Trees in Tables

How to Encode Semistructured Data in RM?

Guillaume Raschia — Nantes Université

Last update: October 17, 2023

1

Intro

(Ordered¹) Labelled Unranked Unbounded Tree CS Name Emps 1030744 Bob 1True in XML, questionable in JSON...

Mapping Docs to Relational Databases

Requirements

- How to put semistructured data into tables?
 preserve tree structure, content, node id's, order
- How to get it back efficiently? provide strict round-tripping
- How to run queries on them?
 navigation through path expression capabilities

Why?

Use as much of existing DB technology as possible

Large Object Blocks: a Dead End

Import serialized fragments of XML docs or JSON objects into tuple fields of type CLOB or BLOB:

uri	json			
"emp-a.json"	'{"name": "Alice", "SSN": 2011244,}'			

Cons

C/B-LOB column content is **monolithic and opaque** w.r.t. the relational query engine

4

Adjacency List

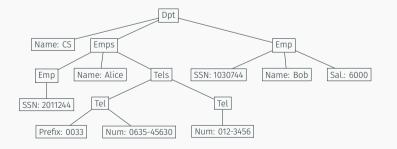
Contents

Adjacency List

SOL CTE

Closure Table

Path Enumeration


Nested Sets

Nested Intervals

Inlining

Shrink the Tree

A compact but lossless representation of XML-oriented docs

One Table to Fit Them All

	node						
id	parent	label	value	order			
1	NULL	dpt/NULL	NULL	1			
2	1	name	CS	1			
3	1	emps	NULL	2			
4	3	emp/1	NULL	1			
5	3	emp/2	NULL	2			
6	4	ssn	2011244	1			
7	4	name	Alice	2			
8	4	tels	NULL	3			
		•••	•••	***			

- id: node identity (1 record per node or per edge)
- · (id, parent): structural part
- · label and value: content of intern and leaf nodes
- [order]: keep track of sibling's order

7

Path Expressions

Querying the **node** table to retrieve:

- root node: parent is NULL
- · leaf nodes: value is not NULL
- \cdot children: parent = x
- · parent:

$$\pi_{n_1.*}\left(\sigma_{n_2.\mathsf{id}=x}\left(\mathsf{node}\;n_1\underset{n_1.\mathsf{id}=n_2.\mathsf{parent}}{\bowtie}\;\mathsf{node}\;n_2\right)\right)$$

• *left/right siblings*: join predicate is

 n_1 .parent = n_2 .parent and n_1 .order $\Leftrightarrow n_2$.order

ancestors? descendants? (to take away)

Reachability and Transitive Closure

Grand-parent of *x*:

$$\pi_{n_1.*}\left(\sigma_{n_3.\mathsf{id}=x}\left(\mathsf{node}\ n_1 \underset{n_1.\mathsf{id}=n_2.\mathsf{parent}}{\bowtie}\ \mathsf{node}\ n_2 \underset{n_2.\mathsf{id}=n_3.\mathsf{parent}}{\bowtie}\ \mathsf{node}\ n_3\right)\right)$$

How to determine whether two nodes are connected? How to compute the all transitive closure of the tree?

node ⋈ node ⋈ node ⋈ ...

```
SELECT * FROM node n1

LEFT JOIN node n2 ON n2.parent = n1.id

LEFT JOIN node n3 ON n3.parent = n2.id

LEFT JOIN node n4 ON n4.parent = n3.id

LEFT JOIN node n5 ON n5.parent = n4.id

...
```

(

Recursive Queries

Limitation of the Relational Algebra

- · cannot run reachability queries
- · cannot compute the transitive closure of a graph

Both issues require recursivity

SQL can do it!

- · (Recursive) Common Table Expression
- In the SQL-99 spec
- supported in IBM DB2, Oracle 11gr2+ (2009), PostgreSQL 8.4+, MariaDB 10.2+, MySQL 8.0.1+, SQLite 3.8.3+, MS SQL Server 2008 R2, Informix 11.50+, Firebird 2.1+, SAP Sybase (?) ...

