Trees in Tables

How to Encode Semistructured Data in RM?

Guillaume Raschia — Nantes Université
Last update: October 17, 2023

Semistructured Data Model

(Ordered") Labelled Unranked Unbounded Tree

Name Emps

I S
o

SSN Name i SSN Name

Sal.
\
mE Bl o
Tel Tel

Prefix Num Num

[0033] [0635-45630 |

True in XML, questionable in JSON...

Intro

Mapping Docs to Relational Databases

Requirements
- How to put semistructured data into tables?
preserve tree structure, content, node id’s, order

- How to get it back efficiently?
provide strict round-tripping

- How to run queries on them?
navigation through path expression capabilities

Why?

Use as much of existing DB technology as possible

Large Object Blocks: a Dead End

Import serialized fragments of XML docs or JSON objects into tuple fields of type
CLOB or BLOB:

uri json

“emp-ajson” ‘{“name”: “Alice”, “SSN": 2011244, .}

Cons

C/B-LOB column content is monolithic and opaque w.rt. the relational query
engine

Adjacency List

Adjacency List
SQL CTE

Closure Table
Path Enumeration

Nested Sets

Nested Intervals

Inlining

Shrink the Tree

A compact but lossless representation of XML-oriented docs

[SSN:1030744] [Name: Bob| [sal: 6000

[Prefix: 0033] [Num: 0635-45630] [Num: 012-3456]

One Table to Fit Them All

node
id parent label value order
1 NULL dpt/NULL NULL 1
2 1 name CS 1
3 1 emps NULL 2
4 3 emp/1 NULL 1
5 3 emp/2 NULL 2
6 4 ssn 2011244 1
7 4 name Alice 2
8 4 tels NULL 3

- id: node identity (1 record per node or per edge)

- (id, parent): structural part

- label and value: content of intern and leaf nodes

- [order]: keep track of sibling’s order 7

Reachability and Transitive Closure

Grand-parent of a:

W (Un}id:z (node ny X node ny X node n3))
’ ny.id=ny.parent ng.id=ng.parent

How to determine whether two nodes are connected?
How to compute the all transitive closure of the tree?

node x node x node x node x ...

SELECT * FROM node nl

LEFT JOIN node n2 ON n2.parent = nl.id
LEFT JOIN node n3 ON n3.parent = n2.id
LEFT JOIN node n4 ON n&4.parent = n3.id
LEFT JOIN node n5 ON n5.parent = n4.id

Path Expressions

Querying the node table to retrieve:

- root node: parent is NULL

- leaf nodes: value is not NULL
- children: parent = z

- parent:

I (Ung.idzx (node n X node ng))
ny.1d=ng.parent

- left/right siblings: join predicate is
ni.parent = ng.parent and n;.order <> ny.order

@ ancestors ? descendants ? (to take away)

Recursive Queries

Limitation of the Relational Algebra

- cannot run reachability queries

- cannot compute the transitive closure of a graph

Both issues require recursivity
SQL can do it!

- (Recursive) Common Table Expression
- In the SQL-99 spec

- supported in IBM DB2, Oracle 11gr2+ (2009), PostgreSQL 8.4+ MariaDB 10.2+,
MySQL 8.0+, SQLite 3.8.3+, MS SQL Server 2008 R2, Informix 11.50+, Firebird
21+, SAP Sybase (?) ...

CTE by Example

Retrieve all the ancestors of node 7 (name=Alice)

WITH RECURSIVE closure(nid, anc, length) AS
-- stop condition: all pairs (id, id) are connected
(SELECT id, id, 0 as length FROM node)
UNION ALL
-- recursive step:
-- (x,y) in closure and (y,z) in node -> (x,z) in closure
(SELECT c.nid, n.par, c.length + 1 FROM closure c
JOIN node n ON c.anc = n.id)
-- the effective query below
SELECT anc FROM closure WHERE nid = 7 ;

- temporary closure table that recursively connects node 7 with all its
ancestors: fix point semantics
- regular SFW query against the closure table

Closure Table

Adjacency List + CTE: a Fully-Featured Tree Encoding

- easy to grasp: one single binary relation (id,parent)

- can handle ancestor and descendant queries

- must enforce semantics with constraints and triggers (otherwise, diy in the
app):

- prevent self-loops (z, z) and cycles (z,y) and (y, z)

- prevent multiple connexions: (z,y) and (z,y)

- ensure a connected graph: #edges = #nodes - 1

- ensure one root only

- add-move-remove a tree node is not tied to insert-update-delete a node tuple:
must define Tx and triggers &

Materialize the Transitive Closure

Database realizes a trade-off between storage and computation costs

closure
node

4 label value order node descendant depth
1 dpt NULL 1 1 1 g

1 2 1
2 name CS 1 1 3 1
3 emps NULL 2 1 4 5
4 emp NULL 1 1 5)
5 emp NULL 2
6 ssn 201.1244 1 5 5 0
7 name Alice 2 3
8 tels NULL 3 3 4 1

Closure Table

- node table has no parent column: structure is in the closure table

- ancestors and descendants turn to be basic selections on the closure table
- Size is O(n?) but actually much lower

- Overhead cost to maintain (add-move-remove)

Path Enumeration Table

Materialize paths from the root to each node

node
id path_id label value order path
1 1 dpt NULL 1 id key
2 2 name CS 1
3 2 emps NULL 2 1/
4 3 emp NULL 1 2 /1
5 3 emp NULL 2 3 /1/3
6 4 ssn 2011244 1 4 [1/3]4
7 4 name Alice 2
8 4 3

tels NULL

- separate paths from nodes to prevent from duplicate paths
- sep. char “/"in the path.key column
- lots of string processing in queries: substring matching

Path Enumeration

Querying the Path Enumeration Table

- depth:

SELECT LEN(p.key) - LEN(REPLACE(p.key, '/', ''))
FROM path p JOIN node n ON p.id = n.path_id
WHERE n.id = :x

- descendants:
SELECT * FROM node n JOIN path p ON n.path_id = p.id
WHERE p.key LIKE '%/' || :x || '%"' ;

+ ancestors:

SELECT n2.* FROM node nl JOIN path pl ON nl.path_id = pl.id
CROSS JOIN node n2 JOIN path p2 ON n2.path_id = p2.id
WHERE nl.id = :x AND LOCATE(p2.key, pl.key) = 1 ;

@ children? add-move-remove?

