Constraint Programming: Local Consistencies

Eric Monfroy

Eric Monfroy

Constraint Programming:[3mm] Local Consistencies

(日) (回) (E) (E) (E)

Objective

Solving constraint over finite domains

- exhaustive search vs. filtering algorithms
- recap about constraint propagation
- incomplete solvers and local consistency notion
- node consistency (NC algorithm)
- arc consistency (algorithms: AC-1, AC-3, AC-4)
- bound consistency

(日) (四) (王) (王) (王)

Finite domains

each set isomorphic to a finite part of \mathbb{N} :

- 1. Set of natural integer that can be represented by a machine
- 2. Booleans : {false, true} (or $\{0,1\})$
- 3. Letters : A, B, C, \ldots
- 4. Set of the members of a team

5. . . .

 \Rightarrow FD = very important to model numerous industrial problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

CSP (reminder)

A constraint satisfaction problem (CSP) is defined by:

- a sequence of variables $X = x_1, \ldots, x_n$ with domains D_1, \ldots, D_n (associated to the variables)
- a set of constraints C_1, \ldots, C_l , each C_i on a sub-sequence Y_i of X

implicitely, the CSP represents the constraint:

$$C_1 \wedge \ldots \wedge C_n \wedge x_1 \in D_1 \wedge \cdots \wedge x_n \in D_n$$

A solution of the CSP is a *n*-tuple $d = (a_1, \ldots, a_n)$ such that:

- $d \in D_1 \times \cdots \times D_n$
- and for each $i, d[Y_i] \in C_i$ $(d[Y_i] \text{ satisfies } C, \text{ or } C(a_{i_1}, \dots, a_{i_l}) \text{ is true})$

Solving CSPs (1)

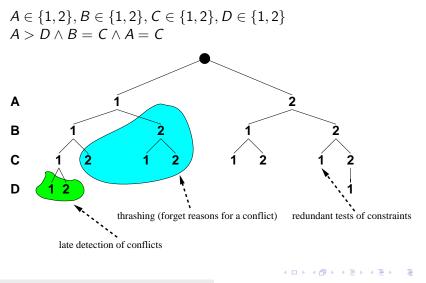
Look back: variables are instanciated, and "instanciated" constraints are tested

- non-incremental version: generate and test
- incremental version: backtracking
- \Uparrow complete and correct
- \Downarrow inefficient and costly

clever alternatives: backjumping, backmarking

(ロ) (同) (E) (E) (E)

Problem of the *look back*



Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

Solving CSPs (2)

basic idea: from a given CSP, find an *equivalent* CSP with smaller domains (smaller search space)

- consider each atomic constraint separately
- filter domains of variables and eliminate inconsistent values

 \Uparrow active use of the constraints. Many values vialoting constraints are removed

 \Downarrow incomplete (complete with split and search)

Constraint solving framework

```
solve(CSP):

while not finished do

pre-process

constraint propagation

if happy

then finished=true

else split

part-of search

endif

endwhile
```

where part-of search consists in calls to the solve function

Remark: part-of search is one of the mechanisms defining search

Constraint propagation

- replace a CSP by a CSP which is:
 - equivalent (same set of solutions)

 - "smaller" (domains are reduced)
 "simpler" (constraints are reduced)
- constraint propagation mechanism: repeatedly reduce domains or constraints
- can be seen as a fixed point of application of reduction functions
 - reduction function to reduce domains or constraints.
 - can be seen as an abstraction of the constraints by reduction functions

Constraint propagation: reducing domains

- Generally:
 - reduce domains using constraint and domains
 - ullet ightarrow reduce the search space
- generic domain reduction:
 - Given a constraint C over x_1, \ldots, x_n with domains D_1, \ldots, D_n
 - select a variable x_i to be reduced
 - delete from *D_i* all values for *x_i* that do not participate in a solution of *C*

Constraint Programming: [3mm] Local Consistencies

Local consistency

- a criterion to stop propagation
- a way to characterize a CSP or a constraint
- why local?
 - generally, unable to obtain global consistency (incomplete solvers without split and search)
 - thus, local means on a sub-set of a CSP
 → usually, local to ONE constraint
 this sub-set is used to reduce domains

(日) (同) (E) (E) (E)

Local consistency (1)

at the beginning: for unary and binary constraints

- unary constraints: node consistency
 - for constraints such as: even(x), y > 5, ...
- binary constraints: arc consistency
 - for constraints such as: x > y + 4, $x \neq y$, ...

