features
Tupes
¢ relationships, -

arap

;ﬁetrclijsacencu D) g Jrescd - algonthm Nosbt"'; '
'E < = C . processor |list ‘““.;‘.’gg‘{“;,‘,shp £
el nodec database WMQH-'X
“EExample — ;_ properties BFS Basic

m pth “ q) 4-4 egeprcerors
rrrrrrr es
$ ala’

Graph Databases

Lecture 8 of NoSQL Databases (PA195)

David Novak, FI, Masaryk University, Brno

http://disa.fi.muni.cz/david-novak/teaching/nosql-databases-2016/

Agenda

e Graph Databases: Mission, Data, Example
e A Bit of Graph Theory

o Graph Representations
o Algorithms: Improving Data Locality (efficient storage)
o Graph Partitioning and Traversal Algorithms
e Graph Databases
o Transactional databases
o Non-transactional databases
e Neodj
o Basics, Native Java API, Cypher, Behind the Scene

. Vertices
acency g’ i

end

Elizabeth

friend

X A “‘ -
|
likes))
likes Databases
0r
Refactoring g
e~
.N°$°L catefory
Distilled ’
author R
Database
Refactoring

or

P
source: Sadalage & Fowler: NoSQL Distilled, 2012

Graph Databases: Mission

® To store entities and relationships between them
o Nodes are instances of objects
o Nodes have properties, e.g., name
o Edges connect nodes and have directional significance
o Edges have types e.g., likes, friend, ...

e Nodes are organized by relationships

o Allow to find interesting patterns
o example: Get all nodes that are “employee” of “Big
Company” and that “likes” “NoSQL Distilled”

o

dra

Graph Databases: Representatives 7 s
: () Neo4j

rientDB

4. InfiniteGraph

Ranked list: http://db-engines.com/en/ranking/graph+dbms

http://db-engines.com/en/ranking/graph+dbms

g s, Vertices

:Adjacency Q¢
© aueries (=

A Bit of a Theory

Basics and graph representations

Basic Terminology

Data: a set of entities and their relationships
o =>we need to efficiently represent graphs

Basic operations:

m finding the neighbours of a node,
m checking if two nodes are connected by an edge,
m updating the graph structure, ...

o =>we need efficient graph operations

Graph G =(V, E) is usually modelled as
o set of nodes (vertices) V, |V| =n
o setofedgesE, |E| =m

Which data structure to use?

Data Structure: Adjacency Matrix

e Two-dimensional array A of

1—QG
n x n Boolean values /
o Indexes of the array = node 1 2
identifiers of the graph S .
o Boolean vaIueAijindicates \‘ » o
whether nodes /, j are connected 3
g 1 1 0 O 0
] i i s T
® \ariants: 140810
. R G
o (Un)directed graphs 011000
o0 010 0

o Weighted graphs...

QQQQQQQ vertlces
:Ad

~ Tupes
¢ relationshi
ssssss o
iz
!
@ o
S

Adjacency Matrix: Properties

;- ® Pros:
o Adding/removing edges
o Checking if 2 nodes are

‘ TRy, . connected
\ p

3 e Cons:

o Quadratic space: O(n?)

o We usually have sparse graphs

o Adding nodes is expensive

o Retrieval of all the neighbouring
nodes takes linear time: O(n)

SooRr RS
=T R R R
=T)
RS RO
OO0 R RO
cCoORooO

Data Structure: Adjacency List

e A set of lists, each enumerating 4 — 6
neighbours of one node /
o Vector of n pointers to adjacency lists 1 — 2 b
\ ‘ = 5
e Undirected graph: 3 =

o An edge connects nodes jand
o =>the adjacency list of i contains
node j and vice versa

N1- {N2,N3}
N2 9 {N1,N3,N5)}
N3 {N1,N2,N5}
N4 = {N2,N6}

e Often compressed N5 (N2.N3)
o Exploiting regularities in graphs N6 > {N4}

Adjacency List: Properties

;- ® Pros:
/ o Getting the neighbours of a node
h £ o Cheap addition of nodes
e - o More compact representation of
\ | FE sparse graphs
3

N1 {N2,N3) e (Cons:
N2 {N1,N3,N5} o Checking if there is an edge
N3 {N1,N2,N5} between two nodes
N4 2 {N2, N6} m Optimization: sorted lists => logarithmic
N5 {N2.N3} scan, but also logarithmic insertion

