Applications with tutorials

01 - Intercepts processing in grey levels of Adamello Batholith images

02 - SPO basic processing of classified images
03 - SPO processing of one classified norite of the Bushveld
04 - Intercepts processing in greyscale and classified images of Rooi Rand dykes
05 - Intercepts processing in grey levels of faults and lineaments

Pr. Patrick Launeau
patrick.launeau@univ-nantes.fr

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This application of the intercepts method in grey levels to the Adamello Batholith use one of the sites of Anne Schöpa thesis used in the following publication.

Schöpa A., D. Floess, M. de Saint Blanquat. C. Annen, P. Launeau (2015) "The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith". Tectonophysics 642 1-15.

It is a step by step tutorial of Intercepts2003 and Ellipsoid2003 programs from 2D image orientation to 3D ellipsoid calculation with precious warning on false interpretations.

The site 11 AS 11 is a tonalite made of dark hornblende, intermediate grey quartz and white plagioclase presenting local heterogeneity well explain by the comparison of large field image analyses with small block sample section analyses.

This image displays all necessary information:

- Sample number $11+$ section label A. See 11AS11 site location in Schöpa et al (2015).
- Scale in cm
- Strike X (N 164) of the image plane perpendicular to the camera lens constituting the axis Z
- Dip Y (18) taken in the direction X + 90 (W)

With angle in degrees.
The strike of 164 degrees from the N , dipping towards the W with an angle of 18 degrees becomes in the right hand rule, clockwise orientation system $\phi / \theta: 164 / 18$

For image analysis purpose, it is necessary to complete the orientation with the indication that Y is at +90 of X .

See course 2 page 14

$164 \mathrm{~W} 18=164 / 18 \mathrm{Y}$ dip at +90 of X on normal plane

This $2^{\text {nd }}$ image displays all necessary information:

- Sample number 11+ section label C. See 11AS11 site location in Schöpa et al (2015).
- Scale in cm
- Strike X (N 302) of the image plane perpendicular to the camera lens constituting the axis Z
- Dip Y (76) is reversed as shown by the inverted dipping sign and taken in the direction $\mathrm{X}+90$ (SW)

The strike of 302 degrees from the N , dipping towards the SW with an angle of 76 degrees presents a normal dip direction Y at : 302-90=202 degrees, on the left of X (X90).

In the right hand rule, clockwise orientation system ϕ / θ the dip direction Y must be on the right. To do so we take the opposite strike $302-180=122$ which put the dip direction on the right of the strike and finally gives : $122 / 76$

For image analysis purpose, it is necessary to complete the orientation with the indication that Y is at -90 of X .

Warning: the geographic dip direction Y is on the right of the geographic strike X but it appears on the image inverted plane on the left as $X_{\text {image }}$ which is at 274 degrees. So, $X_{\text {image }}$ is at 274 degrees and $\mathrm{Y}_{\text {image }}$ is $\mathrm{X}_{\text {image }}-90$ within the image.

302 SW $76=122 / 76$ Y normal dip at +90 of X on inverted plane

Within the image X is: $\mathrm{X}_{\text {image }} 274$

Let now start the program Intercepts2003
And click on the "Open image" button

A standard dialog box appears for the selection of the bitmap image on your system.
By default it starts on bitmap (*.bmp) files, but you may select instead Jpeg (*.jpg), GIF (*.gif) or TIFF (*.tif) files.
After the validation of your file the image appears in a new window.

Warning, do not confuse:
-the number X of pixels in a row, which gives the ordinal number Xi of a column or pixel in that row,
-with the default direction X of the image indicating the N .
Do not confuse either:
-the number Y of rows, which gives the ordinal number Yi of a line or row of pixels in the image -with the default direction Y of the image indicating the E .
X, Y default image orientation respectively parallel to N, E

See course 4 pages 4 and 5

The maximum image size is 3000 by 3000 pixels so you may need to zoom out to visualize the full image on your screen
Xi, Yi are coordinates of the current pixel at mouse location in the image and Ri, Gi, Bi are intensities, or grey levels, of each channel

1) Click on this button to select the scale bar on the image.