Nested Sets

Structural Node Identifiers

Source: L. Alberton. Trees in Databases - Advanced Data Structures (2009)

18

Depth-First Traversal

- pre-order (red): F, B,A D, C E G, I, H;
- in-order (yellow): A, B,C, D, E, F G, H,I;
- post-order (green): A, C,E, D, B, H, I, G, F.

17

Source: Tree Traversal entry from Wikipedia

Annotate the Tree Nodes

% One single counter: mark first and last visits only

[SSN:1030744] [Name: Bob| [sal: 6000

SSN: 2011244

[Prefix. 0033] [Num: 0635-45630] [Num: 012-3456 |

Pre-Post — aka. Left-Right — Encoding

node
id left right label value order
101 32 dpt NULL 1
2 2 3 name CS 1
3 4 31 emps NULL 2
4 5 20 emp NULL 1
5 21 22 emp NULL 2
6 6 7 ssn 2011244 1
7 8 9 name Alice 2
8 1 3

o

21 tels NULL

20

Pre-Post Quadrants

post
a ::-a él
b e s e
b L]
| £ i T____]
© TF I £ oh
c N | T g
g b Top "¢

Source: M.Scholl. DBIS - Univ. of Konstanz

22

Pre-Post Plan

03
19/31\45’
| d £/ \i
o0 5e e
¢ 6-/ S. 9l
g h]

pre

Warning: Two-counters alternative breaks the nested set property. Do not use it.

Source: M.Scholl. DBIS - Univ. of Konstanz

21

Querying the Nested Set Model

pre-post is left-right

- root: left =1

- leaves: left = right -1

- ancestors: left <n.left and right > n.right

- descendants: left > n.left and right < n.right
- parent: ancestors and depth = n.depth - 1

- children: descendants and depth = n.depth +1

% How to deal with parent and children without the depth column?

23

Add-Move-Remove Nodes of the Tree

Drawback

- Update all the following numbering!
- Propagate to:
- subtree
- all right nodes (including siblings) and their subtrees
- ancestors up to the root node
Patch #1

Avoid renumbering on every insertion:

- long ranges: [1, 2] becomes [10, 20]
- big gaps: [10,20] and next [30,40]

24

Nested Intervals Encoding

2 Al 2
7N
5 B2 %I g
|
$ b 3

d left_n left.d right_n right_d

0 8 5 5
B 1 5 2 5
C 3 5 4 5
D 10 15 11 15

26

Overcome the “Insert” Limitation

- Nested intervals with rational numbers

- Split the interval into three parts to define an inner interval

a+(b-a)/3 a+2(b-a)/3

Source: E. Hildebrandt. Trees and Hierarchies in SQL (2011)

Adding a node is always possible (w/o reorganizing the all numbering)!

25

A Rational Schema

Recursively split ranges of node coordinates (y, z) with 2=%
Binary
Fractions

27

To Sum Up

encoding size ?child ?subtree upd ref. integrity

Adj. list + + = + yes
Path enum — — + + no
Nested sets + = ++ — no
Closuretab —— + + = yes

Those encodings apply to any hierarchy: org. chart, file system, phylogenetic tree,
family tree, etc.

28

MongoDB Example

O e 160 O @

O wem OO « |®

Source: official MongoDB documentation

30

Trees in Document Stores?

Looks like a - kind of — native feature

- XML Stores actually manage trees, but
- J/BSON Document Stores fail to do so since:

- Small docs only, then docs are hierarchy nodes rather than the entire tree
- Require references in between nodes (docs)
- Design tricks for tree modeling!

29

Tree Encoding

Adjacency lists vs. nested sets

db.categories.insertMany([
{ _id: "MongoDB", parent: "Databases" },
{ _id: "dbm", parent: "Databases" },
{ _id: "Databases", parent: "Programming" },
{ _id: "Languages", parent: "Programming" },
{ _id: "Programming", parent: "Books" },
{ _id: "Books", parent: null }

1)

db.categories.insertMany([

{ _id: "Books", parent: 0, left: 1, right: 12 },

{ _id: "Programming", parent: "Books", left: 2, right: 11 },

{ _id: "Languages", parent: "Programming", left: 3, right: & },
{ _id: "Databases", parent: "Programming", left: 5, right: 10 },
{ _id
{ _id

: "MongoDB", parent: "Databases", left: 6, right: 7 1},
: "dbm", parent: "Databases", left: 8, right: 9 }

Inlining

Schema-based Encoding

- Inlining technique for DTD's
- Main idea: gather as many data fragments as possible in the same table

- Three modes: Basic, Shared, Hybrid
- No(t yet an) equivalent approach for JSON

% See). Shanmugasundaram et al. Relational Databases for Querying XML
Documents: Limitations and Opportunities. VLDB (1999)

32

