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Abstract

With the rapidly increasing availability of
event stream data there is growing interest in
multivariate temporal point process models
to capture both qualitative and quantitative
features of this type of data. Recent research
on multivariate point processes have focused
in inference and estimation problems for re-
stricted classes of models such as continuous
time Bayesian networks, Markov jump pro-
cesses, Gaussian Cox processes, and Hawkes
Processes.

In this paper, we study the expressive power
and learnability of Graphical Event Models
(GEMs) — the analogue of directed graph-
ical models for multivariate temporal point
processes. In particular, we describe a set of
Graphical Event Models (GEMs) and show
that this class can universally approximate
any smooth multivariate temporal point pro-
cess. We also describe a universal learning
algorithm for this class of GEMs and show,
under a mild set of assumptions, learnability
results for both the dependency structures
and distributions in this class. Our consis-
tency results demonstrate the possibility of
learning about both qualitative and quanti-
tative dependencies from rich event stream
data.

1 Introduction

There has been an explosion in the availability of event
stream data which has been collected to explore the
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dynamics of a wide variety of systems behavior includ-
ing social networks (Du et al., 2013), biochemical net-
works (Golightly and Wilkinson, 2006), patient health
(Weiss and Page, 2013), and computers in datacenters
(Gunawardana et al., 2011). A wide variety of alterna-
tive statistical models have been advanced and applied
to these data including continuous time Bayesian net-
works (Nodelman et al., 2002), graphical event models
(e.g. Gunawardana et al., 2011; Weiss and Page, 2013),
Markov jump processes (Rao and Teh, 2013), Gaussian
Cox processes (e.g. Adams et al., 2009; Lian et al.,
2015), and Hawkes Processes (e.g. Zhou et al., 2013).
Most work on modelling such data address questions
about choosing representations, learning algorithms,
and inference techniques for particular model classes,
as well as how well various model classes capture the
dynamics of data from systems.

In contrast, we address the question of whether there
exist classes of models that can approximate any tem-
poral marked point process, and if so, if such models
are learnable. For other learning tasks such as classifi-
cation, regression, and modeling discrete-alphabet se-
quences, there are results on universal approximation,
and on universal consistency or learnability that show
that certain model classes (such as k-nearest neigh-
bor, support vector machines with universal kernels,
and context trees for variable length Markov chains)
can approximate any distribution of interest and can
estimate such a distribution with arbitrary accuracy
from sufficient data. In this paper, we give such results
for temporal marked point processes using a class of
graphical event models. Similar to a directed graphi-
cal model, graphical event models capture both quali-
tative structural aspects of the temporal dependencies
as well as quantitative aspects of system dynamics.

Our main contributions are theoretical results about
a class of graphical event models that we call Re-
cursive Timescale Graphical Event Models. In par-
ticular, we prove a universal approximation theorem
that shows that Recursive Timescale Graphical Event
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Models can approximate any sufficiently smooth finite-
horizon marked point process. We then provide a uni-
versal learning algorithm for recursive timescale graph-
ical event models and give asymptotic consistency re-
sults for this algorithm. These results show that such
models can, in principle, be learned from sufficient
data. In particular, we give structural consistency
results that show that the dependency structure of
such processes are correctly learned, parametric con-
sistency results that show that the marginal distribu-
tions (and thus the process itself) is correctly learned,
and predictive consistency results that show that the
learned model makes correct predictions about the fu-
ture. Our consistency results demonstrate the possibil-
ity of learning about both qualitative and quantitative
dependencies from rich event stream data.

2 Related Work

The study of universal learners goes back at least to
Cover and Hart (1967) and Stone (1977) who stud-
ied the universality of k-nearest neighbor for classifi-
cation and regression respectively. Hornik (1989) gave
a universal approximation result for neural networks,
but to our knowledge, there are few consistency re-
sults for learning them. In particular, there remains
a need for theoretical guidance for selecting the top-
pology and number of hidden units. More recently
Steinwart (2001) characterized universal kernels and
studied the consistency of SVMs using such kernels.

