
Graph Databases
Lecture 8 of NoSQL Databases (PA195)

David Novak, FI, Masaryk University, Brno

http://disa.fi.muni.cz/david-novak/teaching/nosql-databases-2016/

Agenda

● Graph Databases: Mission, Data, Example
● A Bit of Graph Theory

○ Graph Representations
○ Algorithms: Improving Data Locality (efficient storage)
○ Graph Partitioning and Traversal Algorithms

● Graph Databases
○ Transactional databases
○ Non-transactional databases

● Neo4j
○ Basics, Native Java API, Cypher, Behind the Scene

Graph Databases: Example

source: Sadalage & Fowler: NoSQL Distilled, 2012

Graph Databases: Mission

● To store entities and relationships between them
○ Nodes are instances of objects
○ Nodes have properties, e.g., name
○ Edges connect nodes and have directional significance
○ Edges have types e.g., likes, friend, …

● Nodes are organized by relationships
○ Allow to find interesting patterns
○ example: Get all nodes that are “employee” of “Big

Company” and that “likes” “NoSQL Distilled”

Graph Databases: Representatives

Ranked list: http://db-engines.com/en/ranking/graph+dbms

http://db-engines.com/en/ranking/graph+dbms

A Bit of a Theory

Basics and graph representations

● Data: a set of entities and their relationships
○ => we need to efficiently represent graphs

● Basic operations:
■ finding the neighbours of a node,
■ checking if two nodes are connected by an edge,
■ updating the graph structure, …

○ => we need efficient graph operations

Basic Terminology

● Graph G = (V, E) is usually modelled as
○ set of nodes (vertices) V, |V| = n
○ set of edges E, |E| = m

● Which data structure to use?

Data Structure: Adjacency Matrix

● Two-dimensional array A of
n ⨉ n Boolean values
○ Indexes of the array = node

identifiers of the graph
○ Boolean value A

ij
 indicates

whether nodes i, j are connected

● Variants:
○ (Un)directed graphs
○ Weighted graphs…

Adjacency Matrix: Properties

● Pros:
○ Adding/removing edges
○ Checking if 2 nodes are

connected

● Cons:
○ Quadratic space: O(n2)
○ We usually have sparse graphs
○ Adding nodes is expensive
○ Retrieval of all the neighbouring

nodes takes linear time: O(n)

Data Structure: Adjacency List

● A set of lists, each enumerating
neighbours of one node
○ Vector of n pointers to adjacency lists

● Undirected graph:
○ An edge connects nodes i and j
○ => the adjacency list of i contains

node j and vice versa

● Often compressed
○ Exploiting regularities in graphs

Adjacency List: Properties

● Pros:
○ Getting the neighbours of a node
○ Cheap addition of nodes
○ More compact representation of

sparse graphs

● Cons:
○ Checking if there is an edge

between two nodes
■ Optimization: sorted lists => logarithmic

scan, but also logarithmic insertion

Data Structure: Incidence Matrix

● Two-dimensional Boolean
matrix of n rows and m columns
○ A column represents an edge

■ Nodes that are connected by a certain edge

○ A row represents a node
■ All edges that are connected to the node

Incidence Matrix: Properties

● Pros:
○ Representation of hypergraphs

■ where one edge connects an
arbitrary number of nodes

● Cons:
○ Requires n ⨉ m bits (for most

graphs m ⋙ n)

Data Structure: Laplacian Matrix

● Two-dimensional array of
n ⨉ n integers
○ Similar structure as adjacency matrix
○ Diagonal of the Laplacian matrix

indicates the degree of the node
○ The rest of positions are set to -1 if

the two vertices are connected, 0
otherwise

Laplacian Matrix: Properties

All features of adjacency matrix

● Pros:
○ Analyzing the graph structure by

means of spectral analysis
■ Calculating eigenvalues of the matrix

A Bit of a Theory

Selected graph algorithms

Basic Graph Algorithms

● Access all nodes:
○ Breadth-first Search (BFS)
○ Depth-first Search (DFS)

● Shortest path between two nodes
● Single-source shortest path problem

○ BFS (unweighted),
○ Dijkstra (nonnegative weights),
○ Bellman-Ford algorithm

● All-pairs shortest path problem
○ Floyd-Warshall algorithm

http://en.wikipedia.org/wiki/Shortest_path_problem

Improving Data Locality

● Performance of the read/write operations
○ Depends also on physical organization of the data
○ Objective: Achieve the best “data locality”

● Spatial locality:
○ if a data item has been accessed, the nearby data items

are likely to be accessed in the following computations
■ e.g., during graph traversal

● Strategy:
○ in graph adjacency matrix representation, exchange rows

and columns to improve the disk cache hit ratio
○ Specific methods: BFSL, Bandwidth of a Matrix, ...

