(propositional) SAT(isfiability)

(propositional) SAT(isfiability)

<ロ> (四) (四) (三) (三) (三) (三)

Overview

- Boolean formulas
- modeling
- solving
- the Sudoku problem

(ロ) (四) (E) (E) (E)

More details

• http://www.cril.univ-artois.fr/~sais/mastersia.html

(propositional) SAT(isfiability)

・ロト ・ 日 ・ モー・ ・ モー・ うへで

Boolean formulas

- \perp , \top are formulas
- a propositional variable (atom) A_i is a formula
- if ϕ_1 and ϕ_2 are formulas, then $\neg \phi_1$, $\phi_1 \land \phi_2$, $\phi_1 \lor \phi_2$, $\phi_1 \rightarrow \phi_2$, $\phi_1 \leftrightarrow \phi_2$
- literal: a propositional variable A_i (positive literal) or its negation ¬A_i (negative literal)
- $Atom(\phi)$: set of variables A_i of ϕ
- formulas can be represented by trees or DAGs

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Complexity

- the problem of deciding the satisfiability of a Boolean formula (SAT) is NP-complete (Cook'71)
- most important problems in logic (validity, deduction, equivalence, ...) can be reduce to SAT, and they are (co) NP-complete

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Disjunctive normal form (CNF)

 φ is in CNF (clausal) iff φ is a conjunction of disjunctions of literals:

- $\bigvee_{j_i \in J_i} A_{j_i}$ is a clause
- CNF is better handled by algorithm
- example: $\phi = (\neg a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor b \lor c \lor)$
- every φ can be converted into an equivalent CNF(φ) (can lead to an exponential explosion of the formula)

イロト (部) (日) (日) (日) (日)

Modeling a problem: detecting breakdowns of a vehicle

breakdowns:

- *p*₁: no more water
- p2: no more oil
- p_3 : belt is broken
- *p*₄: current rectifier is cut
- *p*₅: battery is empty
- *p*₆: battery has a short-circuit
- p₇: fuse melt

utilities

- *u*₁: coil is powered
- u₂: secondary circuits are powered
- u_3 : there is a short circuit

clues

- i_1 : temperature light is red
- *i*₂: charge is positive
- i_3 : oil light is red
- i_4 : revolution counter is positive

(ロ) (同) (E) (E) (E)

- *i*₅: engine is running
- *i*₆: lights work

Modeling a problem: detecting breakdowns of a vehicle

- if the temperature light is red, then, there is no more water or no more oil or the belt is broken, and secondary circuits are powered i₁ → ((p₁ ∨ p₂ ∨ p₃) ∧ u₂) clauses: (¬i₁ ∨ p₁ ∨ p₂ ∨ p₃) ∧ (¬i₁ ∨ u₂)
- oil light is red iff secondary circuits are powered and there is no more oil or the engine does not run i₃ ↔ u₂ ∧ (p₂ ∨ ¬i₅) clauses:

$$(\neg i_3 \lor u_2) \land (\neg i_3 \lor p_2 \lor \neg i_5) \land (\neg u_2 \lor \neg p_2 \lor i_3) \land (\neg u_2 \lor i_5 \lor i_3)$$

• a battery with short-cut is empty

 $p_6
ightarrow p_5$ clause: $\neg p_6 \lor p_5$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Modeling a problem: detecting breakdowns of a vehicle

• if charge is positive and battery is in short-circuit, then the fuse melt

```
i_2 \wedge p_6) \rightarrow p_7
clause: \neg i_2 \vee \neg p_6 \vee p_7
```

• . . .

Applications of SAT

- Constraint satisfaction
 - scheduling, time-tabling
 - temporal reasoning (Allen 1983)
 - circuit design and verification (VLSI) (Larrabee 1992)

• ...

Reasoning (deduction)

 $\pmb{\Sigma} \models \alpha \text{ iff } \pmb{\Sigma} \land \neg \alpha \text{ is unsatisfiable}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- Other reasoning models in AI
 - diagnostic / abduction
 - belief revision

• ...

- Learning
- Other applications
 - cryptography
 - model checking

• ...

Format: DIMACS

- every line starting with a c is a comment
- a line gives the parameters of the model: p cnf #variables #clauses
- a variable is given by its number n, it negation by -n
- one clause per line, with a 0 at the end
- example: (x₁ ∨ ¬x₂) ∧ (x₂ ∨ x₃) ∧ (x₁ ∨ x₂ ∨ x₃) ∧ ¬x₃ c dummy program p cnf 3 4 1 -2 0 2 3 0 1 2 3 0 -3 0

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Resolution of SAT problems

• numerous solvers

. . .

- Davis-Putnam (DP 1960): based on resolution $(x_1 \lor A) \land (\neg x_1 \lor B) \leftrightarrow (A \lor B)$
- Davis-Putnam-Logeman-Loveland (DPLL 1962): based on backtracking
- modern solvers are based on DPLL with learning
- Some solvers: minisat (sudo apt-get install minisat) , glucose,

(日) (四) (王) (王) (王)

Classification of solvers

complete

. . .

uncomplete

can prove unsat

cannot prove unsat

resolution method of tableaux (truth trees) DPLL procedure BDDs local search simulated annealing taboo search genetic algorithms

(propositional) SAT(isfiability)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

. . .

Modeling Sudoku

(propositional) SAT(isfiability)

<ロ> (四) (四) (三) (三) (三)

The problem

				_	_	_	_	_
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- 81 cell board
- cells with values between 1 and 9
- all values of a raw, of a column, or of a bloc (3×3) are different

The model 1/3

- Encoding cells:
 - Direct encoding / Suport encoding: one variable per value
 - Log encoding : $\lceil log_2n \rceil$ variables to represent *n* values
- Direct Encoding: each cell corresponds to 9 Boolean variables associated to 9 possible values (true if the cell has this value, false otherwise)
 - $x_{i,j,k}$ corresponds to the cell [i,j] taking value k : 729 variables

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The model 2/3

- each cell has one and only one value: at least one value per cell, and at most one
 - at least one: $\bigwedge_i \bigwedge_j \bigvee_k x_{i,j,k} \rightarrow 81$ clauses
 - at most one:

 $\bigwedge_{i} \bigwedge_{j} \bigwedge_{k \neq l} (\neg x_{i,j,k} \lor \neg x_{i,k,l}) \to 9 \times 9 \times (9 \times 8)/2 = 2916$ clauses

(if k and l are integer, can be limited to k > l)

(propositional) SAT(isfiability)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

The model 3/3

- All the values of a raw are different (alldiff) :
 - $\bigwedge_{i} \bigwedge_{k} \bigwedge_{\substack{j,l \ j \neq l}} (\neg x_{i,j,k} \lor \neg x_{i,l,k}) \to 9 \times 9 \times (9 \times 8/2) = 2916$ clauses (if j and l are integer, can be limited to j > l)
- idem for columns and blocs
- cells with given value: unitary clause x_{i,j,val}

イロト (部) (日) (日) (日) (日)