(ロ) (同) (目) (日) (日) (の)

Local consistency (2)

then: for *n*-ary constraints and higher/stronger consistencies

- *n*-ary constraints: *hyper-arc consistency*
 - for constraints such as: 3x + y = z, and(x, y, z), ...
- (*m*-)path consistency:
 - using several constraints at a time
- *k*-consistency:
 - every (k 1)-consistent instanciation can be extended to a k-consistent instanciation (k variables)

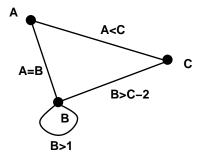
イロト イボト イヨト イヨト 二日

Local consistency (3)

then: consistency on bounds of domains (when domains are too big to consider each value)

- bound consistency (finite domains):
 - for constraints such as: 3.x + y = z with domains $x \in [-10000..9000], y \in [-5000..9000], z \in [100..19000], \dots$
- 2b consistency (real interval, "primitive" constraints)
 - for constraints such as: 3.23 * x * y = z with domains $x \in [-100.1547..9000.0], y \in [-5.12..9.0], z \in [0.99..1.01]$
- box consistency (real interval)
 - for constraints such as: 3.23 * x + y * x = z² + exp(x) with domains x ∈ [-10.147..90.0], y ∈ [-5.1..9.0], z ∈ [0.99..1.01]

Local consistency: intuitive (1) $\{B > 1, A < C, A = B, B > C - 2; A, B, C \in \{1, 2, 3\}\}$ the CSP can be represented by the graph:



how to reduce domains?

Idea: follow arcs of the graph

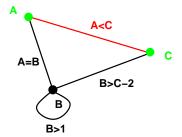
Eric Monfroy

Constraint Programming:[3mm] Local Consistencies

소리가 소문가 소문가 소문가

Local consistency: intuitive (2)

using A < C, A and/or C may be reduced



A and C reduced to $A \in \{1, 2\}$, $C \in \{2, 3\}$ now, reduce B using A = B or B > C - 2

Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

・ロン ・回 と ・ 回 と ・ 回 と

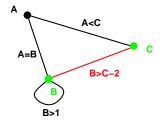
Local consistency: intuitive (3) $\{B > 1, A < C, A = B, B > C - 2; A \in \{1, 2\}, B \in \{1, 2, 3\}, C \in \{2, 3\}\}$ using A = B, A and/or B may be reduced



B reduced to $B \in \{1, 2\}$ A not reduced, so useless to use A < Cnow, reduce C and/or B using B > C - 2, or reduce B using B > 1

Local consistency: intuitive (4)

 $\{B > 1, A < C, A = B, B > C - 2; A \in \{1, 2\}, B \in \{1, 2\}, C \in \{2, 3\}\}$ using B > C - 2, B and/or C may be reduced



B, *C* not reduced

B > 1 can be used, and so on until no domain can be reduced anymore

Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

Node consistency: definition

Definition : an atomic unary constraint *C* over the variable *x* with the domain D_x is node consistent iff: $\forall a \in D_x : a \in C \text{ (or } C(a))$

Remarks:

- a non unary constraint is always considered as node consistent
- a CSP is node consistent if all its constraints are node consistent

Examples:

- $x \in \{4, 6\}$, even(x) is node consistent
- $x \in [2..12], x > 5$ is not node consistent

Node consistency: algorithm

Constraint Programming: [3mm] Local Consistencies

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Arc Consistency: definition

Definition : an atomic binary constraint *C* over the variables *x* and *y* with domains D_x and D_y is arc consistent iff:

