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Abstract—A Hard Disk Drive (HDD) failure may lead to
serious consequences for users and companies. Hence, predicting
failures in HDDs became a topic that attracted much attention in
recent years. Monitoring a HDD status can provide information
about its degradation, so as to let the user or a system manager
know about a failure before it happens, preventing loss of
information. In this paper, we propose a failure prediction
method using a Bayesian Network. Our method uses the de-
terioration over time of a HDD, calculated via SMART (Self-
Monitoring Analysis and Reporting Technology) attributes, for
predicting eventual failures. To demonstrate practical usefulness,
this method was applied to a dataset consisting of 49,056 hard
drives from Backblaze’s data centers. The proposed method has
improved the mean and median quadratic errors in 28.3% and
17.6% respectively in comparison with a baseline model.

I. INTRODUCTION

Condition monitoring of electronic equipments have at-

tracted much interest in recent years due to its valuable benefits

[1]. Particularly for Hard Disk Drives (HDD), the number of

papers on condition monitoring was boosted by the increasing

amount of data available nowadays. Being able to detect, in

advance, a HDD failure may both prevent data losses from

happening and reduce service down-time.

According to Vachtsevnos et al. [2], the task of condition

monitoring can be split into two sub-tasks: fault detection

and failure prediction. Fault detection consists of identifying

anomalous behaviors of an equipment. Such situation may

indicate that, although the equipment is still working, an

incipient failure (fault) occurred. It is worth noting that the

output of a fault detection algorithm is the early detection of

a failure that will occur in a near future. The task of predicting

the amount of time until a failure is addressed by failure

prediction methods. Failure prediction can be defined as the

task of estimating the Remaining Useful Life (RUL) of a given

system or component [3].

In the literature, the papers of [4], [5] and [6] exhibit the

most promising results. In [4], [5] the authors design distance

based fault detection methods using attributes extracted from

SMART (Self-Monitoring, Analysis and Reporting Technol-

ogy). SMART is a monitoring system that collects perfor-

mance parameters that can be used to infer the actual condition

of an HDD [7]. The same set of attributes is used in [6]

alongside with a Support Vector Machine (SVM) classifier

[8].

It is worth noticing that previous works are focused on

fault detection and no effort towards the direction of failure

prediction is done. In this work, we develop a failure prediction

method for HDDs based on SMART attributes.

Concerning previous works on failure prediction in other

components, several methods were used. Neural Networks [9],

Nonlinear filters and Bayesian Networks (BN) [10] are among

the most common approaches. In this work, a BN model

is designed. BN is a method that incorporates concepts of

graph theory and probability to reason under uncertain input

variables [11]. In our model, the RUL is estimated using the

amount of working hours of each HDD and the values of a

subset of the SMART attributes.

Our approach is tested using real HDD data and is compared

to the standard reliability based failure prediction [12]. The

standard method makes its predictions using only historical

data and the working hours of each HDD. Results show

that our model significantly improves the accuracy of failure

predictions when compared to this baseline model.

The remainder of this paper is structured as follows. Section

II discusses the theoretical background that supports our con-

tribution. Section III presents our failure prediction method.

Section IV shows the results achieved with our method and

compares it with the baseline model. Finally, Section V

concludes this paper and exposes some possible future works.

II. THEORETICAL BACKGROUND

A. Recursive Feature Elimination

Recursive Feature Elimination (RFE) [13] is a technique that

tries to eliminate irrelevant or redundant features, leading to a

smaller but more representative data. The method consists of

recursively removing attributes, assigning weights to features

using an external estimator and removing the least relevant

ones. This procedure is repeated until the desired number of

features is reached.

Small changes in the set of features may lead to major

differences in the weights generated by an external estimator

[13]. RFE captures effectively this property thanks to its

method of assessing the impact caused by the removal of every

subset of features.

RFE has applications ranging from genetic [13], [14], agro-

industrial problems [15], [16] and brain-computer interfaces

[17], [18]. Most of the research using RFE also works with
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Support Vector Machines (SVM) [8] as estimator. Neverthe-

less, in this paper we chose Random Forest (RF) [15] since it

has also achieved good results with faster execution.