N6 = {N4}

QQQQQQQ vertlces
:Ad

~ Tupes
¢ relationshi
ssssss o
iz
!
8 o
S

Data Structure: Incidence Matrix

e Two-dimensional Boolean o -
matrix of n rows and m columns Py
o A column represents an edge in—8
m Nodes that are connected by a certain edge g, 5
o Arow represents a node \ | e
m All edges that are connected to the node 3

L e e e Y
L e e e
oo O = O
L e B e O =
o R O OB O
o R o= O Q
= e L = ==

B
S, Wi relationships
=, Vertices 5
e 20aTE 48 E e

=
52, VE
£Ad

2

8

g

Incidence Matrix: Properties
{6 ® Pros:

o Representation of hypergraphs
m whereone edge connects an

4
i bi ber of nod
K aroitrary number of nodes

® (Cons:

o Requires n x m bits (for most
graphs m » n)

e T e o e
L R e e e
e T e e R e
L R e T e =
o= O OB O
L B e Y e e
= e L = = ==

’Ad ccccccc

Data Structure: Laplacian Matrix % s /2

e Two-dimensional array of 4 — 6
n x n integers £
o Similar structure as adjacency matrix 1 — 2
. . . \H
o Diagonal of the Laplacian matrix \ | 5
indicates the degree of the node v

o The rest of positions are set to -1 if
the two vertices are connected, 0
otherwise 2 SL=t o0

gnaph

t QQQQQQ vertices ®

Laplacian Matrix: Properties

4 — 6 Allfeatures of adjacency matrix

P ® Pros:
a2 g o Analyzing the graph structure by
\ | ¥ - means of spectral analysis
' f,,/ m Calculating eigenvalues of the matrix
3

2 =1 =1 0 0
-1 4 -1 -1 -1
-1 =1 3 0 —1
0 =1 0 2 0 =
0 =1 =1 0 2
0 0 0 —1 0

g = B == ===

I m“sa

5, VErtices
:Adjacency = O

A Bit of a Theory

Selected graph algorithms

aa

i : 5 = podesss
Basic Graph Algorithms Sl

® Access all nodes:
o Breadth-first Search (BFS)
o Depth-first Search (DFS)

e Shortest path between two nodes

® Single-source shortest path problem
o BFS (unweighted),
o Dijkstra (nonnegative weights),
o Bellman-Ford algorithm
e All-pairs shortest path problem
o Floyd-Warshall algorithm

http://en.wikipedia.org/wiki/Shortest_path_problem

Improving Data Locality

e Performance of the read/write operations

o Depends also on physical organization of the data
o Objective: Achieve the best “data locality”

e Spatial locality:
o if a data item has been accessed, the nearby data items
are likely to be accessed in the following computations
m e.g., during graph traversal
e Strategy:
o in graph adjacency matrix representation, exchange rows
and columns to improve the disk cache hit ratio
o Specific methods: BFSL, Bandwidth of a Matrix, ...

® [nput: vertices of a graph

e QOutput: a permutation of the vertices
o with better cache performance for graph traversals

e BFSL algorithm:
1. Select a node (at random, the origin of the traversal)
2. Traverse the graph using the BFS alg.

m generating a list of vertex identifiers in the order they are visited
3. Take the generated list as the new vertices permutation

Breadth First Search Layout (2)

® let usrecall:
Breadth First Search (BFS)

o FIFO queue of frontier vertices

® Pros: optimal when starting from the same node

e Cons: starting from other nodes
o The further, the worse

c
o

ivat

Mot

Matrix Bandwidth

e Graph represented by adjacency matrix

5

-

O

Om0O

0O 0 0 0 0 O

1
1

0 0 0 0 0 O

1 0 0 0O
1 0 0 0O

1
1

1
1

1

0 0 0 O

1
1

0 0 0 0 O

1

0 0 0 0 0 O

0 0 01 0 0 0
1 1

1

0

o 0
0
1

0
0O 0 0

1

O 0 0

1
0 0

0

0O 0 O

0O 0 0
1

1

0

1

0

0O 0 01 0 O 0

0

0

o 0 0 1

1

aa

Matrix Bandwidth: Formalization = e =

® The minimum bandwidth problem

o Bandwidth of a row in a matrix = the maximum distance
between nonzero elements, where one is left of the
diagonal and the other is right of the diagonal

o Bandwidth of a matrix = maximum bandwidth of its rows

® Low bandwidth matrices are more cache friendly
o Non zero elements (edges) clustered about the diagonal

e Bandwidth minimization problem: NP hard
o For large matrices the solutions are only approximated