CTE by Example

Retrieve all the ancestors of node 7 (name=Alice)

```
WITH RECURSIVE closure(nid, anc, length) AS
-- stop condition: all pairs (id, id) are connected
(SELECT id, id, 0 as length FROM node)
UNION ALL
-- recursive step:
-- (x,y) in closure and (y,z) in node -> (x,z) in closure
(SELECT c.nid, n.par, c.length + 1 FROM closure c
JOIN node n ON c.anc = n.id)
-- the effective query below
SELECT anc FROM closure WHERE nid = 7;
```

- temporary **closure** table that recursively connects node 7 with all its ancestors: fix point semantics
- · regular SFW query against the closure table

Closure Table

Adjacency List + CTE: a Fully-Featured Tree Encoding

- easy to grasp: one single binary relation (id, parent)
- · can handle ancestor and descendant queries
- must enforce semantics with constraints and triggers (otherwise, diy in the app!):
 - prevent self-loops (x, x) and cycles (x, y) and (y, x)
 - prevent multiple connexions: (x, y) and (x, y)
 - ensure a connected graph: #edges = #nodes 1
 - ensure one root only
 - add-move-remove a tree node is not tied to insert-update-delete a node tuple: must define Tx and triggers

Materialize the Transitive Closure

Database realizes a trade-off between storage and computation costs

node					
id	label	value	order		
1	dpt	NULL	1		
2	name	CS	1		
3	emps	NULL	2		
4	emp	NULL	1		
5	emp	NULL	2		
6	ssn	2011244	1		
7	name	Alice	2		
8	tels	NULL	3		
		•••	•••		

closure					
node	depth				
1	1	0			
1	2	1			
1	3	1			
1	4	2			
1	5	2			
2	2	0			
3	3	0			
3	4	1			

1.

Closure Table

- node table has no parent column: structure is in the closure table
- ancestors and descendants turn to be basic selections on the closure table
- Size is $\mathcal{O}(n^2)$ but actually much lower
- Overhead cost to maintain (add-move-remove)

14

Path Enumeration

Path Enumeration Table

Materialize paths from the root to each node

node						
id	path_id	label	value	order		
1	1	dpt	NULL	1		
2	2	name	CS	1		
3	2	emps	NULL	2		
4	3	emp	NULL	1		
5	3	emp	NULL	2		
6	4	ssn	2011244	1		
7	4	name	Alice	2		
8	4	tels	NULL	3		

	path				
id	key				
1 2 3 4	/ /1 /1/3 /1/3/4				

- \cdot separate paths from nodes to prevent from duplicate paths
- sep. char "/" in the path.key column
- · lots of string processing in queries: substring matching

Querying the Path Enumeration Table

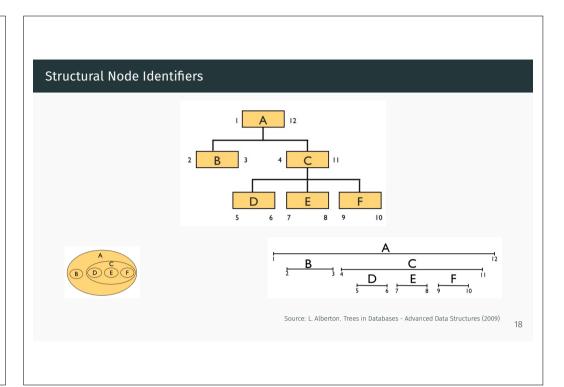
· depth:

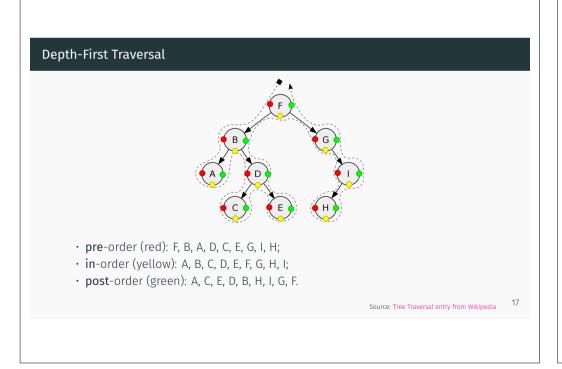
```
SELECT LEN(p.key) - LEN(REPLACE(p.key, '/', ''))
FROM path p JOIN node n ON p.id = n.path_id
WHERE n.id = :x
```

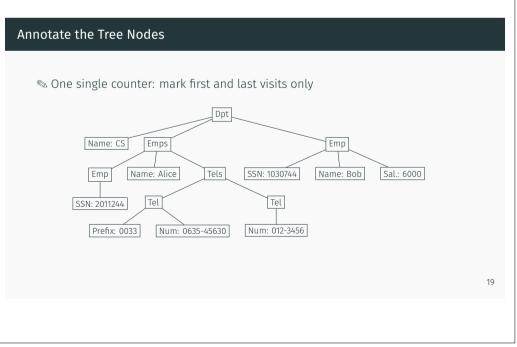
· descendants:

```
SELECT * FROM node n JOIN path p ON n.path_id = p.id WHERE p.key LIKE '%/' || :x || '%' ;
```

· ancestors:

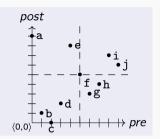

```
SELECT n2.* FROM node n1 JOIN path p1 ON n1.path_id = p1.id


CROSS JOIN node n2 JOIN path p2 ON n2.path_id = p2.id


WHERE n1.id = :x AND LOCATE(p2.key, p1.key) = 1;
```

children? add-move-remove?