B. Bayesian Network

A Bayesian Network (BN) [19] is a probabilistic graphical

model that represents a set of random variables and their

conditional dependencies. Given a rich set of observations of

an object, Bayesian Networks are able to infer information

about it. Formally, a BN is a structure B = 〈G,Θ〉, where

G is a Directed Acyclic Graph (DAG) whose set of vertexes

is composed by the random variables X1, . . . , Xn and the

edges are used to model conditional dependencies between

the random variables. These dependencies are represented by a

set of probability functions Θ. This set contains the parameter

θxi|πi
= P (xi|πi) for each xi ∈ Xi conditioned by πi, that is

the set of parameters for Xi. The following equation presents

the joint distribution defined by a BN over the set of random

variables:

P (X1, . . . , Xn) =

n∏

i=1

P (xi|πi) (1)

In its basic formulation, the BN is built upon probabil-

ities estimated over discrete variables. However, in various

applications only continuous variables are available. In such

situations it is possible to use any discretization method such

as the variant of the Minimum Description Length Principle

(MDLP), proposed in [20], that considers a discretization

based on a minimization heuristic entropy. The proposed

algorithm uses the entropy of the labels of classes to select

a separation threshold of attributes, minimizing the entropy.

The algorithm is then recursively applied to both fragments

resulting from the separation.

III. THE BANHFAP METHOD

In this section, we will present a method for RUL estimation

of HDDs. The proposed method is named as Bayesian Net-

work based HDD Failure Prediction (BaNHFaP). The inputs

of our method are the set of observations, like SMARTs

attributes, and the output is a probability distribution, that

represents when the HDD is expected to fail.

BaNHFaP contains the following modules: preprocessing,

which implements feature selection and binning process, that

discretizes continuous SMART attributes; estimation of pa-

rameters, to calculate the conditional probability distributions

for each node in the network. Figure 1 shows a graphical

representation of the method. The rest of this section describes

the aforementioned modules in detail.

A. Preprocessing

The preprocessing phase is divided into two steps: feature

selection and binning process.

The feature selection procedure finds a subset of SMART

attributes, which well describes the data. So, the most impor-

tant features are selected using RFE method, as shown in II-A.

Feature 

Selection

Estimation of

Parameters

Binning

Preprocessing

Method

Fig. 1: Workflow of the BaNHFaP method.

In our approach we chose Random Forest [21] as the predictor.

The influence of the attributes might be determined through

the entropy function. Therefore, the optimal subset of features

is chosen by this predictor together with RFE.

After that, the selected attributes are discretized using

MDLP, as explained in II-B. The process, frequently called

binning process, partitions continuous values into a number

of bins, which can be seen as categories. The features that

represent time, like Power On Hours (POH), are discretized

by an equal width interval binning, such that it is possible to

perform inferences over RUL.

After the POH discretization, we are capable of generating

the RUL attribute for each instance of the dataset. This can be

easily performed with the complete time series of an HDD.

The calculation consists of the last registered POH minus the

current POH of a given HDD.

B. Estimation of Parameters

The estimation procedure finds parameters, depicted by Θ,

of a Bayesian Network denoted by M. The BN has structure

〈G,Θ〉, as shown in II-B. The model G represents the behavior

of the network.

In BaNHFaP model, shown in Figure 2b, uses information

about the SMART parameter through time and the POH of

each HDD to estimate the RUL. The POH is a random variable

that quantifies the amount of time which the HDD has run and

the RUL is an indicative of leftover life time, so the older the

HDD is, the less remaining lifetime it has. Thus, the random

variable RUL is probabilistic dependent on POH. Thereby, we

modeled the RUL node as a child of the POH node.

It is known that the SMART attributes represent an HDD

state, so in order to model a state time series and, consequently

achieve the progressive deterioration model, that describes

the common behavior, we modeled those attributes nodes as

children of RUL node in the model G.

It is important to notice that the BaNHFaP model differs

from the standard failure prediction model (baseline model)
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Fig. 2: Comparison between the baseline and proposed pre-

diction models for HDD failures based on SMART features.

[12]. BaNHFaP makes use of SMART attributes, while a

standard reliability based model uses only lifetime to estimate

the RUL. Figure 2 depicts the difference between baseline

model and proposed model.