A Bit of a Theory

Graph partitioning

relatxonshups

-enodes

9

,=Examp|e°database %iMat”?(
2T —data
a o

Graph Partitioning

e Some graphs are too large to be fully loaded into

the main memory of a single computer

o Usage of secondary storage degrades the performance
o Scalable solution: distribute the graph on multiple nodes

e \We need to partition the graph reasonably

o Usually for a particular (set of) operation(s)
m The shortest path, finding frequent patterns, BFS, spanning tree search

e This is difficult and graph DB are often centralized

Example: 1-Dimensional Partitioning s

e Aim: partitioning the graph to solve BFS efficiently

o Distributed into shared-nothing parallel system
o Partitioning of the adjacency matrix

® 1D partitioning:

O

Matrix rows are randomly assigned to the P nodes

(processors) in the system
Each vertex and the edges emanating from it are owned by

one processor

1 - - . l-1 (a 18 BN} J1_-I-_I-I-I-

Slyge © o~ - ojjo o Hijjo © ©
|1+ o ollo © ~ll~+ o i~ © ©
1] i i
Slim © oo © ojj~ © ojo —~ o
- =0 |
ollo o ollo o ollo o ollo ~ =~
i] i i
(o ~ Ao ©O o~ © Oj)©o O O
~llo o Al o Wl ~ oljl~ ~ ©
: I i _
ol © O © o+ © oo = O
nlo o oV o %o o ollo o ~
1 1 1i I
<+|(lo © oo —= ojJjo © ojo © -
Vo = oo o ol ~ ollo o ©
1 1 In I
~n|lo ©o ~llo o olio - oijlo © o©
1] i i
~|,0 O OO0 O O=0 O Oi< = O
| Pyt | By i eih | Sy PR .
— N M S 1N O~ OO0 N
— = o~

® BSF with 1D partitioning
1. Each processor has a set of frontier vertices F (FIFO)
2. The lists of neighbors of the vertices in F forms a set of

neighbouring vertices N
m Some owned by the current processor, some by others

3. Messages are sent to all other processors... etc.

e 1D partitioning leads to high messaging
o => 2D-partitioning of adjacency matrix
o ... lower messaging but still very demanding

Efficient sharding of a graph is very difficult

Graph Datab

dSes

sear

reatures

Tupes
relationships

nodes: =

ggdwidth

= ¢ JU o oo
Shhected @ Neo4_|w, @ calgorithm §
& §i processor st Re\atxonshl

MEgmeodatab
data

n
: § 4 trlX
8 ot

5 Zmﬂef S Basl

et

g 3

a rrrrr
l RRRRRR I l g
o SOUTCE ';n icture

LLLLLLL vertlces

Types of Graphs d

ata’

e Single-relational graphs

o Edges are homogeneous in meaning
m e.g., all edges represent friendship

e Multi-relational (property) graphs
o Edges are typed or labeled

m e.g., friendship, business, communication

o Vertices and edges maintain a set of key/value pairs
m Representation of non-graphical data (properties)
m e.g.,, name of a vertex, the weight of an edge

Graph Databases

® A graph database = a set of graphs

e Types of graph databases:

o Transactional = large set of small graphs
m e.g., chemical compounds, biological pathways, ...
m Searching for graphs that match the query

o Non-transactional = few numbers of very large graphs
m orone huge (not connected) graph
m e.g.,, Web graph, social networks, ...

