Méthodes de pondération

Importance des critères et poids des critères

Décideur attribue (souvent) une notion d'importance entre les critères :

- en fonction de ses préférences personnelles
- en fonction de normes (disciplines scientifiques sont plus importantes dans les sections scientifiques, etc.)

Représenter l'importance à accorder aux critères :

- ullet poids wj (pondérations, coefficients) du critère j
- mesure de l'importance relative entre les critères
- telle qu'elle est vue par le décideur

Importance des critères et poids des critères

Information utile:

- matrice de décision \mathcal{M} et vecteur poids $w = (w_1, \dots, w_n)$
- suffisent alors pour résoudre (en principe) le problème du choix (pour une méthode sans information progressive)
- on suppose pour le moment que le vecteur poids est donné

	g_1	g_2	• • •	g_{n-1}	g_n
a_1	$g_1(a_1)$	$g_2(a_1)$	• • •	$g_{n-1}(a_1)$	$g_n(a_1)$
• • •				• • •	• • •
a_m	$g_1(a_m)$	$g_2(a_m)$	• • •	$g_{n-1}(a_m)$	$g_n(a_m)$
	\overline{w}_1	w_2		w_{n-1}	\overline{w}_n

La somme pondérée

Approche courante

Evaluation de $a \in A$:

- $v(a) = \sum_{i=1}^{n} w_i g_i(a)$
- a est meilleure que b si v(a) > v(b)

Utilisation bien connue des étudiants:

- les critères (les matières)
- les poids (coefficients) des matières
- règle de décision : somme ou moyenne pondérée (plus les minima, etc.)

Approche courante

Nombreuses décisions sont réalisées en utilisant des poids :

Moyenne pondérée :

- décider de la réussite/échec à un examen, un concours
- déterminer les poids : instances diverses (enseignants, etc.)

Méthode de score :

- somme pondérée
- fixer un seuil (décider de l'attribution ou non d'un crédit selon que l'on se trouve au dessus ou dessous du seuil)
- déterminer les poids à partir de l'historique (utilisation de techniques d'Extraction des Connaissances à partir des Données et/ou utilisation d'avis d'experts du domaine)

Approche courante

Méthodes:

- sont très souvent "simples"
- donc appliquées par "tout le monde"
- cependant, elles posent de nombreux problèmes (souvent ignorés)

Problèmes:

- notion de compensation entre critères (moyenne, score, etc.)
 - utilisation d'échelles comparables
 - procédure de normalisation (influence sur le résultat final)
- les poids ne sont pas donnés
 - ils influencent la décision de façon cruciale
 - méthodes de détermination des poids

Somme pondérée

Compensation totale des points faibles par les points forts :

	g_1	g_2	g_3	g_4	g_5
a_1	100	100	100	100	50
a_2	85	85	85	90	100
	1/5	1/5	1/5	1/5	1/5

•
$$v(a_1) = 450/5 = 90 > v(a_2) = 445/5 = 89$$

• a_1 est préférée à a_2

Somme pondérée

Eliminations des conflits:

_	g_1	g_2
a_1	100	0
a_2	0	100
a_3	50	50
a_4	60	40
	1/2	1/2

- $v(a_1) = v(a_2) = v(a_3) = v(a_4) = 50$
- toutes les actions sont jugées équivalentes malgré une disparité importante

Somme pondérée

Echelles des critères:

	Inv. (FF)	Rend. (FF)
\overline{a}	100 000	10 000
b	500 000	70 000
c	1 000 000	150 000

•
$$v(a) = -90\ 000$$

•
$$v(b) = -430\ 000$$

•
$$v(c) = -850\ 000$$

	Inv. (kFF)	Rend. (FF)
a	100	10 000
b	500	70 000
c	1 000	150 000

•
$$v(a) = -9900$$

•
$$v(b) = 69500$$

•
$$v(c) = 149\ 000$$

 \Rightarrow Rendre les critères comparables : normalisation.

Normalisation

On peut avoir (pour le même problème)

- a > b > c et c > b > a
- ie. inversion complète du classement en fonction des échelles

D'où (somme, score, etc.):

- le choix des échelles n'est pas innocent
- prendre garde aux effets de compensations
- suppose utilisation d'échelles comparables
- ⇒ Choix de l'échelle des critères se pose pour toutes les méthodes qui font appel à la compensation entre critères.