Since we have the model G of BN, the parameter Θ must

be calculated. For that, we must obtain a running tally of the

frequency with each evidence from the dataset. The tally is a

sum of occurrences. Consequently, after normalizing the tally,

we acquire the probabilities distributions using the features. In

other words, the relative frequency of the times that the node

has each value defines its posterior probability distribution.

To better distribute the posterior probability we will use

the Additive Smoothing Technique [22]. The probabilities

estimation needs satisfactory amount of data to precisely

estimate the values. In case of insufficient data, we propose

a smoothing method in order to make the distribution of

probabilities more uniform.

θ̂i =
xi + α

N + αd
(2)

In Additive Smoothing or Laplace Smoothing, as we can

see in equation 2, the occurrence frequency of each feature xi

is increased by α, called as smoothing parameter, and divided

by N +αd, where N is the length of distribution and d is the

number of observations.

Thereby, the graph G and the probability functions Θ were

built, and, consequently, the BaNHFaP construction process is

completed.

IV. EXPERIMENTAL RESULTS

The implementation of BaNHFaP was written in Python,

using SciPy 0.17 [23] and scikit-learn 0.17 [24] packages for

RFE. In addition, we adopted Discretization-MDLPC tool as

implementation of MDLP and libpgm 1.1 package to build

Bayesian Network model and evaluation process.

A. Dataset

The data used in this paper was provided by Backblaze

company [25]. The dataset has 49,056 real hard drives spread

across 26 different models, varying from 1.0TB to 8.0TB in

size. Each entry of the data is a daily snapshot of the HDD

status. The dataset has 29,747,966 records and unhealthy disks

represent 4.81% of the total. A hard drive labeled as unhealthy

denotes that its SMART status self test has failed, though that

all records are labeled as healthy, except the last one.

Each data sample has serial number, model, capacity, label

and 90 performance-monitoring attributes, that are the raw and

normalized values for 45 different SMART stats reported by

the driver. Most drives do not report values for all SMART

attributes, so there are blank fields in every record. Also,

different drives may report different statistics based on their

model and manufacturer.

Before the preprocessing module, the data must be handled

in order to remove attributes that have few records and discard

samples with blank fields. In this process, 19,453,812 samples

and 17 columns were removed.

The feature selection process, described in III-A, attempts to

remove unnecessary attributes. The RFE method was applied

in the data, except on the SMART 9 RAW, with Random

Forest estimator using 3-fold cross validation and the forest

consisting of 10 trees. The technique returned 8 features:

SMART 187 RAW, SMART 240 RAW, SMART 5 RAW,

SMART 184 RAW, SMART 190 RAW, SMART 7 RAW,

SMART 188 RAW, SMART 197 RAW. Table I represents the

importance of the features that were returned by RFE. Higher

importance values have a significant impact on the result of

the model. The SMART 9 RAW was only added to the data,

since it represents the POH.

Most features obtained from the RFE method are consistent

with the Backblaze’s list of features that indicates impending

disk drive failure. The SMART attributes selected (187, 240, 5,

184, 190, 7, 188 and 197) can be defined respectively as: Re-

ported Uncorrectable Errors, Head Flying Hours, Reallocated

Sectors Count, End-to-End error, Temperature Difference from

100, Seek Error Rate, Command Timeout and Current Pending

Sector Count.

TABLE I: Importance of the features returned by RFE

Feature Importance
SMART 187 0.67363818

SMART 5 0.34882314

SMART 184 0.24467154

SMART 7 0.23996446

SMART 240 0.21005881

SMART 190 0.15997393

SMART 188 0.12123306

SMART 197 0.08403013

After the features selection, we discretize them using

MDLP, described in section III-A. The cut points, that rep-

resent the bins, obtained by the application of the method are

shown in Table II.

The SMART 9, or POH, was discretized by means of an

equal width binning process. The width of each bin represents

429



a quarter of year, thus we are capable of predicting in which

quarter the HDD will fail with some certainty.