You may select another scale unit here

2) Click on the scale graduation 0 , hold down the left mouse button and move the cursor to the graduation 9 . Then release the mouse button. The Image scaling pop up. Click on OK to continue with the next step of image scaling. Default button captions use the system language.

3) Enter the size in cm which corresponds to 1568 pixels: 9 cm in this case.

4) Click on no since the cm scale is not aligned with the strike

8) Check this box to activate the Image orientation

5) Click again on the Scale bar selection (see p. 6).
6) Click on the beginning of the red arrow, hold down the left mouse button and move the cursor to the end of the arrow. Then release the mouse button. The Image scaling window pop up. Click on cancel to skip the conversion of pixels in cm .
6) The Image orientation of X window pop up. Click on Yes to validate the angle of X in the image: 89 in this example.
7) Then Image orientation of Y pop up. Click on Yes to validate Y at $\mathrm{X}+90$, on No for Y at $\mathrm{X}-90$ or cancel.

It is also possible to enter all value directly without using the Scale bar selection option

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Since the cm scale bar should not be taken in the image analysis click on Frame tab, then click on the first pixel of the image and hold down the left mouse button until the last pixel of the area of interest window whose coordinates appear in their respective box: first upper left and last down right. Release the mouse button and click on Resize the image to do it.

You are now ready to start the image analysis.

Border of the image
Border of the area of analysis by using filter size of 10 pixels to count the intercepts. This define a margin of 5 pixels around the image borders.

The program Intercepts2003 works by default on classified images with a maximum of 8 classes (from A to H). So, click on Option in the menu and select the Grey level intercepts mode of analysis. (see course 5)

You may click on H to calculate and display the

Select the number of sub-windows in X columns and Y rows. Then, the comparison between subwindows results will allow to check the invariance of the results by translation of the sub-windows of analysis.

Move the mouse cursor over the histogram to display the count in the its corresponding grey level class of histogram.

Move this cursor on the image to visualize its grey level in the histogram.

Columns X / 4

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Selection of the angular step α used by the rotating grid of analysis.

Interline distance J between lines of analysis. The distance along lines I is always equal to 1 .

Intercepts counting filter size (default is 10).
See course 5 page 1
Then click on button Start count to run the analysis

Selection of the grey level detection of intercept: 50 A difference between two pixels greater or equal to 50 grey levels is a boundary

Option visualizing the intercept detection
Like for example with intercepts in and out in green and red

Display the results with Fourier series analysis
Fast calculation of rose by inertia tensor method p. 14 (see also course 4 p. 14)

Results with Fourier series analysis

Draw the intercept boundaries on the top of

Angle calculated from the X orientation of the image for exportation to Ellipsoid2003.exe

Size adjustment assuming that objects are ellipses (not appropriate for rectangular objects)

There is only one phase when processing the data in grey levels

Full shape ratio using power spectrum
from 0 to 6 (see course 4 p. 17)

Results with Fourier series analysis

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Area with less thin dark but well oriented hornblende and more intermediate grey quartz

Roses on image

Display with a line width of 4 pixels to be visible on a zoom / 4

The inertia tensor of the traverses rose diagram can be used instead of the Fourier series.
It is fully automatic and doesn't required any harmonic selection. It is then useful for those who are not familiar with Fourier series.