Compensation

Nécessite l'utilisation d'échelles comparables :

- en type
- en étendue
- unité de mesure
- en dispersion

Transformation s'appelle procédure de normalisation :

- ramène toutes les valeurs entre 0 et 1
- transformer un vecteur (a_1, \ldots, a_n) en (v_1, \ldots, v_n) où chaque $v_i \in [0, 1]$

Procédures de normalisation

	Procédure 1	Procédure 2	Procédure 3	Procédure 4
Définition	$v_i = \frac{a_i}{\max a_i}$	$v_i = \frac{a_i - \min a_i}{\max a_i - \min a_i}$	$v_i = \frac{a_i}{\sum_{i=1}^{a_i}}$	$v_i = \frac{a_i}{\sqrt{\sum_i a_i^2}}$
Vecteur v	$0 \le v_i \le 1$	$0 \le v_i < 1$	$0 \le v_i < 1$	$0 \le v_i < 1$
Module v	variable	variable	variable	1
Proportionnalité	conservée	non conservée	conservée	conservée

Interprétation:

- % max
- % étendue
- % somme
- ullet composante i du vecteur unitaire

Pour chaque action a_i on calcule $v(a_i) = \sum_j w_j a_{ij}$

- permet de classer l'ensemble des actions (de la meilleure à la moins bonne)
- choisir l'action (ou l'une des actions) qui a le meilleur score

Hypothèses fortes:

- existence d'une fonction d'utilité cardinale du décideur additive sur les critères
- indépendance entre les critères
- comparaison inter-critères des valeurs obtenues par les actions

Dans ces conditions:

- les poids expriment le taux de substitution entre les critères
- si l'utilité globale du décideur est donnée par la somme pondérée alors le rapport $\frac{w_i}{w_j}$ s'appelle le taux de substitution entre les critères i et j
- en effet, si l'utilité $U_i(a_k)$ diminue de δ_i
 - toutes choses égales par ailleurs, il faut
 - augmenter $U_j(a_k)$ de $\delta_i \frac{w_i}{w_j}$ pour que l'utilité globale reste inchangée

Influence de la procédure de normalisation :

- sur les données \Rightarrow peut influencer beaucoup les résultats
- sur les poids \Rightarrow pas d'influence

Influence des transformations des critères :

- passage de la minimisation à la maximisation ⇒ peut influencer (aussi) beaucoup les résultats
 - ⇒ Tester la sensibilité des solutions.

Méthode très exigeante :

- présupposés théoriques importants
- peut être influencée par des choix (arbitraires) au moment de son utilisation

Méthode qui est pourtant :

- la plus connue
- la plus utilisée (même mal parfois)
- principales raisons
 - simplicité des calculs
 - compréhensible (immédiatement) par n'importe quel décideur
 (même le moins matheux) confiance du décideur se porte
 naturellement vers des méthodes simples

Jusqu'à maintenant on considérait le vecteur poids donné:

- il n'en est rien
- le vecteur poids va influencer énormément le résultat de l'agrégation obtenue par la somme et le produit pondéré
- il en est de même pour le plupart des méthodes d'agrégation sauf pour celles où seul l'ordre des poids joue un rôle

Importance des poids:

- indiquer l'importance que le décideur attribue à chacun des critères
- évaluation des poids doit être telle qu'elle reflète le plus fidèlement possible les préférences du décideur

Nature des poids :

- ordinale si seul compte leur rang (le premier, le second, etc.)
- cardinale si leur valeur numérique exacte w_j joue un rôle

Suivant leur nature les poids ne sont pas susceptibles de jouer le même rôle:

• en particulier vis à vis de la compensation

Décideurs donnent (souvent) des poids sans égard aux unités choisies pour évaluer les a_{ij} comme s'ils pouvaient en être indépendants.