In the case of discrete symbol sequence modelling, the
results of Weinberger et al. (1995), Bühlmann and
Wyner (1999) and Csiszár and Talata (2006) establish
that variable length Markov models are universal mod-
els for arbitrary ergodic discrete symbol sources, and
that the context tree algorithm can consitently learn
them. This work extends previous work on universal
source coding (Rissanen and Langdon, 1981; Rissanen,
1983).

To our knowledge, the results we present here are the
first result on a universal approximating class for tem-
poral marked point processes, and the first learnability
result for such a class.

Finally, although we do not address inference in this
paper, we note that the inference algorithms of Qin
and Shelton (2015) can be applied to the models
yielded by the learning algorithms we present here.

3 Background

Our data consists of a stream of events (t, l) ∈ R+×L,
each of which has a timestamp t > 0 and a label
l taken from a finite label vocabulary L. Thus the

data is a sequence (t1, l1), · · · , (ti, li), · · · with strictly
increasing times. We write xt∗ for the sequence of
events {(ti, li) : ti < t∗} until time t∗, and wish to
model p(xt∗ |t∗) for any given t∗. A family of distri-
butions {p(xt∗ |t∗)}t∗>0 is consistent with each other if
their marginals agree, and such a family is known as
a marked point process (m.p.p.) P (Daley and Vere-
Jones, 2003).

3.1 Graphical Event Models

A Graphical Event Model (GEM) G is a directed graph
G = (L, E). A GEM G defines a family of m.p.p.s
whose likelihood of the data xt∗ can be written as

p(xt∗ |t∗) =

|xt∗ |∏

i=1

λli(ti|hi)
|xt∗ |+1∏

i=1

e
−∑l∈L

∫ ti
ti−1

λl(τ |hi)dτ

where we use hi to denote the ith history hi =
(t1, l1), · · · , (ti−1, li−1), and have used the conventions
t0 = 0, tn+1 = t∗, and where λl(t|h) > 0 is the con-
ditional intensity of the label l at time t given the
history h which governs how the occurrence of events
with label l at time t depends on the history h. This
representation is quite general, and the conditional in-
tensity function can be written in terms of conditional
densities and conditional probabilities as:

λl(t|hi) =
p(li = l, ti = t|hi)
P (ti > t|hi)

For example, PCIMs (Gunawardana et al., 2011),
CPCIMs (Parikh et al., 2012), CTBNs (Nodelman
et al., 2002) and MFPPs (Weiss and Page, 2013) can
all be represented as GEMs.

The m.p.p.s defined by the GEM G have the following
property:

Definition 1. A m.p.p. P is Markov with respect to
a GEM G if its conditional intensity functions λl(t|h)
satisfy

λl(t|h) = λl(t|[h]Pa(l))

where Pa(l) are the parents of l in G, and [h]K =
{(t, l) ∈ h : l ∈ K} is the subset of events in h whose la-
bels are in K. This is analogous to Bayesian Networks
where the conditional probability of a variable given
the preceding variables depends only on its parents.

Just as any joint distribution over a set of variables
can be specified by a fully connected Bayesian net-
work, any m.p.p. with labels L can be represented by
a fully connected GEM, under mild regularity condi-
tions (Daley and Vere-Jones, 2003).

Example 1. Consider the GEM illustrated in Fig-
ure 1. A denotes the alarm triggering. The alarm can
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Figure 1: The GEM of example 1

be triggered by either a break-in (event B) or by the cat
jumping onto the window sill (event C). The cat typi-
cally hides after she has been taken to see the vet, and
is thus less likely to jump on the window sill. The event
D is the event of the cat being taken to see the vet, or
from her point of view, a visit to the doctor. Depen-
dencies between events can be read off the GEM. In
this example, break-ins B do not depend on any event
in the history, including past break-ins. The rate of
break-ins λB(t|h) is therefore constant, and break-ins
form a homogeneous Poisson process. The rate λD(t|h)
of visits to the doctor D depends on past visits, and re-
flects the self-excitatory and self-inhibitory effects due
to the need or lack thereof for follow-up care. The
cat’s rate λC(t|h) of jumping on the window sill de-
pends only on the past only through alarms A and
visits to the doctor D.

