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Image analysis of classified image define a 
mineral phase or class by a color code. 

Each subset of color code can then be 
interpreted as an aggregate of 
interconnected grains. The inertia tensor 
method measure the anisotropy of the 
aggregate whereas the intercepts method 
can retrieve the orientation of the sub grains 
embedded in the aggregate. 

The analysis of the sub grains by the inertia 
tensor method requires prior sub grain 
segmentation.

(see for example Launeau et al. 1994)

Inertia tensor Intercepts mean length boundary directions
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If a mineral phase is identified by a 
color code (yellow figure) on a digital 
image made of square pixels. Its 
subdivision in objects can be done by 
a scan (red line) of the neighboring 
pixels.

A digital scan can be done only along 
pixel rows and pixel columns in X and 
Y direction respectively. Each pixel 
has 4 neighbors which define the 
connexity 4. 

The addition of scan directions along diagonals gives a total of 8 neighbors which 
define the connexity 8. The alternation of connexity 4 and 8 is useful for the drawing 
of dot on digital images (see blue figures).

We will rather use the connexity 4 scan to maximize the grain segmentation. The 
yellow figure displays 2 objects in connexity 4 but only 1 object with 1 pixel hole in 
connexity 8.
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1) A cursor scans the digital image along rows until it find the first pixel (anchor pixel of the object) of a mineral class and attributes 
an object number to the same pixel coordinates in a separate layer mapping individual objects.  

2) Then it tests all neighbors in connexity 4, records the position of the new neighbors belonging to the same mineral class and 
attributes the same object number, in the object layer, prior the transmission of their positions to the next step. 

3) The loop repeats itself until the cursor reach the last pixel of the object subset of neighboring pixels encoding the object number
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Inertia tensor of the jth object:

Calculation of the inertia tensor of each object identified by its first anchor pixel and 
its gravity center coordinates
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Rink (1976) and Jähne (1991).



Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

6













i ci

j

yyj

cci ii

j

xyj

i ci

j

xxj

yy
A

m

yxyx
A

m

xx
A

m

22

22

1

1

1









i i

j

jc

i i

j

jc

y
A

y

x
A

x

1

1

The inertia tensor can be written in the default 
image (X,Y) clockwise coordinate system for the 
jth object with surface area Aj
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The summation of the matrix components and their 
division by J objects gives the mean inertia tensor giving 
the mean shape of the object stacking by their gravity 
centers.
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For reason of simplification, we rather use a convention with 

X parallel to the N and Y parallel to the E when f = q = y = 0.

Rink (1976)
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Conversely, the knowledge of 
eigenvectors orientations R and 
eigenvalues intensities L makes 
possible the recalculation of the  
inertia tensor and their eventual 
weighting.

Substituting a and b by the inertia tensor diagonal components gives an inertia 
tensor proportional to the area of each object  
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Launeau (2004), Launeau & Robin (2005).
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The inertia tensor MTj resulting of the scan pixel by pixel through out the whole 
surface of each object it is weighted by its area. A normalization of each object to 
its area gives the same weight to each object.

Ellipse inverse tensors MEj are weighted by the inverse of the area. A multiplication of 
each inverse tensor of ellipse by its area gives the same weight to each object.
The comparison between those 3 tensors allows the detection of size effects on the 
SPO calculation. 
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Rink (1976)
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If the inertia tensor basically counts 
along a scanline the number of 
pixels belonging to a mineral phase 
or class the intercepts method only 
counts each time a scanline cursor 
get out of the mineral class. This 
event corresponds to the 
successive detection of a pixel in 
and out of the mineral class.
Moreover the intercepts method 
rotates the net of parallel scanlines 
in all directions with a constant 
angular step.
The summation of the intercepts 
counts in all directions draws a rose 
diagram of intercepts in which the 
minimum count indicates the 
direction of elongation of the sub 
grains, hidden in the aggregate but 
revealed by the aggregate 
boundaries.

min

The intercepts counting being done in 1D along scanlines 
it is recorded as N1 or NL per angle of analysis.

In practice it is safer (in case 
of noise) to count intercepts 
in and out the object and to 
divide the sum by 2.

