Feuille de travaux dirigés $n^{o} 1$ Constraint Programming

Exercice 1.1

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9 . The sum of these multiples is 23 . Propose a CSP to find the sum of all the multiplesof 3 or 5 below 1000 .

Exercice 1.2

Consider a 111 by 111 binary matrix. The goal is to put 11 ones in each row in such a way that each column has 11 ones, and each pair of rows must have exactly 1 one in the same column. Propose a CSP to solve this problem.

Exercice 1.3

These problems are said to have many practical applications including sensor placements for x-ray crystallography and radio astronomy. A Golomb ruler may be defined as a set of m integers $0=a_{1}<a_{2}<\ldots<a_{m}$ such that the $m .(m-1) / 2$ differences $a_{j}-a_{i}, 1 \leq i<j \leq m$ are distinct. Such a ruler is said to contain m marks and is of length a_{m}. The objective is to find optimal (minimum length) or near optimal rulers. Note that a symmetry can be removed by adding the constraint that $a_{2}-a_{1}<a_{m}-a_{m-1}$, the first difference is less than the last.
There is no requirement that a Golomb ruler measures all distances up to its length - the only requirement is that each distance is only measured in one way. However, if a ruler does measure all distances, it is classified as a perfect Golomb ruler. For example, $0,1,3,6$ is not a Golomb ruler while $0,1,4,6$ is one.
There exist several interesting generalizations of the problem which have received attention like modular Golomb rulers (differences are all distinct mod a given base), disjoint Golomb rulers, Golomb rectangles (the 2-dimensional generalization of Golomb rulers), and difference triangle sets (sets of rulers with no common difference).
For a related problem, please see Costas Arrays.