4 Universal Approximation

In order to show our approximation result, we first de-
fine a notion of a Timescale GEM, which is a GEM
where the temporal range and granularity of each de-
pendency is made explicit. We then define a nested
family of such Timescale GEMs that allow longer and
longer range dependencies with finer and finer tempo-
ral granularity. We then show that a member of this
family with sufficiently long-range dependencies with
sufficiently fine temporal granularity will suffice to ap-
proximate any m.p.p. meeting some mild assumptions.

4.1 Timescale Graphical Event Models

A Timescale GEM (TGEM) augments each edge of a
GEM with a timescale which specifies the finite tem-
poral horizon and the granularity of the dependency
represented by that edge. Formally, a timescale is a
set T of half-open intervals I ⊂ R+ of the form (a, b]
that form a partition of some interval (0, th]. We call
the highest value contained in ∪I∈T I the horizon of T
denoted th(T ).

A TGEM M = (G, T ) consists of a graph G = (L, E)
over L and a set of timescales T = {Te}e∈E corre-
sponding to the edges E of the graph G. The TGEM
M specifies m.p.p.s with conditional intensity func-

tions that have parameters

λl(t|h) = λl,cl(h,t)

indexed by parent count vectors cl(h, t) of thresholded
counts over the intervals in the timescales of the par-
ents of l

cl(h, t) = [cl′,I(h, t)]l′∈Pa(l),I∈T(l′,l)

with elements

cl′,I(h, t) =

⌊ ∑

(t′,l′)∈h
1I(t− t′)

⌋

k

which count the number of events with parent label l′

in the history h within the timescale interval I of time
t, truncated at some given threshold. This is analogous
to conditional probability parameters in Bayesian net-
works being indexed by parent states. We use Cl to
denote the set of all possible parent count vectors of
label l. For this paper we assume that all TGEMs have
a threshold of 1 but note that all our results apply to
other choices of threshold.

Thus, a TGEM defines a set of m.p.p.s as follows:

Definition 2. A m.p.p. P is Markov with respect to a
TGEM M = (G, T ) (written P ∈ Markov(M)) if P ∈
Markov(G) and if there exist non-negative parameters
{λl,j}l∈L,j∈Cl

such that λl(t|h) = λl,cl(h,t).

For P ∈ Markov(M) the likelihood simplifies to

p(xt∗ |t∗) =
∏

l∈L

∏

j∈Cl

λ
nt∗,l,j(xt∗ )

l,j e−λl,jdt∗,l,j(xt∗ )

where the sufficient statistics nt∗,l,j(xt∗) and
dt∗,l,j(xt∗) are the count of l-events and the du-
ration, respectively, when the parent count vector was
equal to j, and are given by

nt∗,l,j(xt∗) =

|xt∗ |∑

i=1

1(li = l)1(cl(hi, ti) = j)

dt∗,l,j(xt∗) =

|xt∗ |+1∑

i=1

∫ ti

ti−1

1(cl(hi, τ) = j)dτ

For our consistency results, we assume that our data
is generated from a TGEM with strictly positive pa-
rameters. This is required for Lemma 3 and results
that depend on it. This assumption ensures that the
observed dynamics of the process will repeat.

Example 2. We extend the GEM of Example 1 to a
TGEM by specifying timescales for edges in Figure 1.
The cat hides for an hour after a visit D to the doc-
tor, and for 5 or 10 minutes after hearing the alarm.
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Thus, the timescales of the corresponding edges are
TA→C = {(0, 5], (5, 10]} and TD→C = {(0, 60]}. The la-
bel C has a three-dimensional binary parent count vec-
tor cC(h, t) that encodes whether there was an alarm A

in the intervals [t−5, t) and [t−10, t−5), and whether
there was a doctor’s visit D in the interval [t − 60, t).
In this case, CC = {0, 1}3 and if cC(h, t) = j with

j = [0, 1, 1]
T

, there was no alarm in [t − 5, t), there
was an alarm in [t − 10, t − 5), and there was a doc-
tor’s visit in [t− 60, t).

