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Email: {lucas.falcao, fernando.lima, lucas.goncalves, joao.pordeus, javam.machado}@lsbd.ufc.br

Abstract—Predicting failure in Hard Disk Drives (HDD) is
of fundamental importance for data loss avoidance as well as
to lower the downtime costs of a system. As a consequence,
an increasing effort may be observed from both universities
and industry to find suitable failure prediction methods. Despite
the encouraging performances achieved by various methods one
important aspect that shall be noticed is the lack of data available
to build reliable models. Considering the HDD failure prediction
task, this problem arises with the numerous HDD models. To
overcome such problem, transfer learning strategies offer a valid
alternative since it can be used to transfer learning from HDD
model with enough data to build failure prediction methods for
HDD models with lack of data. In this work we evaluate several
transfer learning strategies in the task of HDD failure prediction.
Additionally we propose a new strategy to build information
sources based on the clustering of similar HDD models. This
approach may be a valid alternative when no HDD model has
enough data to generate a reliable model. Results showed that
all transfer learning scenarios can improve the performance of
HDDs failure prediction methods, mainly for HDDs with very
limited data. Moreover, the clustering-based information source
also results in performance gains in all transfer methods and
HDD models tested.

I. INTRODUCTION

Being able to predict failures in Hard Disk Drives (HDD)

has been one of the most pursued goals of HDD manufac-

turers in recent years. Currently, most HDDs are equipped

with a monitoring system named Self-Monitoring, Analysis
and Reporting Technology (SMART). The SMART consists

in a computational system that monitors and collects data

from the device and detect anomalies, commonly through a

simple threshold based approach, which results in low Failure

Detection Rates (FDR), ranging from 3% to 10% [1].
According to Vachtsevanos et al. [2], the term failure

prognostics is often used to characterize two different tasks:

incipient failure detection and Remaining Useful Life (RUL)

estimation. In the former, a method is designed to detect an

anomalous behavior of the system under study. This anomaly

may indicate that an incipient failure occurred and although

the system is still working, it will fail in a near future. Incipient

failure detection methods for HDDs are presented in [3], [4],

[5] and [6]. The latter consists of estimating the remaining time

until the system stops working, the RUL. Usually this step is

started after an anomaly is detected. Previous works on RUL

estimation in HDDs are less frequent but can be found in [7]

and [8].

An important aspect that shall be noticed when designing

HDD failure prediction methods is the great variety of HDD

models. It is expected that HDD from different manufacturers

with different features (capacity, speed, size ...) may have sev-

eral damage progression patterns. Hence, it may be necessary

to build different prediction methods or adapt a baseline model

to work for other HDDs. In this scenario, Transfer Learning

(TL) methods are a possible alternative.

Transfer learning algorithms aim to alleviate data require-

ments of a task by leveraging data from related tasks [9]. Such

methods have been successfully applied in various domains

like natural language processing [10], image processing [11]

and wireless communications [12]. In this paper, we evaluate

various transfer learning strategies for the task of HDD failure

prediction. HDD models with large amounts of data are used

as sources and the generated knowledge is used to improve

the performance of target models, from HDDs with limited

data available. We used the Bayesian Network (BN) failure

prediction method proposed in [7] as the baseline method.

Additionally we propose the use of data from similar HDD’s

clusters as information source for transfer learning. This

approach may be a valid alternative when no HDD model

has enough data to generate a reliable model.

Results showed that all transfer learning approaches can

improve the performance of HDDs failure prediction methods,

mainly for HDDs with very limited data. Moreover, the

clustering-based information source proposed also results in

performance gains in all transfer methods and HDD models

tested.

II. RELATED WORK

The task of HDD failure prediction has been addressed in

many recent works. In [13], the authors designed a binary

classification problem, where a given HDD was classified as

normal or faulty using a Support Vector Machine (SVM).

