Problem Modeling: An Illustration

Eric Monfroy

September 9, 2019

Overview

- What is modeling?
- Converting problems modeled with CSP set constraints into SAT instances
"History" of modeling in constraint programming
- "Constraint Programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it." Eugene Freuder.
- Constraint programming paradigme: One has to focus on WHAT not on HOW.
\Rightarrow The user models her/his problem, the "solver" solves it.
- solver: mechanisms/algorithms for computing solutions of a problem
- solution: a set of values for variables that satisfies the problem, optimizes a criterion, ...

A tentative definition

- No "official" nor "formal" definition (to my knowledge)
- modeling: translating some verbal problem statements into a formal (possibly mathematical) language (possibly understandable by a solver)
- possibly mathematical: arithmetic equations, matrices, ...
- possibly understandable by a solver: that can be the input of a solver

How to model

- notion of variables
- notion of types of variables
- notion of relations (constraints) between variables

A simple example

The n-queen problem: place n chess queens on an $n \times n$ chessboard so that no two queens threaten each other.

- a verbal problem statement
- a description of the problem
- some implicit knowledge:
- chessboard?
- a queen can move?
- possible moves of a queen?
- threaten or "attack"?
-...

n-queen: a model

- Variables: $x_{i, j}, \quad i, j \in[1 . . n]$
- 1 , if there is a queen in row i, column j
- 0 , otherwise
- Domains (possible values): $\{0,1\}$
- Constraints (requirements):
- one and only one queen per row:

$$
\forall i \in[1 . . n], \quad \sum_{j=1}^{n} x_{i, j}=1
$$

- one and only one queen per column:
$\forall j \in[1 . . n], \quad \sum_{i=1}^{n} x_{i, j}=1$
- 0 or 1 queen per diagonal (4.n - 6 diagonals) $x_{2,1}+x_{1,2} \leqslant 1$
- Note: " $=1$ " can be replaced by " $\leqslant 1$ " adding $\sum_{i=1}^{n}\left(\sum_{j=1}^{n} x_{i, j}\right)=n$

n-queen: a second model

- Variables: $x_{i}, \quad i \in[1 . . n]$ Rows of the chessboard
- Domains (possible values): $\{1, \ldots, n\}$ column index of each queen placed
- Constraints (requirements):
- one and only one queen per column:

$$
\forall i, j \in[1 . . n], i \neq j, \quad x_{i} \neq x_{j}
$$

- one and only one queen per row: already in the formulation of variables and domains
- not 2 queens on a diagonal

$$
\forall i, j \in[1 . . n], i \neq j, \quad x_{i}-x_{j} \neq i-j \text { and } x_{i}-x_{j} \neq j-i
$$

4-queen: a third model

- Variables: $x_{i, j}, \quad i, j \in[1 . .4]$
- true, if there is a queen in row i, column j
- false, otherwise
- Domains (possible values): \{true, false $\}$
- Constraints (requirements):
- one and only one queen per row (first row only):

$$
\begin{aligned}
& x_{1,1} \vee x_{1,2} \vee x_{1,3} \vee x_{1,4} \\
& \wedge\left(\neg x_{1,1} \vee \neg x_{1,2}\right) \wedge\left(\neg x_{1,1} \vee \neg x_{1,3}\right) \wedge\left(\neg x_{1,1} \vee \neg x_{1,4}\right) \\
& \wedge\left(\neg x_{1,2} \vee \neg x_{1,3}\right) \wedge\left(\neg x_{1,2} \vee \neg x_{1,4}\right) \wedge\left(\neg x_{1,3} \vee \neg x_{1,4}\right)
\end{aligned}
$$

- one and only one queen per column: similar, inverting i and j
- diagonals (the main diagonal only) $\left(\neg x_{1,1} \vee \neg x_{2,2}\right) \wedge\left(\neg x_{1,1} \vee \neg x_{3,3}\right) \wedge\left(\neg x_{1,1} \vee \neg x_{4,4}\right)$ $\wedge\left(\neg x_{2,2} \vee \neg x_{3,3}\right) \wedge\left(\neg x_{2,2} \vee \neg x_{4,4}\right) \wedge\left(\neg x_{3,3} \vee \neg x_{4,4}\right)$