Breadth First Search Layout (BFSL)

● Input: vertices of a graph
● Output: a permutation of the vertices

○ with better cache performance for graph traversals

● BFSL algorithm:
1. Select a node (at random, the origin of the traversal)
2. Traverse the graph using the BFS alg.

■ generating a list of vertex identifiers in the order they are visited

3. Take the generated list as the new vertices permutation

Breadth First Search Layout (2)

● Let us recall:
Breadth First Search (BFS)
○ FIFO queue of frontier vertices

● Pros: optimal when starting from the same node
● Cons: starting from other nodes

○ The further, the worse

Matrix Bandwidth: Motivation

● Graph represented by adjacency matrix

Matrix Bandwidth: Formalization

● The minimum bandwidth problem
○ Bandwidth of a row in a matrix = the maximum distance

between nonzero elements, where one is left of the
diagonal and the other is right of the diagonal

○ Bandwidth of a matrix = maximum bandwidth of its rows

● Low bandwidth matrices are more cache friendly
○ Non zero elements (edges) clustered about the diagonal

● Bandwidth minimization problem: NP hard
○ For large matrices the solutions are only approximated

A Bit of a Theory

Graph partitioning

Graph Partitioning

● Some graphs are too large to be fully loaded into
the main memory of a single computer
○ Usage of secondary storage degrades the performance
○ Scalable solution: distribute the graph on multiple nodes

● We need to partition the graph reasonably
○ Usually for a particular (set of) operation(s)

■ The shortest path, finding frequent patterns, BFS, spanning tree search

● This is difficult and graph DB are often centralized

Example: 1-Dimensional Partitioning

● Aim: partitioning the graph to solve BFS efficiently
○ Distributed into shared-nothing parallel system
○ Partitioning of the adjacency matrix

● 1D partitioning:
○ Matrix rows are randomly assigned to the P nodes

(processors) in the system
○ Each vertex and the edges emanating from it are owned by

one processor

One-Dimensional Partitioning: BFS

● BSF with 1D partitioning
1. Each processor has a set of frontier vertices F (FIFO)
2. The lists of neighbors of the vertices in F forms a set of

neighbouring vertices N
■ Some owned by the current processor, some by others

3. Messages are sent to all other processors… etc.

● 1D partitioning leads to high messaging
○ => 2D-partitioning of adjacency matrix
○ … lower messaging but still very demanding

Efficient sharding of a graph is very difficult

Graph Databases

Types of Graphs

● Single-relational graphs
○ Edges are homogeneous in meaning

■ e.g., all edges represent friendship

● Multi-relational (property) graphs
○ Edges are typed or labeled

■ e.g., friendship, business, communication

○ Vertices and edges maintain a set of key/value pairs
■ Representation of non-graphical data (properties)
■ e.g., name of a vertex, the weight of an edge

Graph Databases

● A graph database = a set of graphs

● Types of graph databases:
○ Transactional = large set of small graphs

■ e.g., chemical compounds, biological pathways, …
■ Searching for graphs that match the query

○ Non-transactional = few numbers of very large graphs
■ or one huge (not connected) graph
■ e.g., Web graph, social networks, …

● Types of Queries
○ Subgraph queries

■ Searches for a specific pattern in the graph database
■ Query = a small graph or a graph, where some parts are uncertain

● e.g., vertices with wildcard labels

■ More general type: allow sub-graph isomorphism

Transactional DBs: Queries

○ Super-graph queries
■ Search for the graph database members whose whole structure is

contained in the input query

Transactional DBs: Queries (2)

○ Similarity (approximate matching) queries
■ Finds graphs which are similar to a given query graph

● but not necessarily isomorphic

■ Key question: how to measure the similarity

● Extract certain characteristics from each graph
○ And index these characteristics for each G