- $\forall a \in D_x \exists b \in D_y \text{ s.t. } (a, b) \in C$
- $\forall b \in D_y \exists a \in D_x \text{ s.t. } (a, b) \in C$

Remarks:

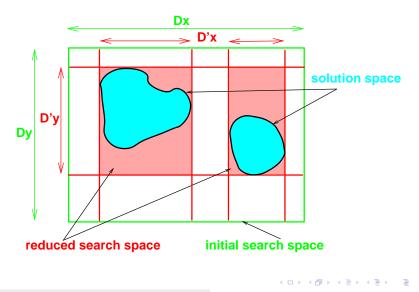
- a non binary constraint is arc consistent
- a CSP is arc consistent iff all its constraints are arc consistent

Examples:

- $x \in \{1,3\}, y \in \{2,4\}, x + y = 5$ is arc consistent
- $x \in \{1,2\}, y \in \{1,7\}, x = y$ is not arc consistent

・ロト ・四ト ・ヨト ・ヨト - ヨ

Arc Consistency: intuition



Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

Arc consistency: AC-1 algorithm

Constraint Programming: [3mm] Local Consistencies

Local consistency: example

Consider the CSP $\{X < Y, Y < Z, Z \leq 2; D_X, D_Y, D_Z \in \{1, 2, 3\}\}$

Computation of node consistency *Rightarrow* 3 removed from D_z

 $\begin{array}{l} \mbox{Computation for arc consistency} \\ \Rightarrow \mbox{inconsistent} \end{array}$

Generally: incompleness. Algorithm returns some domains for the variables. All kept values are not necessarily solution!

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Arc consistency \neq consistency

Consider the CSP
$$\{x = y, x \neq y, D_x \in \{a, b\}, D_y \in \{a, b\}$$

the CSP is arc consistency

 \Rightarrow a and b cannot be reduced using x = y or $x \neq y$

However, the CSP is not consistent \Rightarrow no solution

Constraint Programming: [3mm] Local Consistencies

Problems of AC-1

- inefficient
- wake-up constraints when useless
 - no modification of variable domains
- no early detectection of failed CSP
 - two loops with failed CSP

(日) (同) (E) (E) (E)

Idea of AC-3

Idea: wake up constraints when variables have effectively been modified

Mechanism:

- manage a set of constraints to use
- update this set after each reduction attemp
 - add constraints with at least one modified variable
- stop
 - when no more constraint to consider
- failed CSP
 - stop as soon as one domain is empty

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Local consistency: AC-3 algorithm

$$\begin{array}{l} \mathsf{AC-3}(C \equiv C_1, \cdots, C_n, \mathbf{D}) \\ \textbf{begin} \\ \mathcal{S} \leftarrow \{C_1, \cdots, C_n\} \\ \textbf{while} \ (\mathcal{S} \neq \varnothing) \\ \textbf{choose and extract } \mathcal{C} \ \text{from } \mathcal{S} \\ \mathbf{D}' \leftarrow \textbf{revise_arc}(\mathcal{C}, \mathbf{D}) \\ \textbf{if} \ (\mathbf{D}' = \varnothing) \ \textbf{then return}(\varnothing) \ \textbf{endif} \\ \mathcal{S} \leftarrow \mathcal{S} \cup \{C_i \mid \exists x \in \mathsf{var}(C_i) \ \textbf{s.t. } \mathbf{D}'_x \neq \mathbf{D}_x\} \\ \mathbf{D} \leftarrow \mathbf{D}' \\ \textbf{endwhile} \\ \textbf{return}(\mathbf{D}) \\ \textbf{end} \end{array}$$

Revise_arc unchanged

イロト イロト イヨト イヨト 二日

Local consistency: AC-4 algorithm

Possible speed-up for AC-3: to keep in memory for each binary constraints c(x, y) support relations between values of D_x and D_y :

- how many values of D_y support each value of D_x
- what are the values of D_x supported by a particular value of D_y

and vice-versa.