Saltykov (1958), Underwood (1970), Serra (1982), Panozzo (1983), Coster &Chermant (1989), Launeau (1990).
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The sum of the counts in the 
direction of analysis is the 
intercepts count. It is also the 
projection of the mineral class on a 
perpendicular direction also called 
total diameter D.
The area being the count of pixels 
belonging to the mineral class the 
division of the area by the count of 
intercepts gives directly the mean 
length L of the segments 
intercepted or traversed by the net 
of scanlines.
The rose diagrams of intercepts 
counts and projections cannot be 
combined with other 2D sections 
in 3D which is the main interest of 
the mean intercepts length rose 
diagram also called traverses rose 
diagram. Launeau & Robin (1996)

See also mean free length Underwood (1970)
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The intercepts method is 
only sensitive to the 
angular distribution of 
the boundaries. It is 
therefore absolutely 
necessary to establish 
that the set of 
boundaries can 
effectively retrieve the 
orientation of sub grains 
forming an aggregate.
Blind application of the 
method is dangerous 
and can produce 
meaningless results.

Notes that intercepts rose diagrams are always centrosymmetric. Triangles with uneven distributions of 3 
boundaries produce a rose diagram of even distributions of 6 borders. All uneven symmetry orders are null. 

Launeau & Robin (1996)
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A digital image has 4 directions of counting pixel per pixel in line and column and 4 
more ones in diagonal with 20.5 pixel steps. 

The use of narrower angular step 
required a resampling of the 
digital image in each scanline 
direction with a constant 
counting step. Then a scanline 
tangent to a border made of 
square pixels displays many 
unexpected outputs of objects.

A weighted low-pass filter 
allowing the calculation of pixel 
densities along each scanline 
local outputs of objects are 
smoothed out and the right 
count of intercepts is found at 
50% pixel density.

Low pass coefficient: 1 3 6 8 9 9 8 6 3 1
Launeau & Robin (1996)
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The comparison between raw 
counts of intercepts in red with 
the low-pass filter allowing the 
count of intercepts on pixel 
densities in blue evidences the 
interest of such counting 
procedure.

Further filter however can help to 
minimize the noise. 

Image tested

Angular distribution of the intercepts counts

Launeau & Robin (1996)

See also for digital anisotropy 
Panozzo Heilbronner (1988).

With low-pass

Rink (1976)

Without low-pass
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The drawing of the mean 
intercepts length with a constant 
angular step of 2° is a rose 
diagram equivalent to the 
drawing of an ellipse presented in 
course 3 p. 10. Thus, the first 
eigenvector gives the orientation 
 and the square root of the 
eigenvalues ratio gives the SPO 
intensity R.
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But the square root of the eigenvalues ratio gives directly R
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 C =  F 0)(0 

The harmonic 0 (C0) corresponds to 
the mean intercepts count. It is the 
best circle pathing by the intercepts 
counts rose diagram. The counting 
interval along scanlines times an 
intercepts count may gives a metric 
size (cm in the present example). 

C0

counts


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)(cos)(2 
220 -2 C + C =  F

The harmonic 2 corresponds to the 
best ellipse pathing by the 
intercepts rose diagram. The SPO 
direction is therefore given by the 
phase angle of the 2nd harmonic 2. 
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The harmonic 8 is the last one 
before the blank noise. It 
corresponds to the best shape fitting 
the intercepts rose diagram. The 
SPO intensity is the ratio of the 
intercepts counts found in  and 
90° directions

Blank noise



C8

counts



C0+C2+C4+C6+C8



The division of the mineral class by 
the intercept counts in each angle 
of analysis gives the mean length 
intercepts or traverses rose 
diagram: 

The shape ratio remain the same.
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

M = 8 
Intercepts

Mean length 
Traverses

I sampling interval on line
J interline

Compare with p. 14 

1.322 @ 145.6°
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A rose of directions can be extracted from the second derivative of the intercepts rose, 
we will not develop further the method in this course. 

Intercepts rose diagram of a rod L

Hilliard (1962)
Launeau & Robin (1996)
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For a population of rods :

M = 8
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A rose of directions can be extracted from the second derivative of the intercepts rose, 
we will not develop further the method in this course. 

The characteristic shape is a 
concatenation of directions

Hilliard (1962)
Launeau & Robin (1996)



blank noise

M = 54
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An excess of harmonic integration in the Fourier reconstruction only add noise which 
conduct to the detection of the pixel geometry and aberrant rose of directions. 

Mean length traverses

Directions
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C2 = anisotropy
CM = symmetry
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The power spectrum allows the analysis of the object boundaries symmetry by the 
detection of periodic distribution of C. 

