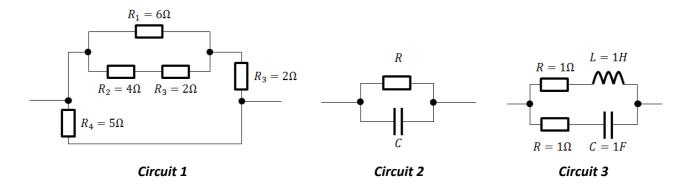
Contrôle d'ELECTRICITE

Durée: 1h 30 – Documents et calculatrice non autorisés

Les parties A, B, C, D et E peuvent être traitées de façons indépendantes

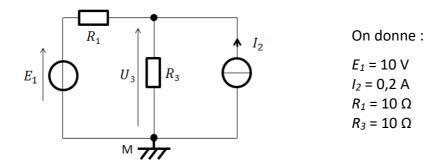
Partie A: Questions de cours


On donne l'expression de deux tensions sinusoïdales :

$$u_1(t) = 10 \sin(\omega t)$$

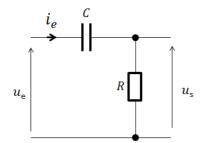
$$u_2(t) = 5 \sin\left(\omega t + \frac{\pi}{4}\right)$$

- **A.1** Donner une représentation de FRESNEL des deux vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
- **A.2** Exprimer l'impédance complexe d'une inductance L.
- **A.3** Exprimer le module et l'argument de l'impédance complexe d'un condensateur *C*.


Partie B : Calcul d'impédances équivalentes

- B.1 Calculer la résistance équivalente au circuit 1.
- **B.2** Exprimer l'impédance équivalente complexe du *circuit 2* sous une forme canonique.
- **B.3** Calculer le module de l'impédance du *circuit 3* pour $\omega = 1 \, rad/S$.

Partie C : Etude d'un circuit en régime continu


On étudie ici, le circuit suivant en régime continu.

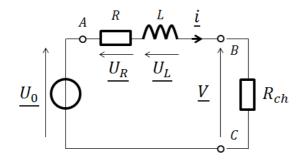
- **C.1** Calculer la valeur de U_3 ,
- **C.2** Calculer le courant I_1 circulant dans la résistance R_1 .
- **C.3** Si on éteint le générateur de tension E_1 , que vaut U_3 ?

Partie D : Etude d'un circuit de filtrage de type « Passe-Haut »

On étudie ici, le circuit suivant en régime sinusoïdal.

Avec:

$$u_e(t) = U_{eff} \sqrt{2} \sin(\omega t)$$


$$U_{eff} = 10\sqrt{2} V$$

$$R = 1 \Omega$$

 $C = 0.1 F$

- **D.1** Exprimer $\underline{U_s}$ en fonction de R, C et $\underline{U_e}$.
- **D.2** En déduire $U_{s\,eff}$ la valeur efficace de U_s pour ω = 10 rad/s.
- **D.3** Vers quelle valeur tend $U_{s\,eff}$ lorsque $\omega \to 0$ et lorsque $\omega \to \infty$.
- **D.4** Exprimer I_e en fonction de R, C et U_e .
- **D.5** En déduire $I_{e\ eff}$ la valeur efficace de I_e ainsi que le déphasage φ entre U_e et I_e .
- **D.6** Représenter sur un même diagramme les vecteurs de FRESNEL suivant : $\overrightarrow{U_e}$, $\overrightarrow{I_e}$ et $\overrightarrow{U_s}$.

Partie E : Etude d'une source connectée à une charge via une ligne imparfaite

On étudie ici, le circuit suivant en régime sinusoïdal. Il comporte une source de tension $\underline{U_0}$ qui alimente une charge représentée par son impédance $\underline{Z_{ch}}$. La ligne de transmission entre les deux présente un défaut et ne peut donc plus être considérée parfaite. Elle est représentée par son modèle électrique comportant une résistance R et une inductance L.

Avec:

$$u_e(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

$$U_{eff} = 10\sqrt{2} \ V$$

$$\omega = 10 \text{ rad/s}$$
 $R = 1 \Omega$

On appelle fonctionnement à vide, le fonctionnement lorsque la charge n'est pas connectée.

E.1 Pour le fonctionnement à vide, que vaut la tension V_{eff} entre les point B et C.

On considère maintenant une charge résistive telle que $\underline{Z_{ch}} = R_{ch}$, avec $R_{ch} = 9\Omega$.

- **E.2** Pour le fonctionnement en charge, exprimer le courant <u>I</u>.
- **E.3** En déduire la valeur efficace I_{eff} du courant et son déphasage φ avec U_0 .
- **E.4** Exprimer les tensions U_R et U_L en fonction du courant \underline{I} .
- **E.5** En déduire l'expression complexe $\underline{\Delta_v}$ de la chute de tension dans la ligne, entre les points A et B en fonction de \underline{I} .
- **E.6** Calculer la valeur efficace de cette chute de tension.