Transactional DBs: Queries

e Types of Queries
o Subgraph queries

m Searches for a specific pattern in the graph database

m Query =asmall graph or a graph, where some parts are uncertain
® e.g., vertices with wildcard labels

m More general type: allow sub-graph isomorphism

/’G—r-m Subgraph Query Query Results

O
1l | AA >
DDO &
v

Transactional DBs: Queries (2)

o Super-graph queries
m Search for the graph database members whose whole structure is
contained in the input query

@ Supergraph Query Query Results
Database *:ﬂ

O —_— A

A
095

o Similarity (approximate matching) queries

m Finds graphs which are similar to a given query graph
® but not necessarily isomorphic

m Key question: how to measure the similarity

Indexing & Query Evaluation

® Extract certain characteristics from each graph
o And index these characteristics for each G,.., G

e (Query evaluation in transactional graph DB

1. Extraction of the characteristics from query graph g
2. Filter the database (index) and identify a candidate set

m Subsetofthe G,,..., G_graphs that should contain the answer
3. Refinement - check all candidate graphs

Subgraph Query Processing

1. Mining-based Graph Indexing Techniques
o ldea: if some features of query graph g do not exist in data
graph G, then G cannot contain g as its subgraph
o Apply graph-mining methods to extract some features

(sub-structures) from the graph database members
m e.g., frequent sub-trees, frequent sub-graphs

o An inverted index is created for each feature

2. Non Mining-Based Graph Indexing Techniques

o Indexing of the whole constructs of the graph database
m Instead of indexing only some selected features

Mining-based Technique

e Example method: GIndex [2004]

o Indexing “frequent discriminative graphs”
o Build inverted index for selected discriminative subgraphs

C C
¢—C—Cc—¢ \c—c T/ \C_C/ \CI:
c—c/ C\C/ \C/C
B, G, G;

Non Mining-based Techniques

e Example: GString (2007)

o Model the graphs in the context of organic chemistry

using basic structures
m Line =series of vertices connected end to end
m Cycle = series of vertices that form a close loop
m Star = core vertex directly connects to several vertices

Line 3

Cycle 6 Cycle 6

Line 2 Cycle 6

g s, Vertices

:Adjacency Q¢
© aueries (=

Graph Databases

Non-transactional Databases

Non-transactional Databases

e A few very large graphs

o e.g., Web graph, social networks, ...
® (Queries:

o Nodes/edges with properties

o Neighboring nodes/edges

o Paths (all, shortest, etc.)

® Our example: Neo4;

aa

e L= 2 L e
Basic Characteristics S e i

e Different types of relationships between nodes

o To represent relationships between domain entities

o Or to model any kind of secondary relationships
m Category, path, time-trees, spatial relationships, ...

e No limit to the number and kind of relationships

e Relationships have: type, start node, end node,

own properties
o e.g., “since when” did they become friends

S
arge
structure g

—ppi Dawn

friend
since=2005

Barbara i Elizabeth
friend

since=1989
share=[books,movies, tweets]

source: Sadalage & Fowler: NoSQL Distilled, 2012

Graph DB vs. RDBMS

e RDBMS designed for a single type of relationship

o “Who is my manager”

e Adding another relationship usually means a lot of
schema changes

e In RDBMS we model the graph beforehand based

on the traversal we want

o If the traversal changes, the data will have to change
o Graph DBs: the relationship is not calculated but persisted

reatures

i Fggstionships -
- Vertices gnodes: =

diacency ~ Dy i SEL GiNeodjneg -aorim B §

- i e)
= NO0E £ &R oy s aMatrix

wsixampecALANASE (18 siser s
I iy’ iadecee

§ —data”™ ™1

RoBvS
S s

se:
o

Neo4): Basics & Concepts

Neodj: Basic Info

Open source graph database
o The most popular

Initial release: 2007

Written in: Java

OS: cross-platform

Stores data as nodes connected

by directed, typed relationships
o With properties on both
o Called the “property graph”

xl 'u- e Ny l

o Qi € & connecteq @ NeC
Fomts NOCIEE & PR E: ™ eirany §
Thansiodatabase ke
= —data’
8

rrrrr

s
<] ¢ relationships

records records

organize
have

have

Neodj: Basic Features dt

rrrrr
lllllllllll
yyyyyy rge
wona S structureg

vert ces

reliable — with full ACID transactions

durable and fast — disk-based, native storage engine

scalable — up to several billion nodes/relationships/properties
highly-available — when distributed (replicated)

expressive — powerful, human readable graph query language
fast — powerful traversal framework

embeddable - in Java program

simple — accessible by REST interface & Java API

ol

S, Wi reiationships

rtices ® 2 Vi
> HATAS

agdg ?,_ @ — g5 -

oo
wiaiy VE
£Ad]

g

g

]

