
Constraint Programming:

Local Consistencies

Eric Monfroy

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Objective

Solving constraint over finite domains

• exhaustive search vs. filtering algorithms

• recap about constraint propagation

• incomplete solvers and local consistency notion

• node consistency (NC algorithm)

• arc consistency (algorithms: AC-1, AC-3, AC-4)

• bound consistency

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Finite domains

each set isomorphic to a finite part of N:

1. Set of natural integer that can be represented by a machine

2. Booleans : {false, true} (or {0, 1})
3. Letters : A,B,C , . . .

4. Set of the members of a team

5. . . .

⇒ FD = very important to model numerous industrial problems

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

CSP (reminder)

A constraint satisfaction problem (CSP) is defined by:

• a sequence of variables X = x1, . . . , xn with domains
D1, . . . ,Dn (associated to the variables)

• a set of constraints C1, . . . ,Cl , each Ci on a sub-sequence Yi

of X

implicitely, the CSP represents the constraint:

C1 ∧ . . . ∧ Cn ∧ x1 ∈ D1 ∧ · · · ∧ xn ∈ Dn

A solution of the CSP is a n-tuple d = (a1, . . . , an) such that:

• d ∈ D1 × · · · × Dn

• and for each i , d [Yi] ∈ Ci

(d [Yi] satisfies C , or C (ai1 , . . . , ail) is true)

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Solving CSPs (1)

Look back: variables are instanciated, and “instanciated”
constraints are tested

• non-incremental version: generate and test

• incremental version: backtracking

⇑ complete and correct

⇓ inefficient and costly

clever alternatives: backjumping, backmarking

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Problem of the look back

A ∈ {1, 2},B ∈ {1, 2},C ∈ {1, 2},D ∈ {1, 2}
A > D ∧ B = C ∧ A = C

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1

1 2

A

B

C

D

redundant tests of constraints

late detection of conflicts

thrashing (forget reasons for a conflict)

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Solving CSPs (2)

basic idea: from a given CSP, find an equivalent CSP with smaller
domains (smaller search space)

• consider each atomic constraint separately

• filter domains of variables and eliminate inconsistent values

⇑ active use of the constraints. Many values vialoting constraints
are removed

⇓ incomplete (complete with split and search)

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Constraint solving framework

solve(CSP):
while not finished do

pre-process
constraint propagation
if happy

then finished=true
else split

part-of search
endif

endwhile

where part-of search consists in calls to the solve function

Remark: part-of search is one of the mechanisms defining search

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Constraint propagation

• replace a CSP by a CSP which is:
• equivalent (same set of solutions)
• “smaller” (domains are reduced)
• “simpler” (constraints are reduced)

• constraint propagation mechanism:
repeatedly reduce domains or constraints

• can be seen as a fixed point of application of reduction
functions

• reduction function to reduce domains or constraints
• can be seen as an abstraction of the constraints by reduction

functions

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Constraint propagation: reducing domains

• Generally:
• reduce domains using constraint and domains
• → reduce the search space

• generic domain reduction:
• Given a constraint C over x1, . . . , xn with domains D1, . . . ,Dn

• select a variable xi to be reduced
• delete from Di all values for xi that do not participate in a

solution of C

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency

• a criterion to stop propagation

• a way to characterize a CSP or a constraint

• why local?
• generally, unable to obtain global consistency

(incomplete solvers without split and search)

• thus, local means on a sub-set of a CSP
→ usually, local to ONE constraint
this sub-set is used to reduce domains

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency (1)

at the beginning: for unary and binary constraints

• unary constraints: node consistency
• for constraints such as: even(x), y > 5, . . .

• binary constraints: arc consistency
• for constraints such as: x > y + 4, x 6= y , . . .

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency (2)

then: for n-ary constraints and higher/stronger consistencies

• n-ary constraints: hyper-arc consistency
• for constraints such as: 3.x + y = z , and(x , y , z), . . .