Wang et al. [5] achieved better results by modelling the prob-

lem as an anomaly detection task, where a statistical model is

built using only fault-free HDDs. A faulty HDD is detected

when its SMART features are significantly different from this

statistical model. Further improvements were obtained in [3]

and [4] where the authors used semi-parametric methods to

build the statistical model of healthy HDDs and nonparametric
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statistics to quantify the difference between a given HDD and

the statistical model.

Considering the task of RUL estimation, two recent papers

were proposed in this topic. In Xu et al. [8], the authors used

a Recurrent Neural Network (RNN) to classify HDDs in six

health states according to their RUL. The RNN model inferred

the health state of each HDD given its SMART features. The

classification was conducted in datasets comprising the final

working month of each HDD. Similarly, in [7] the authors also

classified HDDs in health states according to their SMART

attributes. However, the predictions were performed for longer

time horizons. A BN based model was designed to infer

HDD’s health states up to two years before the failure.

As can be noticed, no previous work addressed the problem

of reduced number of examples to build a RUL estimation

model. In our study, we used the model proposed in [7] as

a baseline RUL estimation method and tested several transfer

learning strategies to handle this problem. Additionally, we

proposed a novel way to build a source dataset for transfer

learning in HDDs.

III. THEORETICAL BACKGROUND

A. Bayesian Networks

A Bayesian Network (BN) [14] is a probabilistic graphical

model that relates a set of random variables according to their

conditional dependencies. A BN models the possible relations

of cause and consequence of a given phenomenon from series

of observations. Formally, a BN is a pair B = (G,Θ) such that

G = (X,E) is a directed acyclic graph whose set of vertices

X = {X1, X2, . . . , Xn} represents the random variables and

the set of edges E represents the conditional dependencies

between the variables represented by X . The dependencies

are defined by the set of probability functions Θ. This set

contains the parameter θxi|πi
= P (xi|πi) for each xi ∈ Xi

conditioned by πi, that is, the set of parameters for Xi. The

following equation presents the joint distribution defined by a

BN over the set of random variables:

P (X1, . . . , Xn) =
n∏

i=1

P (xi|πi) (1)

In its basic formulation, the BN is built upon probabilities

estimated over discrete variables. However, in various applica-

tions only continuous variables are available. In such situations

it is possible to use any discretization method such as the vari-

ant of the Minimum Description Length Principle (MDLP),

proposed in [15], that considers a discretization based on a

minimization heuristic entropy. The method proposed in [7]

uses the entropy of the labels of classes to select a separation

threshold of attributes, minimizing the entropy. The algorithm

is then recursively applied to both fragments resulting from

the separation.

B. Transfer Learning for Bayesian Networks

Transfer Learning (TL) aims to construct a model for a

target task from data referring to this task and other related

tasks, called source tasks. In this way, we can build more

precise models from the enrichment of the dataset or model

of the target task. In the case of Bayesian Networks, several

transfer learning methods have been proposed and addressed

to main topics: structure and parameter learning [16], [9].

Structure Learning is concerned in finding the best con-

nections for the BN graph. In such problem, the objective

is to identify the relation between variables using either the

data from the target task and source task. Popular methods

and a more detailed literature review can be seen in [17] and

[16]. The task of parameters transfer learning in BN consists

of building the Conditional Probability Tables (CPTs) using

target and source data. In most cases, the structure of the BN

is fixed (known) and is the same for both target and source

tasks.

In this paper we are going to consider only the task of

parameter transfer learning. For such task, three of the most

popular methods are described in [16]. The methods, referred

as Linear Aggregation , Logarithmic Aggregation and Distance

Based Linear Pool are presented below.

Linear Aggregation: the new target probability of variable

X , P (X), is a weighted sum from the target and auxiliary

source tasks, expressed as follows:

P (X) = k

m∑
i=1

wiPi(X) (2)

where Pi(X) represents the conditional probability of the i-th
model involving X , wi is the weight of the i-th probability

and k is a normalization factor.

