Alignment of the initial vertical sections of the magma bubbles

(4) Alignment of the ellipses of magma deformed passively obtained with translation indicating that its is virtual 

(5) Alignment of the ellipses of crystal preferred orientation obtained with translation indicating that its is virtual (compare with (2)) 

Long translation with weak deformation

Short translation with strong deformation

The shear flow is often stronger in contact with the floor and progressively decrease 

with the thickness of the magma toward the top of it where crystals and matrix are 

translated without internal magmatic deformation 

All alignments are virtual and should not be confused with true flow planes, thus 

magmatic SPO lineations [A] and foliations (A,B) are indicators of (passive) flow 

strain or (active) flow pattern oblique on the effective flow plane.

Shear flow plane

Launeau (2004)
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