Neodj: Data Model

bu]
b=}
=)
T O
a

e Fundamental units: nodes + relationships

® Both can contain properties
o Key-value pairs
o Value can be of primitive type
or an array of primitive type

o nullis not a valid property value (Rﬂaﬁmmpsj i
m nulls can be modelled by
the absence of a key

http://db-engines.com/en/system/Neo4j

http://db-engines.com/en/system/Neo4j

Data Model: Relationships

® Directed relationships (edges)

o Incoming and outgoing edge
m Equally efficient traversal in both directions
m Direction can be ignored

if not needed by the application (-)
A Relationship

o Always a start
and an end nOde has a \asa can have

m Can be recursive
Node | Dloop uniquely identified by

Data Model: Properties

Primitive

boolean 1\I

g Ea

., Vertices
dJacencg O’ !

byte

short

int

long

float

double

char

Type Description

boolean true/false

byte 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing
Unicode characters

String sequence of Unicode characters

String >,

follows follows

blocks

Y

l William l

What

How

get who a person follows

outgoing follows relationships, depth one

get the followers of a person

incoming follows relationships, depth one

get who a person blocks

outgoing blocks relationships, depth one

What

How

get the full path of a file

incoming file relationships

get all paths for a file

incoming file and symbolic link relationships

get all files in a directory

depth one

outgoing file and symbolic link relationships,

get all files in a directory, excluding

symbolic links

outgoing file relationships, depth one

symbolic link
{mame: "E"}

get all files in a directory, recursively

outgoing file and symbolic link relationships

ata

Access to Neo4j et

e Embedded database in Java system

® Language-specific connectors
o Libraries to connect to a running Neo4j server

e Cypher query language
o Standard language to query graph data
e HTTP REST API
e Gremlin graph traversal language (plugin)
® efcC.

vid

relatnonsmps

g; n Od S Slm(u:rpé
g B e%teetd ng Ne T ga\gantnm n s S
annested, MatrlX

Topertics Bpgaasm
dge proces:

Baea =

Partltlonlngm

Qo
(0)]

Tl =

[0))
O'

Q.

n:

D

Neo4J: Native Java APl & Graph Traversal

Native Java Interface: Example

Node irena = graphDb.createNode () ;
irena.setProperty ("name", "Irena");
Node jirka = graphDb.createNode () ;
jirka.setProperty ("name", "Jirka");

Relationship 127 = irena.createRelationshipTo(jirka, FRIEND);
Relationship j2i = jirka.createRelationshipTo(irena, FRIEND);

127 .setProperty ("quality", "a good one");
j21.setProperty ("since", 2003);

e Undirected edge:

o Relationship between the nodes in both directions
o INCOMING and OUTGOING relationships from a node

Data Model: Traversal + Path

e Path = one or more nodes + connecting
relationships

o Typically retrieved as a result of a query or a traversal
® Traversing a graph = visiting
its nodes, following

relationships according

to some rules

o Typically, a subgraph is visited
o Neod4j: Traversal framework =

+ Java API, Cypher, Gremlin (e]

haz an

Traversal Framework

e A traversalis influenced by

O
O

O
O
O

Starting node(s) where the traversal will begin

Expanders — define what to traverse
m i.e, relationship direction and type

Order — depth-first / breadth-first

Uniqueness — visit nodes (relationships, paths) only once
Evaluator — what to return and whether to stop or
continue traversal beyond a current position

Traversal = TraversalDescription + starting node(s)

Traversal Framework — Java API

®@ org.neodj...TraversalDescription

o The main interface for defining traversals
m Can specify branch ordering breadthFirst () /depthFirst ()

® .relationships()

o Adds the relationship type to traverse
m e.g., traverse only edge types: FRIEND, RELATIVE
m Empty (default) = traverse all relationships

o Can also specify direction
m Direction.BOTH
m Direction.INCOMING
m Direction.OUTGOING

nOde
g mpl -sdatabase

Traversal Framework — Java API (2) f@ kdata

<TJ
8

® Oorg.neo4dj...Evaluator
o Used for deciding at each node: should the traversal

continue, and should the node be included in the result
m INCLUDE AND CONTINUE: Include this node in the result and

continue the traversal
m INCLUDE AND PRUNE: Include this node, do not continue traversal
m EXCLUDE AND CONTINUE: Exclude this node, but continue traversal
m EXCLUDE AND PRUNE: Exclude this node and do not continue

o Pre-defined evaluators:
m Evaluators.toDepth (int depth) /
Evaluators.fromDepth (int depth),
m FEvaluators.excludeStartPosition ()
m