1
,..., G

n

Indexing & Query Evaluation

● Query evaluation in transactional graph DB
1. Extraction of the characteristics from query graph q
2. Filter the database (index) and identify a candidate set

■ Subset of the G
1
,..., G

n
 graphs that should contain the answer

3. Refinement - check all candidate graphs

1. Mining-based Graph Indexing Techniques
○ Idea: if some features of query graph q do not exist in data

graph G, then G cannot contain q as its subgraph
○ Apply graph-mining methods to extract some features

(sub-structures) from the graph database members
■ e.g., frequent sub-trees, frequent sub-graphs

○ An inverted index is created for each feature

2. Non Mining-Based Graph Indexing Techniques
○ Indexing of the whole constructs of the graph database

■ Instead of indexing only some selected features

Subgraph Query Processing

Mining-based Technique

● Example method: GIndex [2004]
○ Indexing “frequent discriminative graphs”
○ Build inverted index for selected discriminative subgraphs

Non Mining-based Techniques

● Example: GString (2007)
○ Model the graphs in the context of organic chemistry

using basic structures
■ Line = series of vertices connected end to end
■ Cycle = series of vertices that form a close loop
■ Star = core vertex directly connects to several vertices

Graph Databases

Non-transactional Databases

Non-transactional Databases

● A few very large graphs
○ e.g., Web graph, social networks, …

● Queries:
○ Nodes/edges with properties
○ Neighboring nodes/edges
○ Paths (all, shortest, etc.)

● Our example: Neo4j

Basic Characteristics

● Different types of relationships between nodes
○ To represent relationships between domain entities
○ Or to model any kind of secondary relationships

■ Category, path, time-trees, spatial relationships, …

● No limit to the number and kind of relationships

● Relationships have: type, start node, end node,
own properties
○ e.g., “since when” did they become friends

Relationship Properties: Example

source: Sadalage & Fowler: NoSQL Distilled, 2012

Graph DB vs. RDBMS

● RDBMS designed for a single type of relationship
○ “Who is my manager”

● Adding another relationship usually means a lot of
schema changes

● In RDBMS we model the graph beforehand based
on the traversal we want
○ If the traversal changes, the data will have to change
○ Graph DBs: the relationship is not calculated but persisted

Neo4J: Basics & Concepts

Neo4j: Basic Info

● Open source graph database
○ The most popular

● Initial release: 2007
● Written in: Java
● OS: cross-platform
● Stores data as nodes connected

by directed, typed relationships
○ With properties on both
○ Called the “property graph”

Neo4j: Basic Features

● reliable – with full ACID transactions

● durable and fast – disk-based, native storage engine

● scalable – up to several billion nodes/relationships/properties

● highly-available – when distributed (replicated)

● expressive – powerful, human readable graph query language

● fast – powerful traversal framework

● embeddable - in Java program

● simple – accessible by REST interface & Java API

Neo4j: Data Model

● Fundamental units: nodes + relationships
● Both can contain properties

○ Key-value pairs
○ Value can be of primitive type

or an array of primitive type
○ null is not a valid property value

■ nulls can be modelled by
the absence of a key

http://db-engines.com/en/system/Neo4j

http://db-engines.com/en/system/Neo4j

Data Model: Relationships

● Directed relationships (edges)
○ Incoming and outgoing edge

■ Equally efficient traversal in both directions
■ Direction can be ignored

if not needed by the application

○ Always a start
and an end node
■ Can be recursive

Data Model: Properties

Type Description

boolean true/false

byte 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing
Unicode characters

String sequence of Unicode characters

What How

get who a person follows outgoing follows relationships, depth one

get the followers of a person incoming follows relationships, depth one

get who a person blocks outgoing blocks relationships, depth one

What How

get the full path of a file incoming file relationships

get all paths for a file incoming file and symbolic link relationships

get all files in a directory outgoing file and symbolic link relationships,
depth one

get all files in a directory, excluding
symbolic links

outgoing file relationships, depth one

get all files in a directory, recursively outgoing file and symbolic link relationships

Access to Neo4j

● Embedded database in Java system
● Language-specific connectors

○ Libraries to connect to a running Neo4j server

● Cypher query language
○ Standard language to query graph data

● HTTP REST API
● Gremlin graph traversal language (plugin)
● etc.