4.2 Recursive Timescale GEMs

Our goal is to learn the edges and the appropriate
timescale for each edge in a TGEM. We will do so by
using a set of operators for refining TGEMs defined
below:

Definition 3. The add edge operator Oadd,e adds the
edge e to a model. It is formally defined for models
M = (G, T ) such that e 6∈ EG by Oadd,e(M) = (G′, T ′)
with EG′ = EG ∪ {e}, T ′e = T0, and T ′e′ = Te′ for e′ ∈
EG , where Te′ and T ′e′ are the timescales of edge e′ in
models M and M′ respectively. We use T0 = {(0, c]}
for some constant c.

Definition 4. The split operator Osplit,e,(a,b] splits the
interval (a, b] in the timescale of edge e. It is formally
defined for models M = (G, T ) such that e ∈ EG and
(a, b] ∈ Te ∈ T by Osplit,e,(a,b](M) = (G, T ′) with T ′e ={(
a, a+b

2

]
,
(
a+b

2 , b
]}
∪ Te \ (a, b].

Definition 5. The extend operator Oextend,e extends
the horizon of edge e. Formally, for models M =
(G, T ) such that e ∈ EG and th(Te) = th, it gives
Oextend,e(M) = (G, T ′) with T ′e = Te ∪ {(th, 2th]}.

The family of Recursive Timescale GEMs (RTGEMs)
is defined recursively to be the finite closure of the
empty model M0 = ((L, {}), {}) under the add edge,
split, and extend operators. That is, RTGEMs include
all GEMs reachable from M0 via any finite sequence
of refinement operations.

RTGEMs are a rich class of models that can ap-
proximate arbitrary non-explosive non-deterministic
smooth m.p.p.s with finite horizons:

Theorem 1. Suppose P is a stationary m.p.p. whose
conditional intensity functions λl(t|h) are bounded
above and bounded away from zero, are Lipschitz con-
tinuous in t and h (i.e. in t and in the times of the
events in h), and that there exits th ≥ 0 such that
λl(t|h) does not depend on events in h at times ear-
lier than t − th. Then, for any ε > 0 there exists
an RTGEM M̂ ∈ M and P̂ ∈ Markov(M̂) such that
1
t∗D(Pt∗ ||P̂t∗) < ε.

Note that a stationary m.p.p. is one where
the conditionaly intensity functions are invari-

ent under translation: λl (t|(t1, l1), · · · , (ti, li)) =
λl (t− τ |(t1 − τ, l1), · · · , (ti − τ, li)) for all τ . Also,
note that a non-explosive m.p.p. is one where
limi→∞ ti = ∞ a.s. In contrast, explosive m.p.p.s
are ones where the inter-event times can shrink fast
enough to allow an inifinite number of events in a fi-
nite duration.

5 Consistency

We now give asymptotic consistency results for RT-
GEMs. First we give a parametric and predictive con-
sistency result for TGEMs. That is, we show that
we can learn the correct parameters if the dependency
structure and timescales are known. We then go on
to give a structural consistency result that the cor-
rect TGEM, i.e. the correct dependency structure and
timescales can be learned. In order to do so, we first
show some results about the structure of RTGEMs
that are needed to formalize what is meant by the
“correct” TGEM.

5.1 Parametric Consistency

Given a model M , the maximum likelihood estimate
(m.l.e.) for M is

λ̂t∗,l,j(xt∗) =
nt∗,l,j(xt∗)

dt∗,l,j(xt∗)

for l ∈ L, j ∈ Cl. The m.l.e. is consistent, and leads to
consistent predictions of the future:

Theorem 2. Suppose P ∈ Markov(M). Then,

λ̂(xt∗)→ λ in probability, and for any ε > 0,∆ > 0,

P

(∣∣∣∣log
p(xt∗+∆|xt∗ ,M)

p̂(xt∗+∆|xt∗ ,M)

∣∣∣∣ > ε

)
→ 0

as t∗ →∞.

This results from the direct application of two con-
centration lemmas. The first gives that the duration
sufficient statistics per unit time converge to their long
run expected duration rates:

Lemma 3. For any P such that ∃M ∈ M : P ∈
Markov(M), and every l ∈ L, j ∈ Cl, there exists
rl,j > 0 such that for every ε > 0, δ > 0 there ex-

ists t > 0 s.t. P
(∣∣∣dt∗,l,j(x)

t∗ − rl,j
∣∣∣ < δ

)
> 1 − ε for

t∗ > t.