Traversal Framework — Java API (3) =

®@ Oorg.neo4dj...Unigqueness
o Can be supplied to the TraversalDescription
o Indicates under what circumstances a traversal may
revisit the same position in the graph

® Traverser
o Starts actual traversal given a TraversalDescription and

starting node(s)

o Returns an iterator over “steps” in the traversal
m Steps can be: Path (default), Node, Relationship

o The graph is actually traversed “lazily” (on request)

Gnde[ﬂ]name = 'Lisa‘) (Nnd&[}?]name E 'Ed'j

| IKES

Example of Traversal

KNOWS

TraversalDescription desc =
db.traversalDescription ()
.depthFirst () !
.relationships (Rels.KNOWS, ("iJ
Mode[B]name = "Joe

Mode[0jname = 'Lars’

KMNOWS

Direction.BOTH)
.evaluator (Evaluators.toDepth(3));

L 4

(Nnd&[ﬁ]name = 'Dirh‘)
// node 1s ‘Ed’ (Node[2])
for (Node n : desc.traverse (node) .nodes())
{ KNOWS MNOW S
output += n.getProperty("name") + ", ";

Mode[4lname = "Peter’

}
KNOWS

Output: Ed, Lars, Lisa, Dirk, Peter

Mode[1 = "Sara’
http://neo4j.com/docs/stable/tutorial-traversal-java-api.html (Sitjrame E)

http://neo4j.com/docs/stable/tutorial-traversal-java-api.html

Access to Nodes

e How to get to the starting node(s) before traversal

1. Using internal identifiers (unique generated IDs)
m not recommended because Neo4j does reuse freed IDs

2. Using specified properties
m one of the properties is typically “ID” (natural user-specified 1D)
m recommended, properties can be indexed

e automatic indexes

3. Using “labels”
m group nodes into “subsets” (named graph)

m a node can have more than one label
e belong to more subsets

l/ Mode[272]: Person, Director -\\ (Mode[273]: Perscon, Director, Actor \ (— Mode[274]; Person, Actor \

l\name = "Steven Spielberg’ _) l\name ="Clint Eastwood') l\name = "Dionald Sutherland” J

reatures

i Fggstionships -
- Vertices gnodes: =

diacency ~ Dy i SEL GiNeodjneg -aorim B §

- i e)
= NO0E £ &R oy s aMatrix

wsixampecALANASE (18 siser s
I iy’ iadecee

§ —data”™ ™1

RoBvS
S s

se:
o

Neod): Cypher Language

Cypher Language

e Neodjgraph query language
o For querying and updating
e Declarative —we say what we want

o Not how to get it
o Not necessary to express traversals

e Human-readable
e Inspired by SQL and SPARQL
e Still growing = syntax changes are often

http://neo4j.com/docs/stable/cypher-query-lang.html

http://neo4j.com/docs/stable/cypher-query-lang.html

B y
. source 2 structure
sy o B CF no
§ae 2} Connecteq @' Neodj oritm
™Y it nodeE |3 St i
ol e St & 2 o)
. 'EEXET,‘?}EE N bgé};;ne BFS B
& | d t
T O
[« 8 [}

MATCH: The graph pattern to match

WHERE: Filtering criteria

RETURN: What to return

CREATE: Creates nodes and relationships.
DELETE: Remove nodes, relationships, properties
SET: Set values to properties

WITH: Divides a query into multiple parts

START: Starting points in the graph
o by explicit index lookups or by node IDs (both deprecated)

grmaph fffff

ae tces nOde i

Cypher: Creating Nodes (Examples) o came i

CREATE n;

(create a node, assign to var n)

Created 1 node, returned 0 rows

CREATE (a: Person {name : 'David'})
RETURN g3;

(create a node with label ‘Person’ and
‘name’ property ‘David’)

Created 1 node, set 1 property, returned
1 row

aa“

Cypher: Creating Relationships 7=t v

START a=node(361), b=node(362)
CREATE a-[r:Friend]->b
RETURN r;

(create relations Friend between nodes with IDs 1 and 2)