Results with Fourier series analysis

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017
6) Save your work with all the orientations and the image compressed in "packbit" with 8 bits per pixel (grey level or phase color code)
7) Then open Elliposoid.exe

Table for input data

Table of comparison between shape ratio r and orientation rake of input data and output results for each image section (number, azimuth, plunge)

Table								F $1 / 2$			
	\#	strike	dip	rake	long axis	short axis	1 weight		with	without	e(ab)
1								1			
2								2			
3								3			

Table of 2D ellipse incompatibility with 3D ellipsoid

Results 1 with scale factors; 2 without scale factors; 3 with simple averaging on perpendicular sections. e is an error estimate given by the vector linking input and output long axes

10) Go back to Ellipsoid2003 and click on Add for all following images and repeat the operation until the last image

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Select the option A B C to process your data ending with this code defining 3 type of sections roughly perpendicular to each other

N.L*M.L : normalized length (in arbitrary unit) times mean length (in metric unit)

Click on Ellipsoid to display
the first result and
Click on Save it before selecting any option

Incompatibility index: smallest values best fit the ellipsoid

Sections														
	\#	az	pl	rake	1	rake 1	11	e1	rake 2	12 \%	e2	rake 3	13	e3
1	1_A	164,0	18,0	46,3	1.224				67.9	1.088	14.0\%			
2	2_A	164,0	18.0	67.1	1.138				67.9	1.088	4.9\%			
	3_A	164,0	18.0	86,9	1,121				67.9	1.088	4.6\%			
4	4-A	164,0	18.0	107,2	1,140				67.9	1.088	8.7\%			
5	5_A	164,0	18.0	31.1	1,116				67.9	1,088	6.6\%			
+6	6_A	164,0	18.0	58.2	1.058				67.9	1.088	3.1\%			
$\checkmark 7$	7-A	164,0	18.0	77.2	1,067				67.9	1.088	2.3\%			
8	8A	164.0	18.0	104,3	1.083				67.9	1.088	5.1\%			
9	1_B	233,0	84,0	21,0	1.079				58.7	1.064	4.7\%			
10	2_B	233,0	84,0	70,0	1.059				58.7	1.064	1,3\%			
211	3_B	233,0	84,0	79,4	1.080				58.7	1.064	3.0\%			
12	4_B	233,0	84,0	63.7	1,067				58.7	1,064	0.7\%			
13	5-B	233,0	84,0	19.8	1.078				58.7	1.064	4.7\%			
-14	6_B	233,0	84.0	48.4	1.070				58.7	1.064	1,3\%			
-15	7_B	233,0	84,0	57.4	1,046				58.7	1.064	1.7\%			
16	8.B	233.0	84.0	46.8	1.068				58.7	1.064	1.4\%			
17	1_C	122.0	76.0	120.7	1.545				120.6	1,238	27,4\%			
18	2_C	122.0	76,0	113.7	1,336				120,6	1.238	9,2\%			
719	3_C	122,0	76.0	106,6	1,239				120.6	1,238	5.2\%			
2	4_C	122.0	76,0	123.8	1.323				120.6	1.238	7.7\%			
21	5_C	122,0	76.0	120.5	1,220				120.6	1.238	1.6\%			
	6_C	122,0	76,0	116,2	1,161				120,6	1.238	7.0\%			
-23	7_C	122.0	76.0	122,5	1.216				120.6	1.238	2.1\%			
24	8_C	122,0	76,0	121,9	1,202				120.6	1.238	3.3\%			
25	$9-\mathrm{C}$	122.0	76.0	120,2	1,164				120.6	1,238	6.6\%			

Rake and shape ratio of Ellipsoid section With deviation \boldsymbol{e} between 2D measure and 3D section

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

The density calculation may be time consuming

Comparison between calculated ellipsoid sections and ellipse measurements

Click on this row to display the data of this section in the graphic
$F^{1 / 2}:$ incompatibility index between all 2D
ellipsoidal sections and the

3D ellipsoid

Mean F $1 / 2$: incompatibility index between 2D ellipsoidal sections and the 576 intermediate 3D ellipsoid

> Section \#7 : strike / dip
2D calculated Ellipsoid section / rake : shape ratio
2D measured Ellipse (rake: shape ratio)