n-queen: a 4th model

- Variables: $x_{i}, \quad i \in[1 . . n]$ Rows of the chessboard
- Domains (possible values): $\{1, \ldots, n\}$ column index of each queen placed
- Constraints (requirements):
- one and only one queen per column: alldifferent $\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$
- one and only one queen per row:
already in the formulation of variables and domains
- not 2 queens on a diagonal alldifferent $\left(\left\{x_{i}+i \mid i \in[1 . . n]\right\}\right)$ alldifferent $\left(\left\{x_{i}-i \mid i \in[1 . . n]\right\}\right)$

n-queen: a 5 th model

- Variables: $R_{i}, C_{i}, \quad i \in[1 . . n]$ Rows, Columns, and Cells of the chessboard
- Domains (possible values): $\left\{q_{1}, \ldots, q_{n}\right\}$
- Constraints (requirements):
- one and only one queen per row:
$\forall i \in[1 . . n], \quad R_{i}=\left\{q_{i}\right\}$
- one and only one queen per column:
$\forall i \in[1 . . n], \quad\left|C_{i}\right|=1$ and $\left|\bigcup_{i=1}^{n} C_{i}\right|=n$
- not 2 queens on a diagonal
$\left|\left(R_{1} \cap C_{2}\right) \cup\left(R_{2} \cap C_{1}\right)\right| \leqslant 1$

n-queen: a 6th model

no, I'm tired, and I feel you too!

Another simple example

Cryptarithmetic: a mathematical equation of letters, each one representing a number.

SEND
+ MORE $=$ MONEY

send+more a first model

- Variables: $S, E, N, D, M, O, E, N, Y$ Letters of the equation
- Domains (possible values): $\{0, \ldots, 9\}$ the numbers
- Constraints (requirements):
- first digits are not 0 :
$S \neq 0, M \neq 0$
- the operation:

$$
\begin{aligned}
& S * 1000+E * 100+N * 10+D+M * 1000+O * 100+R * 10+E \\
& = \\
& M * 10000+O * 1000+N * 100+E * 10+Y
\end{aligned}
$$

send+more a first model

- Variables: $S, E, N, D, M, O, E, N, Y, C_{1}, C_{2}, C_{3}, C_{4}$ Letters of the equation
- Domains (possible values):
$S, E, N, D, M, O, E, N, Y \in\{0, \ldots, 9\}$ and
$C_{1}, C_{2}, C_{3}, C_{4} \in\{0, \ldots, 1\}$ the numbers
- Constraints (requirements):
- first digits are not 0 :

$$
S \neq 0, M \neq 0
$$

- the operation, column after column, with carries:

$$
\begin{aligned}
& D+E=10 * C_{1}+Y \\
& N+R+C_{1}=10 * C_{2}+E \\
& E+O+C_{2}=10 * C_{3}+N \\
& S+M+C_{3}=10 * C_{4}+O \\
& C_{4}=M
\end{aligned}
$$

Models

- as many models as wanted
- based or not based on the same type of variables
- based or not based on the same type of constraints
- made or not for a specific solver (model 1 for LP, model 2 for FD CP, model 3 for SAT solver, model 4 for minizinc, model 5 for set constraints, ...)

Motivations

THERE IS NOT A UNIQUE MODEL

- the user is generally more comfortable with a type of modeling
- the user does not have a solver of each type
- for a given problem, the models are not solved as efficiently
- some problems are easier modeled with a union of sub-problems, each one with a different type of modeling
- some models are more readable for some users or for some problems

Thus

- Modeling is crucial
- It is important to let the user decide the type of modeling
- BUT: efficiency (speed, quality of solutions, ...) is also important

Ideas

- Model transformation
- improving a model
- using more efficiently solved constraints
- . . .
- Model conversion
- e.g., from CSP into SAT, from CP into ILP:
- to adapt a model to a given solver
- to let the user models as wanted
- BUT the target depends on the problem and the solvers at disposal
- Robust models
- change a model into an equivalent but more robust one (less sensitive to changes, errors, ...)
- Generic models
- . . .

Examples of Modeling Realizations

Modelers:

- ECLiPSe
- Minizinc
- Essence
- MCSP
- (CP systems)
- ...

Modeling formats (languages):

- AMPL
- XCSP3
- FlatZinc
- . .

Models vs. Instances

Not easy to define:

- model + data $=$ instance
- a model may represent a set of problems (ex: n-queens)
- an instance represents a problem (n -queen with $\mathrm{n}=4$: 4-queen)
- an instance is "flat" while a model may contain "iterations"

