
Modelling Constrained
Optimization Problems!

How can we formally describe a
constrained optimization problem in order

to solve it!

Overview!

•  Different approaches to modelling constrained
optimization problems!

•  Basic modelling with MiniZinc!
–  Structure of a model!
–  Variables!
–  Expressions!
–  Constraints!

•  Advanced modelling with MiniZinc!

Modelling Problems!
•  As constraint programmers we need to create a!

–  conceptual model: abstract the real-world problem to
create a constraint problem which adequately models
the problem and yet can be solved !

–  design model: create a program which solves this
constraint problem!

•  Typically this is an iterative process, requiring
!experimentation with !

–  different techniques!
–  different models!
–  development of problem-specific heuristics!

•  This is a lot to do from scratch, what software can
we use to help with this?!

Main Approaches to Computer
Modelling of Constraint Problems!

•  There are five generic approaches!
–  Traditional language with constraint-solving library!
–  Object-oriented language with high-level constraint solving library!
–  Constraint programming language!
–  Mathematical modelling language!
–  Embedded domain specific language!

•  These vary in !
–  how high-level they are, i.e. closeness to the application vs

closeness to the computer architecture!
–  how expressive they are!

•  In principle, they can all be used with different constraint-
solving techniques but specific tools typically support only
one or two techniques!

Comparative Example!
•  The problem:!
•  A toy manufacturer must determine how many

bicycles, B, and tricycles, T, to make in a 40 hr
week given that!
–  the factory can produce 200 bicycles per hour or 140

tricycles!
–  the profit for a bicycle is $25 and for a tricycle it is $30!
–  no more than 6,000 bicycles and 4,000 tricycles can be

sold in a week !

•  The model:!

€

Maximise 25B + 30T
Subject to
(1/200)B +(1/140)T ≤ 40∧
0 ≤ B ≤ 6000∧0 ≤ T ≤ 4000

MiniZinc!

•  MiniZinc is a new modelling language being
developed by NICTA with Univ of Melb/Monash.!

•  Depending on the kind of model it can be solved
with constraint programming or with MIP
techniques.!

•  It is a subset of the more powerful modelling
language Zinc—first public release 2010.!

A First MiniZinc Model!

var 0.0..6000.0: B;
var 0.0..4000.0: T;

constraint (1.0/200.0)*B+(1.0/140.0)*T <= 40.0;
solve maximize 25.0*B + 30.0*T;
output ["B = ", show(B), "T = ", show(T), "\n"];

€

Maximise 25B + 30T
Subject to
(1/200)B +(1/140)T ≤ 40∧
0 ≤ B ≤ 6000∧0 ≤ T ≤ 4000

A Second MiniZinc Model!
% Colouring Australia using
int: nc = 3;

var 1..nc: wa; var 1..nc: nt;
var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v;
var 1..nc: t;

constraint wa != nt;
constraint wa != sa;
constraint nt != sa;
constraint nt != q;
constraint sa != q;
constraint sa != nsw;
constraint sa != v;
constraint q != nsw;
constraint nsw != v;

solve satisfy;

output ["wa=", show(wa), "\t nt=",
show(nt), "\t sa=", show(sa), "\n",

 "q=", show(q), "\t nsw=", show
(nsw), "\t v=", show(v), "\n",

 "t=", show(t), "\n"];

WA

NT

SA

Q

NSW

V

T

A Second MiniZinc Model!
•  We can run our MiniZinc model as follows!

$ mzn aust.mzn

•  This results in !
wa=1 nt=3 sa=2
q=1 nsw=3 v=1
t=1

•  MiniZinc models must end in .mzn
•  There is also an eclipse IDE for MiniZinc!

Parameters!

In MiniZinc there are two kinds of variables:!
Parameters-These are like variables in a standard

programming language. They must be assigned a
value (but only one).!

They are declared with a type (or a range/set). !
You can use par but this is optional!
The following are logically equivalent!

int: i=3;
par int: i=3;
int: i; i=3;

Decision Variables!
Decision variables-These are like variables in

mathematics. They are declared with a type and
the var keyword. Their value is computed by
MiniZinc so that they satisfy the model.!

Typically they are declared using a range or a set
rather than a type name!