TABLE II: MDLP-generated cut points of the features

Feature Cut Points
SMART 187 0.5, 30.5

SMART 5 1.5, 1540.0

SMART 184 1.5

SMART 7 258588813.5, 858525788.5, 1422218768.5,

3707446036.5, 10685231764

SMART 240 16464

SMART 190 18.5

SMART 188 0.5, 15032614946

SMART 197 0.5, 33.5

B. Performance Evaluation

We define our model following the section III-B. First, we

built the graph G out of the SMART attributes originated

from the preprocessing module. The graph G is represented

by Figure 3:

POH

RUL

187 240 005 184 190 007 188 197

Fig. 3: Representation of the graph generated by the prepro-

cessing module of the BaNHFaP model.

We completed the construction of our method by determin-

ing the probabilistic functions, depicted by Θ. The process

was made in accordance with model. We used the technique

explained in III-B to calculate the tally. Thereby, we have the

complete BaNHFaP method (〈G,Θ〉), and now we are capable

of making predictions.

To evaluate the prediction we compared the expected value

from the predicted distribution with the value of real RUL. In

this case for each sample of the dataset (an HDD at a given

time instant) was calculated the quadratic error between the

predicted value and ground truth RUL. The Figure 4 presents

the distributions of the quadratic errors for baseline (Figure

2a) and BaNHFaP models (Figure 3).

Observing Figure 4 it is possible to verify that, for both

models, the majority of the predictions are close to the real

RUL, because the quadratic error density is concentrated

around the value 1. Thereby, most of the quadratic errors are

1 5 10 15

0

5

10

15

20

Error2

D
en

si
ty

Baseline Errors

BaNHFaP Errors

Fig. 4: Comparison of the quadratic errors versus the density

of these errors between the baseline and BaNHFaP methods.

small. However, our method, if compared to the baseline, has

a lower density of high quadratic errors, as we can see by

comparing the tails of the distributions. This phenomenon can

also be observed when calculating the means and medians of

both distributions. These values are shown in Table III.

TABLE III: Mean and Median of the quadratic errors returned

by the baseline and proposed methods

Baseline Model BaNHFaP Model
Mean 2.9325 2.1024

Median 1.1642 0.9593

As we can see in Table III, the proposed method has

improved the results in 28.3% and 17.6% of the mean and

median of the quadratic errors respectively.

In failure prediction methods, besides the accuracy, the

realized predictions should have a rapid convergence. This

property can be verified through the Prognostic Horizon (PH)

metric [26]. This metric defines an error bound (αPH ) around

the true RUL and the predictions should enter as soon as

possible in error bound. PH is based on the assumption that

early accurate predictions give more time to decision-making.

Figure 5 shows the rapid convergence of our method for

6 HDDs. The αPH utilized in the examples are equal to 1.

The figure aforementioned represents typical behavior of the

HDDs from the dataset.

It is possible to verify that the predictions generated by our

method gets into the bound before the baseline method for all

HDDs. In other words, BaNHFaP model has earlier accurate

predictions than the baseline model.

V. CONCLUSION AND FUTURE WORK

A method for failure prediction in hard disk drives uti-

lizing Bayesian Networks was presented in this paper. This

method consists of two phases: preprocessing and estimation
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Fig. 5: Comparison between the baseline and proposed models using the Prognostic Horizon metric. The graphics show that

the proposed method gets into the bounds before the baseline for different HDDs. In Figures 5a and 5b the BaNHFaP has

entered in the bound on quarter before than baseline, and the Figures 5c and 5d our method has entered in the α-band on two

quarters before the baseline. In Figures 5e and 5f our method has came into the bound on same quarter of the baseline.
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of parameters. The preprocessing module is responsible for the

data treatment, since the input of the estimation of parameters

module must be an optimal set of discrete features. The

estimation of parameters module builds the model behavior

that assists the failure prediction.
The data preparation by preprocessing module is done

using RFE for selecting the optimal subset of features. After

the feature selection, data goes on through the discretization

process made by MDLP algorithm.
The estimation of parameters module presents the prediction

model using Bayesian Networks. This module performs the

running tally of probabilities and shows the intuition behind

the model through graphical representation of the HDD be-

havior.
In the evaluation process of BaNHFaP we obtained better

results than the baseline model for both mean and median

metrics of quadratic errors. It is worth mentioning that, utiliz-

ing the Prognostic Horizon technique we obtained graphical

representations of the BaNHFaP rapid convergence.
Future works may include models separated by manufac-

turer, accumulative and gradient features. Other possibility is

to apply different width to discretize POH.
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