Logarithmic Aggregation: the new target probability of

variable X , P (X) is a weighted product from the target and

auxiliary source tasks, expressed as follows:

P (X) = k
m∏
i=1

Pi(X)wi (3)

where Pi(X) represents the conditional probability of the i-th
model involving X , wi is the weight of the i-th probability

and k is a normalization factor.

Distance Based Linear Pool: the method considers the

confidence of the probability estimates from the auxiliary

source tasks and their similarity with the target estimates. The

method gives higher weight to the probability estimates that

have higher confidence and are more similar to the target. The

confidence is based on the size of each dataset. The DBLP can

be divided in the following steps, where p = P (X) denotes

each individual probability in the CPTs:

1. Obtain the average probabilities of all datasets according

to a confidence factor:
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p = k

m∑
i=1

(fi.pi) (4)

where fi is the confidence factor for each probability estimate

and k is a normalization factor. The confidence factor depends

on the size of the dataset used to estimate the CPT and is

defined as follows:

fi =

{
1− log(cf )

cf
, if cf ≥ 3

1− cf .log(3)
3 , if cf < 3

(5)

where cf = N
2.T is proportional to the expected error that

depends on T , the number of entries in the CPT, and N is the

number of cases in the dataset.

2. Obtain the minimum (dmin) and maximum (dmax) dis-

tance between the probability of the target and the above

average.

3. Estimate the new conditional probabilities of the target

model as follows:

p′target = (1− ci)ptarget + cip (6)

where the aggregation coefficients ci express how much to

consider from the CPTs of the other models. If the CPTs of the

target network are similar to the average of all the CPTs, then

more weight is given to the average, otherwise, more weight

is given to the target’s CPTs. This is expressed as follows:

ci = (di − dmin)

(
cmax − cmin

dmax − dmin

)
+ cmin (7)

where cmax and cmin are parameters to indicate how close we

want to consider the influence of the other CPTs.

C. K-means for Datasets with Missing Values

Data completeness is one of the major assumptions of the

k-means clustering algorithm. However, in many real world

problems some data may have missing values due to various

reasons. To overcome such problem, several methods have

been proposed and achieved remarkable results [18], [19],

[20].

In [20], the authors had one of the most successful attempts

to solve this problem. The proposed method, named k-POD is

built under the assumptions that each observation of a partially

observed data matrix X is a noisy instance of a known centroid

cluster and that the cluster membership of each observation

is also known. Based on these assumptions, the algorithm

estimates (impute) the missing entries in X through the use

of the corresponding entries from their respective centroid.

After filling the missing entries, the resulting matrix built from

X is a complete data matrix that is then applied to k-means

clustering. Finally, if after performing the k-means clustering,

the resulting clusters assignments or centroids change, the im-

putation step is performed again. This process is repeated until

convergence is achieved (i.e. no changes in the assignments).

Further details of k-POD and its experimental evaluation can

be seen in the original paper.

IV. METHODOLOGY

In this section, we present our methodology for applying

Transfer Learning on HDD Failure Prediction. As explained

above in Section III, with a group of trained Models, we

may improve the performance of a target predictor transferring

information from other Models if they perform a similar task.

Given a Prediction Model that is the target of the transfer

process, there are two issues to solve: how to transfer (which

methods) and from where to transfer (which strategies to

select the sources). To deal with the first issue, we employ

the three Transfer Learning methods for parameter learning

explained in Section III. To address the second one, we

propose strategies based on the size of available dataset for

each disk model to choose the sources. In addition to that,

we also explore a new strategy to improve transfer learning

performance through the clustering of devices according to

their manufacturer specifications. This effectively results in the

creation of a new data source. This approach will be referred

as clustering-based information source.

A. Failure Prediction Model

In this work, the baseline Failure Prediction Model will be

a Bayesian Network with the structure presented in Figure 1.