The range or set gives the domain for the variable.!
The following are logically equivalent!
var int: i; constraint i >= 0; constraint i <= 4;
var 0..4: i;
var {0,1,2,3,4}: I;!

Question: what does this mean constraint i = i + 1; !

Types!
Allowed types for variables are!
•  Integer int or range 1..n or set of integers!
•  Floating point number float or range 1.0..f or set

of floats
•  Boolean bool
•  Strings string (but these cannot be decision

variables)!
•  Arrays!
•  Sets!

Instantiations!
Variables have an instantiation which specifies if

they are parameters or decision variables.!
The type + instantiation is called the type-inst.!

!MiniZinc errors are often couched in terms of
mismatched type-insts…!

Strings!
Strings are provided for output!
•  An output item has form!

!output <list of strings>;!
•  String literals are like those in C: enclosed in “ ”
•  They cannot extend across more than one line!
•  Backslash for special characters \n \t etc
•  Built in functions are!

–  show(v)
–  “house’’++”boat” for string concatenation!

Arithmetic Expressions!
!MiniZinc provides the standard arithmetic
operations!
–  Floats: * / + -!
–  Integers: * div mod + -!
!Integer and float literals are like those in C!
!There is no automatic coercion from integers to
floats!
!The builtin int2float(intexp) must be used to
explicitly coerce them!
!The arithmetic relational operators are!

== != > < >= <=!

Data files!
!Here is a simple model about loans: !

!We want this to be generic in the choice of values R, P, I,
B1, ..,B4 . MiniZinc allows parameters and variables to be
initialized in a separate data file!

•  left: borrowing 1000$ at 4% repaying $260!
•  right: borrowing 1000$ at 4% owing nothing at end ! !!

!We can run a MiniZinc model with a data file as follows!
$ mzn –b mip loan.mzn loan1.dzn
!MiniZinc data files must end in .dzn

% variables !
var float: R; % quarterly repayment!
var float: P; % principal initially borrowed!
var 0.0 .. 100.0: I; % interest rate!
% intermediate variables !
var float: B1; % balance after one quarter !
var float: B2; % balance after two quarters !
var float: B3; % balance after three quarters !
var float: B4; % balance at end!

constraint B1 = P * (1.0 + I) –R; !
constraint B2 = B1 * (1.0 + I) - R; !
constraint B3 = B2 * (1.0 + I) - R; !
constraint B4 = B3 * (1.0 + I) - R;!

solve satisfy;!

output …!

I = 0.04; !
P = 1000.0; !
R = 260.0;!

I = 0.04; !
P = 1000.0; !
B4 = 0.0;

Basic Structure of a Model!
A MiniZinc model is a sequence of items!
The order of items does not matter!
The kinds of items are!

–  An inclusion item!
!include <filename (which is a string literal)>;!

–  An output item!
!output <list of string expressions>;!

–  A variable declaration!
–  A variable assignment!
–  A constraint!

!constraint <Boolean expression>;!

Basic Structure of a Model!
The kinds of items (cont.)!

–  A solve item (a model must have exactly one of these)!
solve satisfy;
solve maximize <arith. expression>;
solve minimize <arith. expression>;!

–  Predicate and test items!
–  Annotation items!

•  Identifiers in MiniZinc start with a letter followed
by other letters, underscores or digits!

•  In addition, the underscore `_’ is the name for an
anonymous decision variable!

Exercise!
 We want to bake some cakes for a fete for school. !

(WARNING: please don't use these recipes at home). !
We have 4kg self-raising flour, 6 bananas, 2kg of sugar, 500g of

butter and 500g of cocoa. !
Exercise: Write a MiniZinc model to determine how many of

each sort of cake should we make to maximize the profit
where a chocolate cake sells for $4.50 and a banana cake for
$4.00.!

Banana cake!
250g of self-
raising flour, !
2 mashed
bananas, !
75g sugar and !
100g of butter!

Chocolate cake !
200g cups of
self-raising flour, !
75g of cocoa, !
150g sugar and !
150g of butter. !

Production Planning Example!
A problem with this model is that the recipes and the

available ingredients are hard wired into the
model.!