Neo4J: Native Java API & Graph Traversal

Native Java Interface: Example
Node irena = graphDb.createNode();
irena.setProperty("name", "Irena");
Node jirka = graphDb.createNode();
jirka.setProperty("name", "Jirka");

Relationship i2j = irena.createRelationshipTo(jirka, FRIEND);
Relationship j2i = jirka.createRelationshipTo(irena, FRIEND);

i2j.setProperty("quality", "a good one");
j2i.setProperty("since", 2003);

● Undirected edge:
○ Relationship between the nodes in both directions
○ INCOMING and OUTGOING relationships from a node

● Path = one or more nodes + connecting
relationships
○ Typically retrieved as a result of a query or a traversal

Data Model: Traversal + Path

● Traversing a graph = visiting
its nodes, following
relationships according
to some rules
○ Typically, a subgraph is visited
○ Neo4j: Traversal framework

+ Java API, Cypher, Gremlin

Traversal Framework

● A traversal is influenced by
○ Starting node(s) where the traversal will begin
○ Expanders – define what to traverse

■ i.e., relationship direction and type

○ Order – depth-first / breadth-first
○ Uniqueness – visit nodes (relationships, paths) only once
○ Evaluator – what to return and whether to stop or

continue traversal beyond a current position

Traversal = TraversalDescription + starting node(s)

Traversal Framework – Java API

● org.neo4j...TraversalDescription
○ The main interface for defining traversals

■ Can specify branch ordering breadthFirst() / depthFirst()

● .relationships()
○ Adds the relationship type to traverse

■ e.g., traverse only edge types: FRIEND, RELATIVE
■ Empty (default) = traverse all relationships

○ Can also specify direction
■ Direction.BOTH
■ Direction.INCOMING
■ Direction.OUTGOING

Traversal Framework – Java API (2)

● org.neo4j...Evaluator
○ Used for deciding at each node: should the traversal

continue, and should the node be included in the result
■ INCLUDE_AND_CONTINUE: Include this node in the result and

continue the traversal
■ INCLUDE_AND_PRUNE: Include this node, do not continue traversal
■ EXCLUDE_AND_CONTINUE: Exclude this node, but continue traversal
■ EXCLUDE_AND_PRUNE: Exclude this node and do not continue

○ Pre-defined evaluators:
■ Evaluators.toDepth(int depth) /

Evaluators.fromDepth(int depth),
■ Evaluators.excludeStartPosition()
■ …

Traversal Framework – Java API (3)

● org.neo4j...Uniqueness
○ Can be supplied to the TraversalDescription
○ Indicates under what circumstances a traversal may

revisit the same position in the graph

● Traverser
○ Starts actual traversal given a TraversalDescription and

starting node(s)
○ Returns an iterator over “steps” in the traversal

■ Steps can be: Path (default), Node, Relationship

○ The graph is actually traversed “lazily” (on request)

Example of Traversal
TraversalDescription desc =
 db.traversalDescription()
 .depthFirst()
 .relationships(Rels.KNOWS,
 Direction.BOTH)
 .evaluator(Evaluators.toDepth(3));

// node is ‘Ed’ (Node[2])
for (Node n : desc.traverse(node).nodes())
{
 output += n.getProperty("name") + ", ";
}

http://neo4j.com/docs/stable/tutorial-traversal-java-api.html

Output: Ed, Lars, Lisa, Dirk, Peter

http://neo4j.com/docs/stable/tutorial-traversal-java-api.html

Access to Nodes

● How to get to the starting node(s) before traversal
1. Using internal identifiers (unique generated IDs)

■ not recommended because Neo4j does reuse freed IDs

2. Using specified properties
■ one of the properties is typically “ID” (natural user-specified ID)
■ recommended, properties can be indexed

● automatic indexes

3. Using “labels”
■ group nodes into “subsets” (named graph)
■ a node can have more than one label

● belong to more subsets

Neo4J: Cypher Language

Cypher Language

● Neo4j graph query language
○ For querying and updating

● Declarative – we say what we want
○ Not how to get it
○ Not necessary to express traversals