This structure is part of the BaNHFaP method, proposed in

[7]. The input of the Prediction Model is an observation of

8 SMARTs representing the state of a specific HDD and its

information of Power On Hours (POH), and the output is the

expected Remaining Useful Life (RUL) of the disk.

The SMARTs used are 187, 5, 184, 7, 240, 190, 188 and

197, that can be respectively defined as Reported Uncor-

rectable Errors, Reallocated Sectors Count, End-to-End Error,

Seek Error Rate, Head Flying Hours, Airflow Temperature,

Command Timeout and Current Pending Sector Count. The

RUL is discretized by quarters of the years, so the model is

able to predict in which quarter of the following years the

HDD will fail with some degree of certainty.

We are considering the same structure for all source and

target models. As stated in [7], this structure showed good

results for the same task addressed in this work. The only

difference is that the authors in [7] built a single BN using

data from several HDD models. In our work we aim to build

an individual BN for each HDD model.

B. Transfer Learning Strategies

Once we have a group of trained Prediction Models, which

in our case are Bayesian Networks, we perform the aggre-

gation of information from part of this group to some target.

Because the structure of the BNs is fixed, we are only left with

the possibility of transferring knowledge from the CPTs of this
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187 240 005 184 190 007 188 197

Fig. 1: Representation of the graph structure generated by the

BaNHFaP method.

group of BNs to the target Model. The transfer of knowledge

between CPTs is also known as Parameter Transfer.

Selecting the sources of the Parameter Transfer for a target

disk can be a hard task. A naive approach is to choose all

the Bayesian Networks that were trained with more data than

the target one to be the sources. This simple strategy will be

referred as Strategy 1.

In practice, some HDDs manufacturer models have a lot

more data available than others, either because the disk model

is older or because it is preferred by clients for being more

cost-effective, for example. So another naive approach is to

choose only the disk models whose available data is much

larger than the other ones. For these disks, we expect them to

have more accurate Failure Prediction Models. This strategy

will be called Strategy 2.

C. A Clustering-based Information Source

Choosing all the disks with more available data than the

target disk (Strategy 1) may not be the best option because,

for example, the target disk can have very little data, so a lot

of Prediction Models trained from disks with few data will

also contribute to the final BN. Consequently, some BNs may

disturb more than help in the transfer process, an effect known

as Negative Transfer in the literature [21]. Transfer Learning

methods such as DBLP try to ease this problem weighting the

contribution of the sources according to their dataset sizes,

but it can be bad if the given weights make its contributions

very small or insignificant. This last problem also occurs when

choosing only the disks with more available data (Strategy 2),

because a lot of helpful information from the other disk models

will not be considered.

Trying to prevent these problems, we propose a new way

to consider the influence of the disks with few data, clustering

them and concatenating the data of the resulting clusters to

create new disk models.

We propose to use the manufacturer specification of the

disks as features to execute the clustering process. We expect

that HDDs with similar physical characteristics (specifications)

have a similar degradation over time. The chosen specification

features were capacity (in bytes), Revolution Per Minute

(RPM), Data Transfer Interface, cache size, number of heads

and internal disks, average latency for read/write operations

and the device’s form-factor.

As some disks do not have all those features available, we

must employ a clustering algorithm that supports data entries

with missing values. In our case, we apply the k-POD method

[20] to do so. With the clusters produced by k-POD at hand,

we can create data sources from the union of the data present

in one or more of these clusters

We expect that the Failure Prediction Model trained with

the data from the clustered disks to perform better than the

individual Models, trained for each HDD model that belongs to

the cluster. This way, the contribution of the Transfer Learning

will be more efficient. Moreover, methods that considers the

dataset size, like DBLP, will give more confidence to the

clustered disks than if we would use the members of the cluster

separately.

The Strategy 3 uses the disks with a lot of data, like in

Strategy 2, and also the clustered disks to be our sources in

the Transfer Learning process.