The second gives that given the durations, the ratios
of the sufficient statistics concentrate around the cor-
responding parameters:

Lemma 4. For any m.p.p. P such that ∃M ∈ M :
P ∈ Markov(M) and any l ∈ L, j ∈ Cl, there exists a
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constant K > 0 s.t. for all ε > 0,

P

(∣∣∣∣
nt∗,l,j(x)

dt∗,l,j(x)
− λl,j

∣∣∣∣ > ε

∣∣∣∣∣dt∗,l,j(x) = d̂t∗,l,j

)

< 2


1− Φ


ε
√
d̂t∗,l,j
λl,j




+

K

λl,j d̂t∗,l,j

where Φ(·) is the standard normal CDF.

5.2 The Structure of RTGEMs

In order to formally state our results on structural
consistency, we first show the existence of a minimal
TGEM that can represent a m.p.p. P . Structural
consistency will then be defined in terms of finding
this minimal TGEM. In this section, we introduce
the notions of one TGEM being a refinement of an-
other, which we will use when searching for the mini-
mal TGEM.

It can be shown that each M ∈M is characterized by
a set OM of operators that take M0 to M , and that
every path from M0 to M uses each of the operators
in OM . For example, for a particular interval to be
present in an TGEM, the relevant edge must first be
added, and the horizon extended until it covers the
interval in question. The timescales then need to be
refined until the interval is obtained. All these opera-
tions are essential for arriving at a TGEM containing
the interval in question. It can also be shown that
there is a unique minimal model M∗(P ) that repre-
sents each P that can be represented in M:

Proposition 5. Let P be such that ∃M ∈ M for
which P ∈ Markov(M). Then, there exists a unique
minimal M∗(P ) ∈ M such that P ∈ Markov(M∗(P ))
and M ′ ≥ M∗(P ) for all M ′ for which P ∈
Markov(M ′).

RTGEMs have a rich recursive structure that we make
use of in the rest of the paper. We say that M ∈
M is an immediate refinement of M ′ ∈ M (denoted
M � M ′) if there exists an add edge, split, or extend
operator O such that M = O(M ′). M ∈ M is a
refinement of M ′ ∈ M (denoted M > M ′) if there
exists a sequence of immediate refinements that take
M ′ to M . Conversely, we say that M ′ is a projection
of M . Thus, by definition, M ≥M0 for every M ∈M.

The parent count vectors that index the parameters of
RTGEMs are also recursively related. For M > M ′,
the parent count vector c′l(h, t) defined for each l ∈ L
by model M ′ can be obtained by summing and trun-
cating the elements of the parent count vector cl(h, t)
defined by M . That is, c′l(h, t) is a nonlinear projection
of cl(h, t). We denote this by c′l(h, t) = πMM ′(cl(h, t))

Algorithm 1 BackwardSearch(M)

repeat
coarsened ← false
M′ ← {M ′ ∈M : M �M ′}
for all M ′ ∈M′ do

if S(M ′)− S(M) > 0 then
M ←M ′, coarsened← true
break

end if
end for

until not coarsened
return M

and when it is clear from context which models we are
projecting from and to, we write c′l(h, t) = π(cl(h, t)).

The recursive projection relationship between parent
count vectors gives us that the sufficient statistics are
also computable as recursive projections:

Proposition 6. Let M,M ′ ∈ M : M > M ′, with
parent count vector sets Cl and C ′l respectively. Then,
for all l ∈ L, j′ ∈ C ′l ,

nt∗,l,j′(xt∗) =
∑

j∈π−1(j′)

nt∗,l,j(xt∗)

dt∗,l,j′(xt∗) =
∑

j∈π−1(j′)

dt∗,l,j(xt∗)
(1)

5.3 Structural Consistency

We take a Bayesian Information Criterion (BIC) ap-
proach to structure learning.