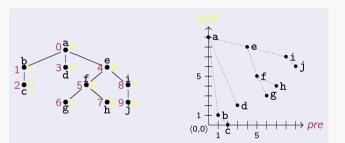
Nested Sets



Pre-Post – aka. Left-Right – Encoding

node						
id	left	right	label	value	order	
1	1	32	dpt	NULL	1	
2	2	3	name	CS	1	
3	4	31	emps	NULL	2	
4	5	20	emp	NULL	1	
5	21	22	emp	NULL	2	
6	6	7	ssn	2011244	1	
7	8	9	name	Alice	2	
8	10	21	tels	NULL	3	

Pre-Post Quadrants


Source: M.Scholl. DBIS - Univ. of Konstanz

22

20

21

Pre-Post Plan

Warning: Two-counters alternative breaks the nested set property. Do not use it.

Source: M.Scholl. DBIS - Univ. of Konstanz

Querying the Nested Set Model

pre-post is left-right

• root: left = 1

• leaves: left = right -1

• ancestors: left < n.left and right > n.right

• descendants: left > n.left and right < n.right

• parent: ancestors and depth = n.depth - 1

 \cdot children: descendants and depth = n.depth + 1

 $\ \, \ \, \ \, \ \,$ How to deal with parent and children without the \mbox{depth} column?

Add-Move-Remove Nodes of the Tree

Drawback

- · Update all the following numbering!
- · Propagate to:
 - subtree
 - · all right nodes (including siblings) and their subtrees
 - · ancestors up to the root node

Patch #1

Avoid renumbering on every insertion:

• long ranges: $[\![1,2]\!]$ becomes $[\![10,20]\!]$

• big gaps: [10, 20] and next [30, 40]

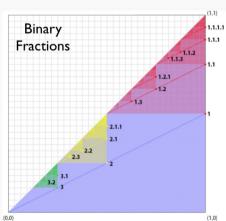
Nested Intervals Encoding

id	left_n	left_d	right_n	right_d
А	0	5	5	5
В	1	5	2	5
С	3	5	4	5
D	10	15	11	15

2

Overcome the "Insert" Limitation

- · Nested intervals with rational numbers
- · Split the interval into three parts to define an inner interval


Source: E. Hildebrandt. Trees and Hierarchies in SOL (2011)

25

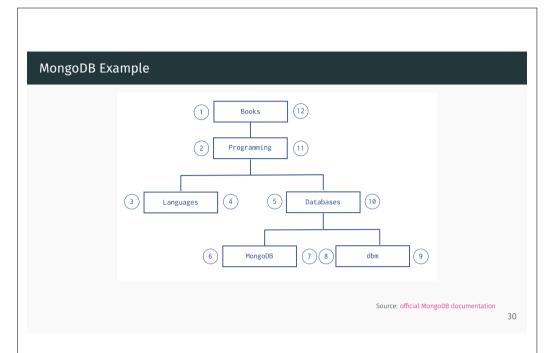
Adding a node is always possible (w/o reorganizing the all numbering)!

A Rational Schema

Recursively split ranges of node coordinates (y,x) with 2^{-k}

To Sum Up

encoding	size	?child	?subtree	upd	ref. integrity
Adj. list	+	+	-	+	yes
Path enum	_	_	+	+	no
Nested sets	+	_	++	_	no
Closure tab		+	+	_	yes


Those encodings apply to any hierarchy: org. chart, file system, phylogenetic tree, family tree, etc.

28

Trees in Document Stores?

Looks like a – kind of – native feature

- · XML Stores actually manage trees, but
- I/BSON Document Stores fail to do so since:
 - · Small docs only, then docs are hierarchy nodes rather than the entire tree
 - · Require references in between nodes (docs)
 - · Design tricks for tree modeling!

Tree Encoding

Adjacency lists vs. nested sets

Inlining

Schema-based Encoding

- Inlining technique for DTD's
- · Main idea: gather as many data fragments as possible in the same table
- · Three modes: Basic, Shared, Hybrid
- No(t yet an) equivalent approach for JSON

See J. Shanmugasundaram et al. *Relational Databases for Querying XML Documents: Limitations and Opportunities.* VLDB (1999)