• (m-)path consistency:
• using several constraints at a time

• k-consistency:
• every (k − 1)-consistent instanciation can be extended to a

k-consistent instanciation (k variables)

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency (3)

then: consistency on bounds of domains
(when domains are too big to consider each value)

• bound consistency (finite domains):
• for constraints such as: 3.x + y = z with domains

x ∈ [−10000..9000], y ∈ [−5000..9000], z ∈ [100..19000], . . .

• 2b consistency (real interval, “primitive” constraints)
• for constraints such as: 3.23 ∗ x ∗ y = z with domains

x ∈ [−100.1547..9000.0], y ∈ [−5.12..9.0], z ∈ [0.99..1.01]

• box consistency (real interval)
• for constraints such as: 3.23 ∗ x + y ∗ x = z2 + exp(x) with

domains x ∈ [−10.147..90.0], y ∈ [−5.1..9.0], z ∈ [0.99..1.01]

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: intuitive (1)
{B > 1,A < C ,A = B,B > C − 2; A,B,C ∈ {1, 2, 3}}

the CSP can be represented by the graph:

A

C

B

A<C

A=B

B>1

B>C−2

how to reduce domains?

Idea: follow arcs of the graph

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: intuitive (2)

using A < C , A and/or C may be reduced

B>C−2

B>1

A

C

B

A<C

A=B

A and C reduced to A ∈ {1, 2}, C ∈ {2, 3}

now, reduce B using A = B or B > C − 2

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: intuitive (3)
{B > 1,A < C ,A = B,B > C − 2; A ∈ {1, 2},B ∈ {1, 2, 3},C ∈ {2, 3}}

using A = B, A and/or B may be reduced

B>C−2

A=B

B>1

A

C

B

A<C

B reduced to B ∈ {1, 2}

A not reduced, so useless to use A < C

now, reduce C and/or B using B > C − 2, or reduce B using
B > 1

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: intuitive (4)

{B > 1,A < C ,A = B,B > C − 2; A ∈ {1, 2},B ∈ {1, 2},C ∈ {2, 3}}

using B > C − 2, B and/or C may be reduced

B>C−2

A<C

A=B

B>1

A

C

B

B, C not reduced

B > 1 can be used,
and so on until no domain can be reduced anymore

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Node consistency: definition

Definition : an atomic unary constraint C over the variable x with the
domain Dx is node consistent iff:

∀a ∈ Dx : a ∈ C (or C (a))
Remarks:

• a non unary constraint is always considered as node consistent

• a CSP is node consistent if all its constraints are node consistent

Examples:

• x ∈ {4, 6}, even(x) is node consistent

• x ∈ [2..12], x > 5 is not node consistent

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Node consistency: algorithm

node consistency(C ,D)
begin

let C ≡ C1, · · · ,Cn
for i ← 1 to n do

D ← revise node(Ci ,D)
endfor
return(D)

end

revise node(C ,D)
begin

if (|var(C)| == 1) then
{x} ← var(C)
Dx ← {d ∈ Dx | d ∈ C}

endif
return(D)

end

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Arc Consistency: definition

Definition : an atomic binary constraint C over the variables x
and y with domains Dx and Dy is arc consistent iff:

• ∀a ∈ Dx∃b ∈ Dy s.t. (a, b) ∈ C

• ∀b ∈ Dy∃a ∈ Dx s.t. (a, b) ∈ C

Remarks:
• a non binary constraint is arc consistent

• a CSP is arc consistent iff all its constraints are arc consistent

Examples:
• x ∈ {1, 3}, y ∈ {2, 4}, x + y = 5 is arc consistent

• x ∈ {1, 2}, y ∈ {1, 7}, x = y is not arc consistent

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Arc Consistency: intuition

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Arc consistency: AC-1 algorithm

AC-1(C ,D)
begin

let C ≡ C1, · · · ,Cn
repeat

D′ ← D
for i ← 1 to n do

D← revise arc(Ci ,D)
endfor

until(D′ = D)
return(D)

end

revise arc(C ,D)
begin

if (|var(C)| == 2) then
{x , y} ← var(C)
Dx ← {a ∈ Dx |

∃b ∈ Dy : (a, b) ∈ C}
Dy ← {b ∈ Dy |

∃a ∈ Dx : (a, b) ∈ C}
endif
return(D)

end

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: example

Consider the CSP
{X < Y ,Y < Z ,Z 6 2; DX ,DY ,DZ ∈ {1, 2, 3}}

Computation of node consistency
Rightarrow 3 removed from Dz

Computation for arc consistency
⇒ inconsistent

Generally: incompleness. Algorithm returns some domains for the
variables. All kept values are not necessarily solution!