A power spectrum with high C values on harmonics 6, 
12, 18, 24 characterizes symmetry of order 3 and 6 Launeau & Robin (1996)



10

C2 = anisotropy
CM = symmetry

20

A power spectrum with high C values on harmonics 10 and 20 characterizes symmetry 
of order 5 such as the pentagon below
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In 2D image, the inertia tensor 
always gives the exact size of 
one ellipse. The size of a and b
of one rectangle is enlarged and 
its exact size is better given by 
the bounding box values abox

and bbox.

In 2D, intercepts are mean 
values calculated on A/J lines 
with J the interline size. Thus, 
the mean diameter of one 
ellipse is:

       





1/

1

max .
44 JA

j

LjL N
J

A
NILL 







I sampling interval on line
J interline size

In case of an ellipse, the size of 
each mean length of intercepts 

must be multiplied by 4/.
This is not the case for a rectangle.

Notes the 
characteristic 
distribution of CM

for the rectanglepxlJ

pxlI

K

2

1

902







C0 + C2 = 98.1% ellipse data

Launeau & Robin (1996)
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Inertia tensor Mean intercept length

L = 0.569 
L = 0.445

L  4 /  = 0.567

L = 0.804 
L = 0.623

L  4 /  = 0.794

L = 1.138 
L = 0.878

L  4 /  = 1.118

L = 2.275 
L = 1.743

L  4 /  = 2.219

L = 1.863

L  4 /  = 2.372

9°

2°

Anisotropy

mean L

Illustration of the mean intercepts length 4/
correction with increasing anisotropy of ellipses

Figures not to scale



Inertia tensor Mean lengths of intercepts Boundaries directions

r = 3   R = 1.52

r = 3   R = 1.54

R = 1.52

R = 1.30
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Comparison between inertia tensor and intercepts shows that intercepts underestimate the 
SPO intensity of objects presenting sharp boundaries whereas elliptical ones give identical 
results with both methods.

Sub-direction detection

a1b1

a2

b2
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Roses diagrams of 
directions can be useful 
for the detection of SPO 
imbrication of 2 
populations of objects, 
like rectangles and 
ellipses or for the 
detection of diamond 
shapes characterized by 
boundary directions 
aligned along S and C 
planes.

Such observations 
however can not be used 
in 3D SPO construction by 
combination of 2D SPO 
measurements which 
must be ellipses. 

S ?

C ?

S ?

C ?
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Inertia tensor

Ellipse with 
identical 
surface area

Rectangular 
bounding box

Disk with 
identical 
surface 

area

The inertia tensor is centered on the gravity 
center and can be represented as an ellipse 
with long radius a and short radius b
enclosing the object, including irregular 
boundaries enlarging its footprint in the 
image. It is then possible to resize an 
ellipse, or eventually a disk, to the effective 
surface area of the object. 
A scan along the main axis direction and its 
perpendicular direction also allows the 
drawing of a bounding box enclosing all the 
pixel of the object.

The theoretical area of an ellipse is :
A is the area of an object. Their ratio 
allows the definition of the index of 
deviation from ellipticity:

ellipseellipseellipse baA  

Rink (1976)
Launeau (2004)

1



object

ellipseellipse

elli
A

ba
e





1 : rectangle

r = 2

2 : ellipse

r = 2

3 : centrifugal shape

r = 2.5

4 : centripetal shape

r = 2

Shape #
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Let define 4 shapes with :
1) sharp boundaries (rectangle) 
2) smooth boundaries (ellipse –

homeomorphic deformation of a 
circle)

3) centrifugal distribution of pixels 
more abundant towards both ends

4) centripetal distribution of pixels 
more abundant towards the gravity 
center 

In all cases, the inertia tensor method 
always provides the right shape ratio 
whatever is shape type.

Launeau (2004)
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1

2

3 4

Disk with identical surface area 
comparison to mean length traverses 
size distributions  

The analysis of the different shape 
types by the intercepts method 
shows a lot of variations in mean 
length of intercepts or traverses 
with the scanline angles.

The ellipse and the rectangle 
having boundaries oriented in the 
main direction of anisotropy both 
shapes correspond to one object. 
On the contrary, the last shape 
types display a lot of boundaries 
oblique on the main direction of 
anisotropy and could be seen as 
aggregates of sub-objects.