● Human-readable
● Inspired by SQL and SPARQL
● Still growing = syntax changes are often

http://neo4j.com/docs/stable/cypher-query-lang.html

http://neo4j.com/docs/stable/cypher-query-lang.html

Cypher: Clauses

● MATCH: The graph pattern to match
● WHERE: Filtering criteria
● RETURN: What to return
● CREATE: Creates nodes and relationships.
● DELETE: Remove nodes, relationships, properties
● SET: Set values to properties
● WITH: Divides a query into multiple parts

● START: Starting points in the graph
○ by explicit index lookups or by node IDs (both deprecated)

Cypher: Creating Nodes (Examples)

CREATE n;

(create a node, assign to var n)
Created 1 node, returned 0 rows

CREATE (a: Person {name : 'David'})
RETURN a;

(create a node with label ‘Person’ and
‘name’ property ‘David’)
Created 1 node, set 1 property, returned
1 row

Cypher: Creating Relationships

START a=node(361), b=node(362)
CREATE a-[r:Friend]->b
RETURN r ;

(create relations Friend between nodes with IDs 1 and 2)
Created 1 relationship, returned 1 row

START a=node(1), b=node(2)
CREATE a-[r:Friend {name : a.name + '->' + b.name }]->b
RETURN r

(set property ‘name’ of the relationship)
Created 1 node, set 1 property, returned 1 row

Cypher: Queries

MATCH (user: Person {name: 'Andres'})-[:Friend]->(follower)
RETURN user.name, follower.name

(find all ‘Friends’ of 'Andres')

MATCH (p: Person)
WHERE p.age > 18 AND p.age < 30
RETURN p.name

(return names of all adult people under 30)

Cypher: Queries (2)

MATCH (andres: Person {name: 'Andres'})-[*1..3]-(node)
RETURN andres, node ;

(find all ‘nodes’ within three hops from ‘Andres’)

MATCH p=shortestPath(
 (andres:Person {name: 'Andres'})-[*]-(david {name:'David'})
)
RETURN p ;

(find the shortest connection between ‘Andres’ and ‘David’)

Neo4J: Behind the Scene

Neo4j Internals: Indexes

● Since Neo4j v. 2, indexes are used automatically
● Can be specified explicitly (which index to use)
MATCH (n:Person)
USING INDEX n:Person(surname)
WHERE n.surname = 'Taylor'
RETURN n

CREATE INDEX ON :Person(name);

(Create index on property name from label Person)
Indexes added: 1

Neo4j Internals: Transactions

● Transactions in Neo4j
○ Support for ACID properties
○ All write operations must be performed in a transaction
○ Transaction isolation level: Read committed

■ Operation can see the last committed value
■ Reads do not block or take any locks
■ If the same row is retrieved twice within a transaction, the values in the

row CAN differ

○ Higher level of isolation can be achieved
■ By explicit acquiring the read locks

Neo4j Internals: High Availability

● Master-slave replication
○ Several Neo4j slave databases can be configured to be

exact replicas of a single Neo4j master database

● Speed-up of read operations
○ A horizontally scaling read-mostly architecture
○ Enables to handle more read load than a single node

● Fault-tolerance
○ In case a node becomes unavailable

● Transactions are still atomic, consistent and
durable, but eventually propagated to the slaves

Graph DBs: Suitable Use Cases

● Connected Data
○ Social networks
○ Any link-rich domain is well suited for graph databases

● Routing, Dispatch, and Location-Based Services
○ Node = location or address that has a delivery
○ Graph = nodes where a delivery has to be made
○ Relationships = distance

● Recommendation Engines
○ “your friends also bought this product”
○ “when buying this item, these others are usually bought”

Graph DBs: When Not to Use

● If we want to update all or a subset of entities
○ Changing a property on many nodes is not straightforward

■ e.g., analytics solution where all entities may need to be updated with a
changed property

● Some graph databases may be unable to handle
lots of data
○ Distribution of a graph is difficult

Questions?

Please, any questions? Good question is a gift...

References

● I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a
NoSQL databáze. Praha: Grada Publishing, 2015. 288 p.

● RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040:
Big Data Management and NoSQL Databases

● Sherif Sakr - Eric Pardede: Graph Data Management:
Techniques and Applications

● Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot
Persistence. Addison-Wesley Professional, 192 p.

● http://neo4j.com/docs/stable/