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Arc consistency 6= consistency

Consider the CSP
{x = y , x 6= y ,Dx ∈ {a, b},Dy ∈ {a, b}

the CSP is arc consistency
⇒ a and b cannot be reduced using x = y or x 6= y

However, the CSP is not consistent
⇒ no solution

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Problems of AC-1

• inefficient

• wake-up constraints when useless
• no modification of variable domains

• no early detectection of failed CSP
• two loops with failed CSP

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Idea of AC-3

Idea: wake up constraints when variables have effectively
been modified

Mechanism:

• manage a set of constraints to use

• update this set after each reduction attemp
• add constraints with at least one modified variable

• stop
• when no more constraint to consider

• failed CSP
• stop as soon as one domain is empty

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: AC-3 algorithm

AC-3(C ≡ C1, · · · ,Cn,D)
begin
S ← {C1, · · · ,Cn}
while (S 6= ∅)

choose and extract C from S
D′ ← revise arc(C ,D)
if (D′ = ∅) then return(∅) endif
S ← S ∪ {Ci | ∃x ∈ var(Ci) s.t. D′

x 6= Dx}
D← D′

endwhile
return(D)

end

Revise arc unchanged

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Local consistency: AC-4 algorithm

Possible speed-up for AC-3: to keep in memory for each binary constraints
c(x , y) support relations between values of Dx and Dy :

• how many values of Dy support each value of Dx

• what are the values of Dx supported by a particular value of Dy

and vice-versa.

⇑ when a value is removed, we know precisely the changes that are induced,
and which constraints to wake-up

⇓ memory space
AC-4 : best theoretical complexity. . . often the worst in pratice

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Hyper-arc consistency (1)

what about n-ary constraints for n ¿ 2 ?

hyper-arc consistency: a constraint C over the variables
x1, . . . , xn with domains D1, . . . ,Dn is hyper-arc consistent w.r.t.
xi (i ∈ {1, . . . , n}) iff:

∀a ∈ Di , ∃d ∈ D1 × . . .× Dn s.t. d ∈ C and a = d [xi]

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Hyper-arc consistency (2)

• a constraint C over x1, . . . , xn with domains D1, . . . ,Dn is
hyper-arc consistent iff c is hyper-arc consistent w.r.t. xi for
all i ∈ {1, . . . , n}.

• a CSP is hyper-arc consistent iff all its constraints are
hyper-arc consistent

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Hyper-arc consistency (3)

Examples: constraints

• x ∈ {3, 5, 7}, y ∈ {1, 4}, z ∈ {4, 6, 14}
x + 2 ∗ y = z + 1 is hyper-arc consistent

• x ∈ {1, 2, 4}, y ∈ {3, 5}, z ∈ {4, 5}
x + y − z = 0 is not hyper-arc consistent
(not hyper-arc consistent w.r.t. x , e.g., value 4)

Examples: CSP

• { and(x,y,z), or(x,y,1); x ∈ {1}, y ∈ {0, 1}, z ∈ {0, 1}}
the CSP is hyper-arc consistent

• { and(x,y,z), or(x,y,1); x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {1}}
the CSP is not hyper-arc consistent

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Directional arc consistency (1)

Idea: directional propagation

consider an ordering < on variables:

directional arc consistency: a constraint C over the variables x , y
with domains Dx ,Dy is directionally arc consistent w.r.t. < iff:

• if x < y :
∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C

• if y < x :
∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C

a CSP is directionally arc consistent w.r.t. < iff all its constraints are

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Directional arc consistency (2)

example:
{x < y ; x ∈ [2..7], y ∈ [3..7]}

• the CSP is not arc consistent

• the CSP is directionally arc consistent w.r.t. y < x

• the CSP is not directionally arc consistent w.r.t. x < y

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Limitations of arc/hyper-arc consistency (1)

Problem: determining arc/hyper-arc consistency can be too costly

Example:
{x = y + z , 2.x = 4.y ; x , y , z ∈ {1, 2, 8, 12, 34, . . . , 110000}}
domain reduction: each value must be tested!!!