 \Uparrow when a value is removed, we know precisely the changes that are induced, and which constraints to wake-up

 \Downarrow memory space AC-4 : best theoretical complexity... often the worst in pratice

Constraint Programming:[3mm] Local Consistencies

what about *n*-ary constraints for $n \ge 2$?

hyper-arc consistency: a constraint *C* over the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n is *hyper-arc consistent* w.r.t. x_i ($i \in \{1, \ldots, n\}$) iff:

 $\forall a \in D_i, \exists d \in D_1 \times \ldots \times D_n \text{ s.t. } d \in C \text{ and } a = d[x_i]$

Constraint Programming:[3mm] Local Consistencies

Hyper-arc consistency (2)

- a constraint C over x₁,..., x_n with domains D₁,..., D_n is hyper-arc consistent iff c is hyper-arc consistent w.r.t. x_i for all i ∈ {1,...,n}.
- a CSP is hyper-arc consistent iff all its constraints are hyper-arc consistent

(日) (四) (王) (王) (王)

Hyper-arc consistency (3)

Examples: constraints

•
$$x \in \{3, 5, 7\}, y \in \{1, 4\}, z \in \{4, 6, 14\}$$

 $x + 2 * y = z + 1$ is hyper-arc consistent

•
$$x \in \{1, 2, 4\}, y \in \{3, 5\}, z \in \{4, 5\}$$

 $x + y - z = 0$ is not hyper-arc consistent
(not hyper-arc consistent w.r.t. x, e.g., value 4)

Examples: CSP

- { and(x,y,z), or(x,y,1); $x \in \{1\}, y \in \{0,1\}, z \in \{0,1\}\}$ the CSP is hyper-arc consistent
- { and(x,y,z), or(x,y,1); $x \in \{0,1\}, y \in \{0,1\}, z \in \{1\}$ } the CSP is not hyper-arc consistent

Directional arc consistency (1)

Idea: directional propagation

consider an ordering < on variables:

directional arc consistency: a constraint *C* over the variables x, y with domains D_x, D_y is directionally arc consistent w.r.t. < iff:

a CSP is directionally arc consistent w.r.t. < iff all its constraints are

・ロト ・四ト ・ヨト ・ヨト - ヨ

Directional arc consistency (2)

example:

{
$$x < y; x \in [2..7], y \in [3..7]$$
}

- the CSP is not arc consistent
- the CSP is directionally arc consistent w.r.t. y < x
- the CSP is not directionally arc consistent w.r.t. x < y

Constraint Programming: [3mm] Local Consistencies

Limitations of arc/hyper-arc consistency (1)

Problem: determining arc/hyper-arc consistency can be too costly

Example:

 ${x = y + z, 2.x = 4.y; x, y, z \in {1, 2, 8, 12, 34, ..., 110000}}$ domain reduction: each value must be tested!!!

Idea: to relax consistency \Rightarrow test only *bounds*

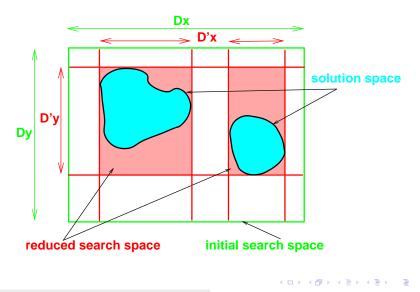
Limitations of arc/hyper-arc consistency (2)

Example: $\{x < y, y < z, z < x; x, y, z \in [1..10000]\}$

domain reduction:

- using the first constraint: $\{x < y, y < z, z < x; x \in [1..9999], y \in [2..10000], z \in [1..10000]\}$
- using the second constraint: $\{x < y, y < z, z < x; x \in [1..9999], y \in [2..9999], z \in [3..10000]\}$
- using the third constraint: $\{x < y, y < z, z < x; x \in [4..9999], y \in [2..9999], z \in [3..9998]\}$
- ... until a domain is empty
- Idea 1: testing bounds does not change the cost
- Idea 2: symbolic computation \rightarrow direct proof (transitivity of <)
- Idea 3: using two constraints at a time \rightarrow path consistency