V. EXPERIMENTAL RESULTS

Our experiments were implemented in Python, using the

Pandas 0.19.2 [22] and scikit-learn 0.18.1 [23] packages for

data preprocessing. In addition, we used the pgmpy 0.1.3

[24] library for the construction and evaluation of Bayesian

Networks.

A. Dataset

In our experiments, we used a dataset provided by the Back-

blaze Company [25]. The Backblaze data comprise 59,654,783

daily observations of the state of several disks distributed

among 93 different models collected between 04/10/2013 and

12/31/2016. These observations contain basic data for each

device along with their SMART data. A device is considered

failed when 1) it stops working or 2) it has shown signs that

it will stop soon, such as, for example, its SMART self test

fails.

Each data sample has serial number, model, capacity, label

and 90 performance-monitoring attributes, that are the raw and

normalized values for 45 different SMART stats reported by

the drive. Most drives do not report values for all SMART

attributes, so there are blank fields in every record. Also,

different drives may report different statistics depending on

their model and manufacturer.

From the Backblaze data, we selected the models that have

more than 5 serials and 500 data records. The resulting dataset

comprise 15 models described in Table I. In addition, we

excluded those devices whose serial failed at some point

and reappeared later. Table I shows the number of HDDs

and the number of records for each model. The bold models

were chosen as the targets for the execution of the proposed

Transfer Learning strategies. We chose these three disk models

considering their variety regarding lackness of data.
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HDD Models Number of Serials Data Records

ST320005XXXX 6 511
ST250LT007 7 2744
ST3160316AS 8 2853
ST3160318AS 13 7044
ST32000542AS 13 2038
ST33000651AS 16 3556
ST1500DL003 35 8910
ST4000DX000 35 25658
ST6000DX000 42 10588
ST8000DM002 48 3531
ST320LT007 80 54640
ST31500341AS 102 22251
ST31500541AS 239 63161
ST3000DM001 1012 174474
ST4000DM000 1698 747296

TABLE I: HDD models with significant amount of data.

For the optimization of the Bayesian Networks construction

process, we removed SMART attributes that do not have a

strong impact in the failure prediction. We will use only

the attributes selected in [7], which were the most important

according to a feature selection process based on the Recursive

Feature Elimination [26] using the Random Forest classifier.

The selected attributes were: SMART 187 RAW, SMART

240 RAW, SMART 5 RAW, SMART 184 RAW, SMART

190 RAW, SMART 7 RAW, SMART 188 RAW, SMART

197 RAW that represent respectively Reported Uncorrectable

Errors, Head Flying Hours, Reallocated Sectors Count, End-to-

End error, Temperature Difference from 100, Seek Error Rate,

Command Timeout and Current Pending Sector Count. Most

of the selected attributes are in accordance with the attributes

considered critical by the Backblaze Company.

B. Performance Evaluation

In our experiments we obtained results of all possible

combinations of data source strategies and transfer learning

methods. For each target HDD model, its dataset was splitted

in 70% for training and 30% for testing the performance of the

BNs. For the Linear and Logarithmic Aggregation methods, a

grid search was performed to find the best weights, using a

validation set of 20% from the training data. For the DBLP the

hyperparameters were set as cmin = 0.25 and cmax = 0.75,

as suggested in [16].

We chose target models with different number of records

to verify the impact of such characteristic in our method.

For Strategy 2, we used the disk models ST3000DM001
and ST4000DM000 to be the sources with more data. For

Strategy 3, we made a clustered model source using the disks

models ST320005XXXX, ST32000542AS, ST1500DL003,

ST31500341AS and ST31500541AS.