It is an example of simple kind of production
planning problem in which we wish to !
–  determine how much of each kind of product to make

to maximize the profit where !
–  manufacturing a product consumes varying amounts of

some fixed resources. !
•  We can use a generic MiniZinc model to handle

this kind of problem. !

Example Using Arrays & Sets!
% Number of different products
int: nproducts;
set of int: products = 1..nproducts;

%profit per unit for each product
array[products] of int: profit;

%Number of resources
int: nresources;
set of int: resources = 1..nresources;

%amount of each resource available
array[resources] of int: capacity;

%units of each resource required to produce 1 unit of
product

array[products, resources] of int: consumption;

% bound on number of products
int: mproducts = max (p in products)
 (min (r in resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r]));

% Variables: how much should we make of each product
array[products] of var 0..mproducts: produce;

% Production cannot use more than the available
resources:

constraint forall (r in resources) (
 sum (p in products) (consumption[p, r] *

produce[p]) <= capacity[r]
);

% Maximize profit
solve maximize sum (p in products) (profit[p]*produce[p]);

output [show(produce)];

MiniZinc supports arrays and sets.!

Sets!
Sets are declared by!
 set of type
 They are only allowed to contain integers, floats or Booleans.!
Set expressions:!

Set literals are of form {e1,…,en}!
Integer or float ranges are also sets!
Standard set operators are provided: !

 in, union, intersect, subset, superset, diff, symdiff
The size of the set is given by card!

Some examples:!
 set of int: products = 1..nproducts;
{1,2} union {3,4}

Set variable names, set literals or ranges can be used as types.!

Arrays!
An array can be multi-dimensional. It is declared by!
 array[index_set 1,index_set 2, …,] of type
The index set of an array needs to be !

 an integer range or !
 the name of a set variable that is an integer range.!

The elements in an array can be anything except another array!
They can be decision variables.!
For example!

 array[products, resources] of int: consumption;
 array[products] of var 0..mproducts: produce;

The built-in function length returns the number of elements in a
1-D array!

Arrays (Cont.)!
1-D arrays are initialized using a list!

profit = [400, 450];
capacity = [4000, 6, 2000, 500, 500];

2-D array initialization uses a list with ``|’’ separating rows!
consumption= [| 250, 2, 75, 100, 0,
 | 200, 0, 150, 150, 75 |];

 Arrays of any dimension (well ≤ 3) can be initialized from a list
using the!

arraynd family of functions:!
consumption= array2d(1..2,1..5, [250,2,75,100,0,200,0,150,150,75];

 The concatenation operator ++ can be used with 1-D arrays:!
profit = [400]++[450];

Array & Set Comprehensions!
MiniZinc provides comprehensions (similar to ML) !
A set comprehension has form!

{ expr | generator 1, generator 2, …}
{ expr | generator 1, generator 2, … where bool-expr }

An array comprehension is similar!
[expr | generator 1, generator 2, …]
[expr | generator 1, generator 2, … where bool-expr]

Some examples!
 {i + j | i, j in 1..3 where j < i} = {1 + 2, 1 + 3, 2 + 3} = {3, 4, 5}

Exercise: What does b =?!
set of int: cols = 1..5;
set of int: rows = 1..2;
array [rows,cols] of int: c= [| 250, 2, 75, 100, 0, | 200, 0, 150, 150, 75 |];
b = array2d(cols, rows, [a[j, i] | i in cols, j in rows]);!

Iteration!
!MiniZinc provides a variety of built-in functions for iterating over
a list or set: !
–  Lists of numbers: sum, product, min, max
–  Lists of constraints: forall, exists

 !MiniZinc provides a special syntax for calls to these (and other
generator functions) !
!For example,!

 forall (i, j in 1..10 where i < j) (a[i] != a[j]);

!is equivalent to!
 forall ([a[i] != a[j] | i, j in 1..10 where i < j]);

Data files!
!The simple production model is generic in the choice of
parameter values. MiniZinc allows parameters to be initialized in
a separate data file!