Launeau (2004)
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In case of low population the shape 
type may influence the SPO.
Column (a) contains only the object 
orientation at 60° in row (1), 120° in 
row (2) and both orientations in 
row (3). Column (b) to (e) contain 
the inertia tensor analysis of all 
shape types. The individual shape 
ratio r is identical in line (1) and (2). 
The SPO of 2 objects in line (3) 
display intensities R proportional to 
individual r. Their normalizations Rn

give the expected value given by 
the PO of the lines in (a, 3).  

1 2 3 4

In line (4) the mean length of traverses gives the right SPO intensity in (c) for the 
ellipses. This intensity is underestimated in the case (b) of the rectangles. The results 
are quite different in column (d) and (e). The intercepts method clearly detects the 
orientation of sub-objects hidden in the aggregates.

n

n
n

K

K
R






1

1
(see course 02 p. 18) 

Launeau (2004)
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1 2 3 4Shape # 1234

1.99

Let deform passively a set of 24 shape types 
initially oriented every 10°. The inertia tensors of 
all shape type populations display the same initial 
SPO R=1 and final SPO R=2. Whatever is the 
individual shape, the inertia tensor of a population 
records the strain intensity while each population 
has an initial isotropic angular distribution of 
objects. 

1

1/1  21

1.00 1.00 1.00 1.00R 1.00

Pixel density

Passive isosurface deformation

Not display at the same scale
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1 2 3 4Shape # 1234

1.93

1

1/1  21

1.00 1.00 1.01 1.01R 1.01

Passive isosurface deformation

Not display at the same scale

The intercepts of all shape type populations 
display the same initial SPO R=1 and final SPO 
R=2. Whatever is the individual shape, the 
intercepts of a population records the strain
intensity of a passive deformation while that 
population has an initial isotropic angular 
distribution of objects. 



1.48
1.99

1.44
1.98

1.57
1.95

1.44
1.99

Rgc

Rn

2.08 1.98 2.49 1.90r

1.44
1.95

1.97
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1 2 3 4Shape # 1234

Whatever is the individual shape, the 
inertia tensor of a population records the 
SPO intensity R weighted to the mean 
individual r while that population has an 
initial isotropic angular distribution of 
objects. When r is known Rn allows the 
estimation of the full SPO intensity. 

Let now deform actively, by rigid body rotation in simple shear up to the critical gc, the 
same set of 24 shape types initially oriented every 10°. Rf = r2 and Rn = r at gc .

r = 2

gc = 3.93

1

1
2

2






r

r
k

n

n
n

K

K
R






1

1

1

1
2

2






R

R
K kKKn  (see course 02 p. 18) 



1.12
1.19

1.47
2.04

1.19
1.27

1.12
1.23

Rgc

Rn

2.08 1.98 2.49 1.90r

1.33
1.68

1.97
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Rf = r2 and Rn = r at the critical shear rate gc for which most of the objects are parallel to 
the simple shear flow plan.

r = 2

gc = 3.93

1

1
2

2






r

r
k

n

n
n

K

K
R






1

1

1

1
2

2






R

R
K kKKn  (see course 02 p. 18) 

Population of parallel objects display  
angular distribution of boundaries similar 
to the individual objects angular 
distribution of boundaries which has a 
strong impact on intercepts SPO. Ellipse, 
homeomorphic deformation of a disk, 
and rectangles are the only shape type 
fully compatible with flow quantification.

1 2 3 4Shape # 1234
This shapes are aggregates of oblique grains
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The following example is the drawing of a quartzite thin section where cut grains are 
masked in cyan. Since boundaries occupy some surface it is necessary to include them in 
the calculation of the quartz modal fraction which should be 100% in a quartzite. 

60 objects 
89.1% black grains
93.7% black grains + borders
28.4% cyan masked grains

60 objects 
67.1 % black grains + borders
95.9% black grains + borders + average

When cut objects have been deleted the definition of a mask of measurement eroded 
with half of the average grain size allows the retrieval of the right modal fraction

R  1.43

  123.7

R  1.32

  125.0

The weighted inertia tensor mean length being 
calculated on black pixels it is not sensitive to the 
presence or absence of the cyan pixels

The unweighted inertia tensor gives the 
same statistical weight to each grain.
Both stacks of pixels display elliptical high 
density suitable for 3D estimation.