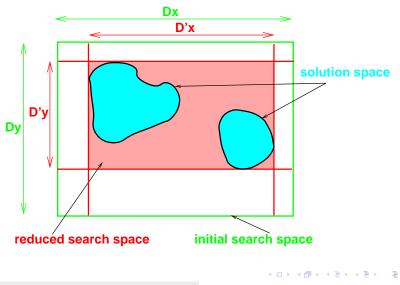
Arc consistency: intuition (recap)



Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

Bound consistency: intuition



Eric Monfroy

Constraint Programming: [3mm] Local Consistencies

Bound consistency (1)

Idea : domains are represented by intervals

bound consistency: a constraint *C* over the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n is bound consistent w.r.t. x_i with domain $D_i = [I, r]$ ($i \in \{1, \ldots, n\}$) iff:

$$\exists d \in D_1 \times \ldots \times D_n$$
 s.t. $d[x_i] = l$ and $d \in C$
and
 $\exists d \in D_1 \times \ldots \times D_n$ s.t. $d[x_i] = r$ and $d \in C$

Constraint Programming: [3mm] Local Consistencies

(ロ) (同) (目) (日) (日) (の)

Bound consistency (2)

- a constraint c is bound consistent iff it is w.r.t. x_i for all $i \in \{1, ..., n\}$.
- a CSP is bound consistent iff all its constraints are bound consistent

Examples :

- x ∈ [3..6], y ∈ [2,3], z ∈ [5,9], x + y = z is bound consistent
- x ∈ [2..3], y ∈ [3..6], z ∈ [1..19], 3 * x = y + z is not bound consistent (not bound consistent w.r.t. z, e.g., value 19)

computing bound consistency for "primitive" constraints: reasonning only on bounds \Rightarrow easy, less complexe

Examples:

•
$$x + y = z$$
 with $D_x = [a..b]$, $D_y = [c..d]$, $D_z = [e, f]$

• $x \leq y$ with $D_x = [a..b], D_y = [c..d]$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

constraint:

 $x \leqslant y$

to get bound consistency:

 $x \leqslant \max D_y$ $y \geqslant \min D_x$

Eric Monfroy

Constraint Programming:[3mm] Local Consistencies

イロト イロト イヨト イヨト 二日

Bound consistency: $x \leq y$

%
$$x \leq y$$

revise_leq $(D_x = [a..b], D_y = [c..d])$
begin
 $D_x \leftarrow [a..\min\{b, d\}]$
 $D_y \leftarrow [\max\{a, c\}..d]$
return (D_x, D_y)
end

Constraint Programming: [3mm] Local Consistencies

Bound consistency: x + y = z

constraint:

$$x + y = z \equiv x = z - y \equiv y = z - x$$

to get bound consistency:

 $\begin{array}{ll} z \geqslant \min D_x + \min D_y & z \leqslant \max D_x + \max D_y \\ x \geqslant \min D_z - \max D_y & x \leqslant \max D_z - \min D_y \\ y \geqslant \min D_z - \max D_x & y \leqslant \max D_z - \min D_x \end{array}$

Eric Monfroy

Constraint Programming:[3mm] Local Consistencies

(日) (同) (E) (E) (E)

Bound consistency: x + y = z

% x+y=z revise_addition($D_x = [a..b], D_y = [c..d], D_z = [e..f]$) begin $D_x \leftarrow D_x \cap [e - d..c - f]$ $D_y \leftarrow D_y \cap [e - b..f - a]$ $D_z \leftarrow D_z \cap [a + c..b + d]$ return(D_x, D_y, D_z) end

$Combination \; \mathsf{BT}/\mathsf{AC}$

solvers using only local consistency: incomplete realizing a complete solver \Rightarrow combination with backtracking

Look ahead: instanciation of some variables with filtering of domains

⇒ forward checking, partial look-ahead, full look-ahead

 \Uparrow no exploration of branches trivialy without solution \Downarrow more work after each instanciation