 We can run a MiniZinc model with a data file as follows!
$ mzn prod.mzn cake.dzn
!MiniZinc data files must end in .dzn

% Data file for simple production planning model

nproducts = 2; %banana cakes and chocolate cakes
profit = [400, 450]; %in cents

nresources = 5; %flour, banana, sugar, butter cocoa
capacity = [4000, 6, 2000, 500, 500];
consumption= [| 250, 2, 75, 100, 0,
 | 200, 0, 150, 150, 75 |];

Assertions!
!Defensive programming requires that we check that the data values are valid.!
!The built-in Boolean function assert(boolexp,stringexp) is designed for this.
It returns true if boolexp holds, otherwise prints stringexp and aborts !
!Like any other Boolean expression it can be used in a constraint item!
 For example,!
 int: nresources;

 constraint assert(nresources > 0, "Error: nresources =< 0");

 array[resources] of int: capacity;
 constraint assert(forall(r in resources)(resources[r] >= 0), "Error: negative capacity");

Exercise: Write an expression to ensure consumption is non-negative!
 array[products, resources] of int: consumption;

Assertions for Debugging!
•  You can (ab)use assertions to help debug!
•  int: n = 5;!

!array[1..n] of var 1..n: a;!
!array[1..n] of 1..n: b = [3,5,2,3,1];!

!constraint forall(j in 1..n, i in b[n-j]..b[n-j])(a[j] < i);!
•  Error message!

 error: !
 debug.mzn:5 !
 In constraint. !
 In 'forall' expression. !
 In comprehension. !
 j = 5 !
 In comprehension head. !
 In '..' expression!
 In array access. !
 In index argument 1 !
 Index out of range.!

Assertions for Debugging!
•  You can (ab)use assertions to help debug!
•  int: n = 5;!

!array[1..n] of var 1..n: a;!
!array[1..n] of 1..n: b = [3,5,2,3,1];!

!constraint forall(j in 1..n)(!
! !assert(n-j in 1..n, "b[" ++ show(n-j) ++ "]"));!

•  Error message!
 error: !
 debug.mzn:6 !
 In constraint. !
 In 'forall' expression. !
 In comprehension. !
 j = 5 !
 In comprehension head. !
 In 'assert' expression. !
 Assertion failure: "b[0]"!

Beware out of range errors in
constraints!

•  You can (ab)use assertions to help debug!
•  int: n = 5;!

!array[1..n] of var 1..n: a;!
!array[1..n] of 1..n: b = [3,5,2,3,1];!

!constraint forall(j in 1..n)(a[j] < b[n-j]);!
•  Error message!

 error: !
 debug.mzn:5 !
 In constraint. !
 In 'forall' expression. !
 Model inconsistency detected.!

If-then-else!
•  MiniZinc provides an !

if <boolexp> then <exp> else <exp> endif!
!expression!

•  For example,!
!if y != 0 then x / y else 0 endif!

•  The Boolean expression is not allowed to contain
decision variables, only parameters!

•  In output items the built-in function fix checks that
the value of a decision variable is fixed and
coerces the instantiation from decision variable to
parameter!

Constraints!
•  Constraints are the core of the MiniZinc model!
•  We have seen simple relational expressions but

constraints can be considerably more powerful
than this.!

•  A constraint is allowed to be any Boolean
expression!

•  The Boolean literals are !
true and false !
!and the Boolean operators are !

/\ \/ <- -> <-> not!
•  Global constraints: alldifferent!

Complex Constraint Example!
!Imagine a scheduling problem in which we have a
set of tasks that use the same single resource!

 !Let start[i] and duration[i] give the start time
and duration of task i !
!To ensure that the tasks do not overlap!

constraint forall (i,j in tasks where i != j) (!
 !start[i] + duration[i] <= start[j] \/!
! ! !start[j] + duration[j] <= start[i]);!
! !!

Array Constraints!
Recall that array access is given by a[i]. !
The index i is allowed to be an expression involving decision

variables in which case it is an implicit constraint on the array.!
As an example consider the stable marriage problem. !
We have n (straight) women and n (straight) men. !
Each man has a ranked list of women and vice versa!
We want to find a husband/wife for each women/man s.t all

marriages are stable, i.e., !
–  Whenever m prefers another women o to his wife w, o prefers her

husband to m!
–  Whenever w prefers another man o to her husband m, o prefers his wife

to m!