Created 1 relationship, returned 1 row

START a=node(1), b=node(2)
CREATE a-[r:Friend {name : a.name + '->' + b.name }]->b
RETURN r

(set property ‘name’ of the relationship)

Created 1 node, set 1 property, returned 1 row

Cypher: Queries

MATCH (p: Person)
WHERE p.age > 18 AND p.age < 30
RETURN p.name

(return names of all adult people under 30)

MATCH (user: Person {name: 'Andres'})-[:Friend]->(follower)
RETURN user.name, follower.name

(find all ‘Friends’ of 'Andres’)

Cypher: Queries (2)

MATCH (andres: Person {name: 'Andres'})-[*1..3]-(node)
RETURN andres, node ;

(find all ‘nodes’ within three hops from ‘Andres’)

MATCH p=shortestPath(
(andres:Person {name: 'Andres'})-[*]-(david {name:'David'})

)
RETURN p ;

(find the shortest connection between ‘Andres’ and ‘David’)

reatures

i Fggstionships -
- Vertices gnodes: =

diacency ~ Dy i SEL GiNeodjneg -aorim B §

- i e)
= NO0E £ &R oy s aMatrix

wsixampecALANASE (18 siser s
I iy’ iadecee

§ —data”™ ™1

RoBvS
S s

se:
o

Neod): Behind the Scene

Neodj Internals: Indexes

CREATE INDEX ON :Person(name);

(Create index on property name from label Person)
Indexes added: 1

e Since Neodjv. 2, indexes are used automatically
e Can be specified explicitly (which index to use)

MATCH (n:Person)

USING INDEX n:Person(surname)
WHERE n.surname = Taylor'
RETURN n

Neodj Internals: Transactions

® J[ransactions in Neo4j

o Support for ACID properties
o All write operations must be performed in a transaction

o Transaction isolation level: Read committed
m Operation can see the last committed value
m Reads do not block or take any locks

m If the same row is retrieved twice within a transaction, the values in the
row CAN differ

o Higher level of isolation can be achieved
m By explicit acquiring the read locks

= Vertice “.;,..);:.‘\JH-U;
u.wvertlceg o %.n

Neodj Internals: High Availability = st

s “Tupes]
A e i relationships
e - sorte =1 o
g
BFS8a:

aa

e Master-slave replication

o Several Neo4j slave databases can be configured to be
exact replicas of a single Neo4j master database

e Speed-up of read operations
o A horizontally scaling read-mostly architecture
o Enables to handle more read load than a single node

e Fault-tolerance
O In case a node becomes unavailable

® Transactions are still atomic, consistent and
durable, but eventually propagated to the slaves

Graph DBs: Suitable Use Cases

e Connected Data
o Social networks
o Any link-rich domain is well suited for graph databases

® Routing, Dispatch, and Location-Based Services
o Node = location or address that has a delivery

o Graph = nodes where a delivery has to be made
o Relationships = distance

® Recommendation Engines

o “your friends also bought this product”
o “when buying this item, these others are usually bought”

Graph DBs: When Not to Use

e |f we want to update all or a subset of entities

o Changing a property on many nodes is not straightforward
m e.g., analytics solution where all entities may need to be updated with a
changed property

e Some graph databases may be unable to handle

lots of data
o Distribution of a graph is difficult

Questions?

Please, any questions? Good question is a gift...

dlra

features

Types

3 B relatlonshtps -
TERETE ransactions SOUICE =4 Structme
wEaly Vertlceg i e N Od es el

Adiacenc # Bl & - et '%GJL."E
E querlEjsﬁo 5 .C b2connected @, NEO4jws 7 caigoritm "2

= 5% processor Jist Relat[onshlp_ g B Matrlx
queruac E;‘é;ﬁﬁﬁé'—' database : WE entities represe: entatlon
=5 ¢ “data” i

593
Par’mc'
edges

References

|. Holubova, J. Kosek, K. Minarik, D. Novak. Big Data a
NoSQL databaze. Praha: Grada Publishing, 2015. 288 p.
RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040:
Big Data Management and NoSQL Databases

Sherif Sakr - Eric Pardede: Graph Data Management:
Techniques and Applications

Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot
Persistence. Addison-Wesley Professional, 192 p.

http://neo4j.com/docs/stable/