We define the BIC score of an RTGEM M as

St∗(M) = log p(xt∗ |t∗;M, λ̂t∗(xt∗))−
∑

l∈L
|Cl| log t∗

The following model selection theorem implies that
model selection under the BIC score above is asymp-
totically consistent for the minimal model M∗(P ) of a
process P :

Theorem 7. Suppose M 6= M ′ ∈ M with P ∈
Markov(M) and with either P 6∈ Markov(M ′) or M ′ >
M . Then,

lim
t∗→∞

P (St∗(M) > St∗(M ′)) = 1

In particular, this holds for any M ′ 6= M when M =
M∗(P ).

The consistency result above directly gives that if
M ∈ M is such that P ∈ Markov(M), starting at
M and greedily removing distinctions by applying the
function BackwardSearch() of Algorithm 1 yields
the minimal model that can represent P :
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Corollary 8. Suppose that M ∈M and let P be such
that M = M∗(P ). Let M̄ ∈M : P ∈ Markov(M̄), and
let M̂t∗ be the result of applying BackwardSearch()
to M̄ at time t∗. Then, P (M̂t∗ = M)→ 1 as t∗ →∞.

This is analogous to results on Backward Equivalence
Search (BES) for Bayesian networks (Chickering and
Meek, 2002). However, in that case, it is possible to
initialize BES with the fully connected network, which
is guaranteed to contain any joint distribution. In con-
trast, the family of RTGEMs is infinite, and there is no
maximal model that can represent any m.p.p., making
this result less useful.

In analogy to Forward Equivalence Search (FES) for
Bayesian networks (Chickering and Meek, 2002), we
can attempt to find a model M such that P ∈
Markov(M) by starting with the empty model M0

and refining it to greedily improve the BIC score
S(·). However, this procedure does not succeed for
all m.p.p.s P that have a representation within M.
This is because the dynamics of the process can bal-
ance out and obscure distinctions in the process P , so
that greedy refinement fails. This is illustrated in the
following example:

Example 3. Let M be specified as L = {A,B}, E =
{A → B}, TA→B = {(0, 1], (1, 2]}. Every P ∈
Markov(M) is parametrized by a single parameter for
the conditional intensity of events with label A, which
form a homogeneous Poisson process, and 4 param-
eters for the conditional intensity of events with la-
bel B, for the cases where there are 0 or at least 1
event with label A in each of the intervals t − (0, 1]
and t − (1, 2]. Let such a P be specified with pa-
rameters λA = log 4, λB,00 = 6, λB,01 = 2, λB,10 =
9, and λB,11 = 1. A successful greedy search would
start with the initial model M0 with E0 = {}, refine
it to M1 by adding the edge A → B with timescale
TA→B = T0 = {(0, 1]}, and then extend the timescale
to obtain M . M0 has two parameters λA and λB

while M1 has three parameters λA, λB,0, and λB,1.
We show that the dynamics of the process P obscure
the benefit of adding the edge A → B with timescale
TA→B = {(0, 1]} to M0 and distinguishing between
λB,0 and λB,1.

From Lemmas 3 and 4 and from Proposition 6, we can
show that

λ̂t∗,B,0(x)→λB,00rB,00 + λB,01rB,01

rB,00 + rB,01

λ̂t∗,B,1(x)→λB,10rB,10 + λB,11rB,11

rB,10 + rB,11

in probability. The rl,j are expected long run duration

rates such that
dt∗,l,j
t∗ → rt∗,l,j . It can be shown that

rt∗,B,00 =
1

4
· 1

4
rt∗,B,01 =

1

4
· 3

4

rt∗,B,10 =
3

4
· 1

4
rt∗,B,11 =

3

4
· 3

4

because they each depend on the probability of the
homogeneous Poisson process A having events in the
intervals t−(0, 1] and t−(1, 2] as t→∞. Substituting
the given values of λl,j and these values of rt∗,l,j into
the m.l.e.s yields

λ̂t∗,B,0(x)→ 3 λ̂t∗,B,1(x)→ 3

That is, asymptotically, the dynamics of the process
P cause the durations dt∗,B,00, dt∗,B,01, dt∗,B,01 and
dt∗,B,11 to eventually balance out, so that the adding
the edge A → B does not lead to an increase in BIC
score. As a result, greedy search fails.