The performances were assessed by three metrics: error

mean, error median and accuracy. While accuracy is a com-

monly used classification metric, the error consists of the

difference, in quarters of the year, between the classifier

prediction and the disk actual remaining useful life. The error

mean is important since small deviations in the classification

are less severe than high deviations. Consider an example

where the BN predicts that a given HDD has only two months

left but the HDD still works for four months. This error is

clearly less significant to quantify the performance of the

model than a case where the model predicts ten months left for

the same HDD. Although both models wrongly classified the

same sample, the error magnitude is different. The third metric

(error median) was chosen since the median is less sensitive

to outliers. Table II shows the results for all target models,

considering the aforementioned performance metrics.
According to the results, we can see that using any transfer

learning strategy can improve the performance of the target

model. This can be verified by comparing the results of each

combination (source strategy + transfer learning method) to the

“no transfer” approach. Another important aspect to be noticed

is that, as expected, the performance gain is more significant

for datasets with less records.
Comparing the combinations of transfer methods and source

strategies we can verify that Strategy 3 combined with differ-

ent transfer methods achieved the best results for all perfor-

mance criteria on HDD ST250LT007. This is an important

result since ST250LT007 is the HDD with the lowest number

of records and also the one that showed the highest perfor-

mance gain when compared to the “no transfer” strategy.
In ST33000651AS and ST320LT007, we can verify that

different combinations had the best performance. A possible

explanation relies on the fact that these HDDs have more

records and thus transfer learning may have less impact in the

performance of each model. Although several combinations

had the best results, it is noticeable that Strategy 3 either

achieved the best results or had a similar performance to the

best combinations.

VI. CONCLUSION

In this work we evaluated several transfer learning strategies

to the task of failure prediction on Hard Disk Drives. The

strategies tested combine three transfer learning methods and

three approaches for building source datasets.
We used a failure prediction method based on a BN model

and tested three well known transfer learning strategies for

parameter transfer in BNs. In addition to two commonly

used source building approaches, we proposed a new source

building method called clustering-based information source.

In the proposed method, we grouped several HDDs according

to their similarity and built a novel information source for

transfer learning.
On the basis of our experiments we can state that transfer

learning methods can provide performance gains in HDD

failure prediction models. This is even more noticeable for

HDDs with reduced number of records. We also verified

that the proposed source building method led to performance

improvements and can be considered a valid alternative for

transfer learning. Future works may include the investigation

of semi supervised strategies for HDDs failure prediction.
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Results

ST250LT007 ST33000651AS ST320LT007

Transfer Method Source Mean Median Accuracy Mean Median Accuracy Mean Median Accuracy

No transfer - 2.3822 1.7765 49.817% 0.9929 0.5245 29.653% 1.9280 1.4362 25.099%

Linear aggregation
Strategy 1 1.7879 1.4577 47.996% 0.9344 0.7038 43.966% 1.8256 1.5504 24.794%
Strategy 2 1.5973 1.5563 52.003% 0.8458 0.5617 42.469% 1.8214 1.5816 24.119%
Strategy 3 1.4928 1.4570 62.021% 0.8769 0.5315 41.721% 1.8208 1.5407 24.000%

Logarithmic aggregation
Strategy 1 1.8677 1.2816 47.996% 0.9330 0.5386 37.792% 1.8496 1.5057 28.720%
Strategy 2 1.6252 0.9721 50.091% 0.8736 0.5837 45.556% 1.8321 1.5254 26.350%
Strategy 3 1.5563 0.9849 42.896% 0.8620 0.5650 45.556% 1.8250 1.4279 25.721%

Distance based linear pool
Strategy 1 1.6063 1.2528 56.102% 0.9386 0.7084 53.040% 1.7631 1.5487 23.814%
Strategy 2 1.5632 0.9557 52.003% 0.9070 0.5690 65.107% 1.7778 1.5960 22.073%
Strategy 3 1.4207 0.8565 56.102% 0.9103 0.6880 53.133% 1.7554 1.5329 23.556%

TABLE II: Results of the Transfer Learning strategies and methods combinations showing error mean, error median and

accuracy.
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