Nombreuses méthodes (elles influencent aussi le résultat final):

- méthode objective par rapport au décideur (calcul sur les données)
- méthode directe (le décideur donne directement des valeurs aux poids)
- méthode indirecte

Détermination objective des poids - Méthode d'entropie

Considère uniquement les données a_{ij} du problème :

- sans intervention directe du décideur
- calculer l'importance relative des critères
- idée : l'importance w_j d'un critère j est directement fonction de la quantité d'information apportée par le critère
- cad que les critères les plus importants doivent être les critères ayant le pouvoir de discrimination le plus fort
- concept d'entropie correspond à cette mesure

Détermination objective des poids - Méthode d'entropie

Algorithme:

- normaliser les a_{ij} (procédure "diviser par la somme")
- déterminer l'entropie E_j de chaque critère :

$$E_j = -k \sum_i a_{ij} \log(a_{ij})$$

(où k est une constante telle que $0 \le E_j \le 1$ (par exemple, $k = 1/\log(m)$)

- calculer la mesure de dispersion $D_j = 1 E_j$
- normaliser et poser $w_j = D_j / \sum_j D_j$

Détermination objective des poids - Méthode d'entropie

Technique qui écarte toute subjectivité:

- intéressante dans les contextes conflictuels où les intéressés se disputent sur l'évaluation des poids
- neutralité de la méthode

On peut cependant garder le principe et faire intervenir le décideur :

- \bullet qui donnera un facteur x_j exprimant ses préférences
- importance relative des critères sera alors déterminée par $w_j \times x_j$

Détermination objective des poids - Méthode de corrélation

Méthode:

- se base sur l'importance de la corrélation entre les colonnes de la matrice de décision
- w_i doit d'autant plus important
 - qu'il apporte une information différente des autres critères
 - et que lui même possède une grande variance
- soit c_{jk} le coefficient de corrélation entre les colonnes j et k
- $w_j = \sigma_j \sum_k (1 c_{jk})$ où σ_j est l'écart-type de la colonne j

Détermination des poids Détermination directe des poids

Evaluation directe

- le décideur donne directement des valeurs aux poids
- méthodes les plus anciennes

Méthodes:

- classement simple
- d'évaluation probabiliste
- des comparaisons successives

Détermination directe des poids - classement simple

Algorithme : le décideur doit simplement donner un ordre sur les critères (selon ses préférences)

- le critère le moins important se voit affecter la valeur $r_1 = 1$,
- le second se voit affecter la valeur $r_2 = 2$,
- etc.
- jusqu'au meilleur critère qui reçoit la valeur $r_n = n$
- les éventuels ex-aequo reçoivent la moyenne des valeurs qu'ils auraient obtenus sans ex-aequo (méthode de Kendall)
- les valeurs obtenues sont normalisées (en divisant par la somme par exemple)

Détermination directe des poids - classement simple

Méthode simple :

- pour le décideur (seule une information ordinale est demandée)
- et pour les calculs (il y en a très peu)

Elle possède un désavantage important :

• peu réaliste : toutes les valeurs possibles entre 0 et 1 ne peuvent être prises

(il existe des variantes ne possédant pas ce défaut)

Détermination directe des poids - évaluation cardinale simple

Algorithme:

- le décideur évalue chaque critère selon une échelle de mesure prédéfinie
 - de 0 à 5
 - de 0 à 100
 - etc.
- normaliser les évaluations (division par la somme)

Détermination directe des poids - évaluation cardinale simple

Exige plus d'informations de la part du décideur :

- pas de restriction de l'intervalle de valeur (en théorie)
- cependant, décideurs ne se rendent pas compte de l'effet de la division par la somme
- se limitent eux même en ayant tendance
 - à donner des valeurs trop hautes à des critères qu'ils considèrent comme peu importants
 - à donner des valeurs trop basses aux critères préférés

Détermination directe des poids

Ne pas oublier le décideur!:

• caractéristiques en tant qu'agent humain

Evaluations du décideur peuvent varier considérablement (pour des raisons qui n'ont rien avoir avec le problème) :

- ordre dans lequel on présente les critères
- ses présupposés sur l'usage ultérieur des évaluations qu'il donne
- les connotations sémantiques des échelles symboliques utilisées (beaucoup, un peu, à la folie, ..., moyen, bon, médiocre, etc.)
- le moment où le décideur est interrogé
- type des actions présentées (bonnes vs. mauvaises)

Conclusions

A propose de la dominance et la pondération

Caractéristiques d'une "bonne méthode" :

- prise en compte de l'amplitude des écarts
- prise en compte des effets d'échelle
- construction d'un classement partiel (P, I, R) ou complet (P, I) des actions

Rester simple (penser au décideur):

- pas effet boîte noire
- pas trop de difficultés techniques