In general, we say that P exhibits detailed balance if
its dynamics are such that asymptotically, the dura-
tions of parent count vectors balance so that essential
distinctions in P are obscured in a projected model.
To characterize the essential distinctions in a m.p.p.
P we define the set O∗(P ) of essential operators of P
as follows:

Definition 6. Let P be s.t. ∃M ∈ M : P ∈
Markov(M). Then the essential operators O∗(P ) are
the operators that take M0 to the minimal model
M∗(P ).

We now define detailed balance as follows:

Definition 7. Let M ∈ M be a model that makes
an essential distinction in P . That is, let with M =
O(M ′) for some O ∈ O∗(P ),M ′ ∈ M. P exhibits
detailed balance if there exist j1, j2 ∈ Cl for some l ∈ L
so that π(j1) = π(j2) and

∑
j̄1∈π−1(j1) λ̄l,j̄1rl,j̄1∑
j̄1∈π−1(j1) rl,j̄1

=

∑
j̄2∈π−1(j2) λ̄l,j̄2rl,j̄2∑
j̄2∈π−1(j2) rl,j̄2

where {λ̄j̄} is the parametrization of P in some M̄ ≥
M .

This condition is analogous to faithfulness in Bayesian
networks. We conjecture that, analogously to that
case (Meek, 1995), the set of parameter values that
exhibit detailed balance is of measure zero, as in the
example below:

Example 4. In Example 3, P exhibits detailed bal-
ance. If any one of λA, λB,00, λB,01, λB,10 or λB,11 is
changed, P does not exhibit detailed balance.

For m.p.p.s that that are representable as RTGEMs
and do not exhibit detailed balance , Forward-
Search() followed by BackwardSearch() is a finite
consistent model selection procedure:
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Algorithm 2 ForwardSearch()

M ←M0

repeat
refined ← false
O ← {O : O(M) �M}
for all O ∈ O do

if S(O(M))− S(M) > 0 then
M ← O(M) refined← true

end if
end for

until not refined
return M

Theorem 9. Suppose that M ∈ M and let P be
such that M = M∗(P ). Let M̂t∗ be the result of
BackwardSearch(ForwardSearch()) at time t∗.
Then, if P does not exhibit detailed balance with re-
spect to any model, P (M̂t∗ = M)→ 1 as t∗ →∞.

It follows immediately from Theorem 2 that this pro-
cedure also gives consistent predictions of the future:

Theorem 10. Suppose P is such that the conditions
of Theorem 9 hold. Then, for any ε > 0,∆ > 0,

P

(∣∣∣∣log
p(xt∗+∆|xt∗)
p̂(xt∗+∆|xt∗)

∣∣∣∣ > ε

)
→ 0

as t∗ →∞.

6 Conclusions

We have shown a universal approximating model fam-
ily for bounded non-deterministic non-explosive finite-
horizon smooth marked point processes. We have also
presented a constructive proof of learnability for these
models, by showing the asymptotic consistency of a
greedy BIC structure learning procedure together with
ML parameter estimates. In particular, our theoretical
results show that the dependency structure of a uni-
versal family of point process models can be learned
from data. We also show the predictive consistency of
our learned models.

Our consistency results are quite general in a number
of respects. We do not assume access to i.i.d. real-
izations of the process. We only assume that a single
realization is observed for sufficiently long. While we
assume the existence of bounds on the intensities and
on the temporal range of dependencies, we do not as-
sume prior knowledge of these bounds.

A number of interesting open questions remain.
We conjecture that our predictive consistency re-
sult holds even when the true process is a bounded
non-deterministic non-explosive finite-horizon smooth
marked point processes that is not in our model class,

but have not shown this in this paper. Another open
question is whether structural consistency results anal-
ogous to ours exist in the the general case where the
data is generated from a point process that is not an
RTGEM. Indeed, it is unclear how best to formal-
ize the concept of structural consistency in this case.
While we only treat finite-horizon processes, other pro-
cesses with limited history are also of interest. For ex-
ample, a process with a binary latent variable can store
a minimal amount of history for arbitrarily long. Re-
sults such as ours that apply to such processes would
be of interest. Finally, stronger consistency results
that give explicit learning rates would also be of in-
terest.
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