Mean size / 2

imageerodeborderblackquartz AAA _% 

 
bordergreenimageborderblackquartz AAAA  %

Drawing modified from Quartzite thin section 
from Ramsay and Huber (1983, page 118)

Pixel density
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The intercepts method do not necessitate the deletion of cut objects when the 
procedure stop the detection of intercepts along images borders

Intercept detection on both classes 
(green for black and red for cyan)

60 objects 
66 % black grains
28 % cyan masked grains
94 % quartz + 6% borders

Mean length intercepts 
of black and cyan classes

Mean length intercepts 
of black class only

R  1.30

  125.4

R  1.37

  124.5
The unweighted inertia 
tensor gives results 
between both 
intercepts mean length:

The weighted inertia 
tensor gives higher 
values because of the 
presence of a few large 
grains:

R  1.32

  125.0

R  1.43

  123.7
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The measurement mask, set to a quarter of the image, scan from position 1 to 9 over it 
allows a quantification of the results invariance by translation. It gives 9 SPO whose R and 
 standard deviations characterize the results homogeneity through the whole image.

  89.7  2.7

  87.1  2.1

R  1.29  0.02

R  1.13  0.02

±1s

Launeau & Robin (2005)

Pixel density
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The order of crystallization also play a role in the formation of mineral SPO like in this 
example from a gabbronorite of the Bushveld (South Africa)

SPO

PO

1



A

ba
eellipse



The first mineral OPX presents 
automorphic crystals with a 
compact shapes characterized 
by a low deviation index to the 
ellipticity. The plagioclase 
continuing to crystallize after 
the OPX it display overgrowth 
poecilitic shapes and strong 
deviation index to the ellipticity. 
The last mineral CPX occupies 
the last free gaps between other 
minerals.
In this case, OPX is the only 
mineral recording the magma 
flow whereas plagioclase and 
CPX present less significant 
mixed SPO.

Launeau (2004)



layering

SPO Rf =    K  1  R2

Comparison with spatial distribution using center to center or Fry (1979) diagrams

The center to center method compile all the 
distances between each object gravity center and all 
its neighboring object gravity center. When all 
objects are identical to each other the minimum 
distance draw exactly 2 times the mean object.
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+

+
+

SPO2003 uses low-pass 
filters and a color palette to 
facilitate the analysis of the 
spatial distribution which 
are efficient to reveal the 
presence of bedding or 
layering independently of 
the SPO.

Parallel objects present 
infinite PO and SPO equal 

to the mean object
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Image borders induce density 
attenuation along them. 

This sensitivity to boundary is avoided by 
setting a window of starting centers, 
from where neighboring centers are 
searched in a disk having a radius equal 
do the gap between image boundary 
and that starting window. 

Examples of compaction, scattering and homogeneity 
analysis (see SPO2003 center-center). 



1mm

R= 1.630 @ 114,3°

R= 1.645 @ 114,1°

Inertia 
tensor

Mean
intercept

length

Drawing modified from ironstone oolite thin section from Ramsay and Huber (1983, p. 112 and 120) R= 1.7 @ 120°
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Example of comparable estimations of a strain by Fry diagram, mean intercepts length 
and inertia tensor



Digitized image of thin rectangular rigid 
markers floating on a dense viscous liquid 
which has been deformed in a shear box 
(lldefonse et al., 1991). Bulk shear strain of 
the liquid, g = 0.94. Only the analysis of the 
black rectangles is presented here; they are 
approximately 25 pixel long. 

Roses of directions calculated from three 
Fourier series representations of the rose of 
intercepts, truncated at the harmonic levels M 
indicated. 

Rose diagrams of the long axes of the 
rectangular markers, smoothed with the 
circular Gaussian function                 
the 2 curves correspond to k = 50 and k = 100. 

 1cos qke
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The thin lines are contours of the autocorrelation surface calculated from the image with the program AUTO of 
Pfleiderer et al. (1993). The contour closest to the origin shows mostly the pixel anisotropy, whereas the 
contours furthest away from the origin, indicate the proximity of some rectangles to each other. The rose of 
mean intercept lengths calculated from the rose of intercepts, has been scaled to fit between the 5th and the 
6th contours away from the origin.

Launeau et Robin (1996)
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The shearing angle along shell hinges given by the rotation 
of its initial perpendicular axis of symmetry is classically 
used for the estimation of the strain of passive 
deformations. see Ragan (1968) and Ramsay and Huber (1983)

It is shown here that, when tens of objects are available, 
both inertia tensor and intercepts methods give the same 
results.

Modified from Ragan, D. M. (1968) p. 30