Check the consistency between the full ellipsoid and the mean ellipsoid of the 576 combinations

F1/2			区
	with	without	
1 A		11,7\%	
2 A		3.6\%	
3 A .		5.6\%	
4A		11,1\%	
5 A		9.3\%	
6A		2,9\%	
74		2,4\%	
84		7.7\%	
98		6.2\%	
10 B		1.7\%	
118		3.8\%	
128		0,9\%	
13 B		6.3\%	
148		1.7\%	
158		1.3\%	
16 B		2.0\%	
17 C		15,4\%	
18C		7.5\%	
19C		8.5\%	
20 C		5.5\%	
21 C		1.1\%	
22 C		5.6\%	
23 C		1.8\%	
24.		2.5\%	
25 C		5.0\%	

Warning: Be careful when using scale factor!

The full ellipsoid P' is close to the mean P' value of the 576 sub-windows ellipsoids

Consistent P ' parameters

A strong F $1 / 2$ indicates that sizes may be wrong (no consistency between images)

図
Calculation WITH scale factor

The full ellipsoid P^{\prime} is not close to the mean P^{\prime} value of the 576 sub-windows ellipsoids Not consistent P' parameters

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Calculation wITHOUT scale factor

$\begin{array}{llllllllll}1,00 & 1,10 & 1,20 & 1,30 & 1,40 & 1,50 & 1,60 & 1,70 & 1,80 & 1,90\end{array}$

The sizes of the long and short axes of the B section have been multiplied by 10 to show that calculation with a wrong scale factor in one section may gives false results whereas calculation without scale factor remains correct.

Shape Preferred Orientation (OCW-UN-SPO) Launeau P. 2017

Summary of the field image analysis
Window area of analysis

$A \quad a=0,2246 \mathrm{~cm} b=0,2106 \mathrm{~cm} R=1,067,156,89^{\circ}$, angle $X: 67,89^{\circ}$

A $a=0,2494 \mathrm{~cm} b=0,2363 \mathrm{~cm} R=1,055,134,76^{\circ}$, angle $X: 42,76^{\circ}$
(1) 131°

$\square 0.1 \mathrm{~cm}$

A $a=0,2744 \mathrm{~cm} b=0,2206 \mathrm{~cm} R=1,244,156,47^{\circ}$, angle $X: 117,53^{\circ}$
(1) 159°

Summary of the field image analysis
See page 6 that local variations of mineralogy, in the field plane A 20 cm wide, can explain the data scattering.

The ellipsoid is planar to planolinear with planar sub-ellipsoid and planolinear sub-ellipsoid

Summary of the block sample section image analysis Window area of analysis

A $a=0,1678 \mathrm{~cm} \quad b=0,1414 \mathrm{~cm} R=1,187,15,22^{\circ}$, angle $X: 116,22^{\circ}$
(1) 18°

$\square 0.1 \mathrm{~cm}$

A $a=0,1629 \mathrm{~cm} b=0,1617 \mathrm{~cm} R=1,007,136,52^{\circ}$, angle $X: 94,48^{\circ}$
(1) 132°
(2) 51°

A $a=0,1815 \mathrm{~cm} \quad b=0,1503 \mathrm{~cm} R=1,208,2,76^{\circ}$, angle $X: 66,24^{\circ}$
(1) 6°

Summary of sample section image analysis. Each section was oriented
The sample section A area of analysis is $\sim 6 \mathrm{~cm}$ wide which is $\sim 30 \%$ of one field image.

The main ellipsoid is planar like all sub-ellipsoids. If the axis C of the ellipsoid is well concentrated in one direction the other axes A and B seem displaying a bimodal distribution on the plane (AB).

Analysis of block sample sections

Analysis of field oriented pictures

The sample block displaying smaller sectional areas and a smaller volume, it gives the SPO of small homogenous magma flow.
The field images analyzing larger areas forming a larger volume which display heterogeneous SPO probably include several flows of magma.