Stable Marriage Problem!
int: n;!

array[1..n,1..n] of int: rankWomen;!
array[1..n,1..n] of int: rankMen;!

array[1..n] of var 1..n: wife;!
array[1..n] of var 1..n: husband;!

constraint forall (m in 1..n) (husband[wife[m]]=m);!
constraint forall (w in 1..n) (wife[husband[w]]=w);!

Exercise: insert stability constraints here…!

solve satisfy;!

output ["wives= ", show(wife),"\n", "husbands= ", show(husband)];!

Higher-order constraints!

•  The built-in coercion function bool2int allows the modeller
to use so called higher order constraints:!

•  Magic series problem: find a list of numbers S= [s0,…,sn-1]
s.t. si is the number of occurrences of i in S.!

•  A MiniZinc model is!
int: n;!
array[0..n-1] of var 0..n: s;!

constraint!
 forall(i in 0..n-1) (!
 s[i] = sum(j in 0..n-1)(bool2int(s[j]=i)));!

solve satisfy; !

Set Constraints!
•  MiniZinc allows sets over integers to be decision variables!
•  Consider the O/1 knapsack problem!

int: n;!
int: capacity;!

array[1..n] of int: profits;!
array[1..n] of int: weights;!

var set of 1..n: knapsack;!

constraint sum (i in knapsack) (weights[i]) <= capacity;!

solve maximize sum (i in knapsack) (profits[i]) ;!

output [show(knapsack)];!

Set Constraints (Cont.)!
•  But this doesn’t work—we can’t iterate over variable sets!
•  Exercise: Rewrite the example so that it doesn’t iterate

over a var set !

Enumerated Types!

•  Enumerated types are useful to name classes of
object which we will decide about. In reality they
are placeholders for integers!

•  enum people = { bob, ted, carol, alice };!
•  This can be imitated by !
•  set of int: people = 1..4;!
 int: bob = 1;!
 int: ted = 2;!
 int: carol = 3;!
 int: alice = 4;!

!array[people] of string: name = ! ! !
!["bob", "ted", "carol", "alice"];!

How does MiniZinc work!

•  MiniZinc interprets the model and data and spits
out a simpler form of model: FlatZinc!
–  The tool mzn2fzn explicitly does this step.!
–  mzn2fzn file.mzn data.dzn!

•  creates file.fzn!

–  FlatZinc interpreters run FlatZinc files!
•  very simple output (just some variable values)!

–  MiniZinc reads the simple output and calculates the
complex output!

MiniZinc and Mzn!

•  MiniZinc is a standalone minizinc interpreter!
–  older!
–  more stable!
–  fixed to FD solver!

•  Mzn is a script using mzn2fzn/flatzinc!
–  Uses mzn2fzn to convert MiniZinc to FlatZinc!
–  Runs FlatZinc interpreter !
–  Takes output of FlatZinc and pipes to MiniZinc to get

output!
–  Less stable, links to any FlatZinc solver, supported!

Summary!
•  Four main approaches to modelling & solving

constraint problems!
–  Traditional language with constraint-solving library!
–  Object-oriented language with high-level constraint solving library!
–  Constraint programming language!
–  Mathematical modelling language!
–  Embedded domain specific language!

•  We have looked at basic modelling with the mathematical
modelling language MiniZinc in some detail!
–  What is good about MiniZinc?!
–  What is bad?!

•  In the workshop we will use MiniZinc to model some
problems—if you have a laptop please bring it along with
MiniZinc installed.!

Exercise 1: Magic Square!

•  A magic square of side n is an arrangement of the
numbers from 1 to n*n such that each row,
column, and major diagonal all sum to the same
value. !

•  Here is a 3×3 magic square:!
2 7 6!
9 5 1!
4 3 8!

•  Exercise: Write a MiniZinc program to generate a
magic square for size n!

Exercise 2: Task Allocation!

•  We have !
–  a set of tasks, tasks!
–  a set of workers, workers!
–  a set of tasks for each worker that they are qualified to

perform!
–  a cost for each worker!

•  Exercise: Write a MiniZinc program to find the
set of workers which can complete all tasks and
which minimizes the cost!