Idea: to relax consistency ⇒ test only bounds

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Limitations of arc/hyper-arc consistency (2)

Example: {x < y , y < z , z < x ; x , y , z ∈ [1..10000]}

domain reduction:

• using the first constraint:
{x < y , y < z , z < x ; x ∈ [1..9999], y ∈ [2..10000], z ∈ [1..10000]}

• using the second constraint:
{x < y , y < z , z < x ; x ∈ [1..9999], y ∈ [2..9999], z ∈ [3..10000]}

• using the third constraint:
{x < y , y < z , z < x ; x ∈ [4..9999], y ∈ [2..9999], z ∈ [3..9998]}

• . . . until a domain is empty

Idea 1: testing bounds does not change the cost
Idea 2: symbolic computation → direct proof (transitivity of <)
Idea 3: using two constraints at a time → path consistency

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Arc consistency: intuition (recap)

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency: intuition

D’x
Dx

reduced search space initial search space

D’y
Dy

solution space

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency (1)

Idea : domains are represented by intervals

bound consistency: a constraint C over the variables x1, . . . , xn
with domains D1, . . . ,Dn is bound consistent w.r.t. xi with domain
Di = [l , r] (i ∈ {1, . . . , n}) iff:

∃d ∈ D1 × . . .× Dn s.t. d [xi] = l and d ∈ C
and

∃d ∈ D1 × . . .× Dn s.t. d [xi] = r and d ∈ C

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency (2)

• a constraint c is bound consistent iff it is w.r.t. xi for all
i ∈ {1, . . . , n}.

• a CSP is bound consistent iff all its constraints are bound
consistent

Examples :

• x ∈ [3..6], y ∈ [2, 3], z ∈ [5, 9], x + y = z
is bound consistent

• x ∈ [2..3], y ∈ [3..6], z ∈ [1..19], 3 ∗ x = y + z
is not bound consistent
(not bound consistent w.r.t. z , e.g., value 19)

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency (3)

computing bound consistency for “primitive” constraints:
reasonning only on bounds
⇒ easy, less complexe

Examples:

• x + y = z with Dx = [a..b], Dy = [c ..d], Dz = [e, f]

• x 6 y with Dx = [a..b], Dy = [c ..d]

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency: x 6 y

constraint:

x 6 y

to get bound consistency:

x 6 maxDy

y > minDx

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency: x 6 y

% x 6 y

revise leq(Dx = [a..b],Dy = [c ..d])
begin

Dx ← [a..min{b, d}]
Dy ← [max{a, c}..d]
return(Dx ,Dy)

end

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency: x + y = z

constraint:

x + y = z ≡ x = z − y ≡ y = z − x

to get bound consistency:

z > minDx + minDy z 6 maxDx + maxDy

x > minDz −maxDy x 6 maxDz −minDy

y > minDz −maxDx y 6 maxDz −minDx

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Bound consistency: x + y = z

% x+y=z

revise addition(Dx = [a..b],Dy = [c ..d],Dz = [e..f])
begin

Dx ← Dx ∩ [e − d ..c − f]
Dy ← Dy ∩ [e − b..f − a]
Dz ← Dz ∩ [a + c ..b + d]
return(Dx ,Dy ,Dz)

end

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

Combination BT/AC

solvers using only local consistency: incomplete
realizing a complete solver ⇒ combination with backtracking

Look ahead: instanciation of some variables with filtering of
domains
⇒ forward checking, partial look-ahead, full look-ahead

⇑ no exploration of branches trivialy without solution

⇓ more work after each instanciation

Eric Monfroy Constraint Programming:[3mm] Local Consistencies

	Intuitive approach to local consistencies
	Local consistencies: definition

