
SQL et les bases de données relationnelles
SQL déclaratif : le calcul relationnel

Guillaume Raschia — Nantes Université
originaux de Philippe Rigaux, CNAM

Dernière mise-à-jour : 17 novembre 2025

1

Plan de la session

SQL conjonctif (S3.2)

Quantification et négation (S3.3)

Conception de requêtes (S3.4)

2

SQL conjonctif (S3.2)

SQL, première partie

Cette section présente les requêtes SQL conjonctives qui sont celles qui
s’expriment sans négation (¬) ni disjonction (_).

• Forme d’une requête SQL : variables-nuplets, conditions, construction du
nuplet-résultat

• Requêtes mono-variables
• Requêtes multi-variables

3



Variable-nuplet

SQL manipule des nuplets ouverts de la forme t = (a1, a2, · · · , an).

Nous les appellerons des variables-nuplets.

La quantification porte sur la variable-nuplet t : 9t et 8t.

On désigne les attributs en les rattachant à t : t .a1, t .a2, etc.

On peut exprimer des comparaisons : t .ai = a ou t .ai = t .aj

4

Requête mono-variable

Les requêtes les plus simples utilisent une seule variable-nuplet. Leur forme
logique du calcul relationnel est :

{t .a1, t .a2, · · · , t .an | T (t) ^ Fcond(t)}

ou de manière équivalente, avec des variables-domaines :

{x1, x2, · · · , xn | 9Æy,T (Æx, Æy) ^Fcond(Æx, Æy)} ou Q(Æx) = 9Æy,T (Æx, Æy) ^Fcond(Æx, Æy)

5

Requête mono-variable : traduction en SQL

Expression du calcul relationnel :

{t .a1, t .a2, · · · , t .an | T (t) ^ Fcond(t)}

La forme SQL
select [distinct] t.a1, t.a2, ..., t.an
from T as t
where <condition>

C’est un « bloc » avec trois clauses :

• le from définit la variable libre et sa portée
• le where définit la condition sur la variable libre
• le select (avec distinct optionnel) construit le nuplet-résultat

6

Parlons du distinct

Une relation n’a pas de doublon. Or certaines requêtes peuvent en produire :
select l.type from Logement as l

type

Auberge
Hôtel
Gîte
Hôtel

Le distinct garantit que les doublons sont éliminés.
select distinct l.type from Logement as l

Certaines requêtes ne peuvent pas produire de doublon ! À approfondir. 7



Premier exemple

Code, nom et type des logements en Corse.

select t.code, t.nom, t.type
from Logement as t
where t.lieu = 'Corse'

Correspond à la formule

{t .code, t .nom, t .type | Logement(t) ^ t .lieu = ’Corse’}

Forme simplifiée :
select code, nom, type
from Logement
where lieu = 'Corse'

8

Interprétation

La variable est affectée à chaque nuplet de la table définie par la portée.

On garde toutes les affectations qui satisfont la condition Fcond.

La seule affectation correcte est surlignée ci-dessous.

code nom capacité type lieu

pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

Trivial ? Oui,
et tant mieux, car cette interprétation fonctionne pour toutes les requêtes. 9

Requête multi-variables

Regardons pour deux variables : la généralisation est facile.

Forme de la requête :
select [distinct] t1.a1, ..., t1.an, t2.a1, ..., t2.am
from T1 as t1, T2 as t2
where <condition>

Interprétation
Parmi toutes les affectations possibles des variables, on ne conserve que celles
qui satisfont la condition exprimée par Fcond.

10

Un exemple détaillé : logements où on peut pratiquer la plongée

{✓.code, ✓.nom, a.codeActivité | Logement(✓) ^ Activité(a)
^ a.codeActivité = ’Plongée’ ^ ✓.code = a.codeLogement}

Nous avons besoin de deux variables a et ✓ :

• la première (a) parcourt les nuplets de Activité ;
• la seconde (✓) parcourt les nuplets de Logement ;
• l’attribut codeActivité de a vaut « Plongée » ;
• les deux variables partagent le même code de logement.

select distinct l.code, l.nom, a.codeActivité
from Logement as l, Activité as a
where l.code = a.codeLogement
and (a.codeActivité = 'Plongée' or a.codeActivité = 'Voile')

11



Interprétation : affectation des deux variables

Logement (variable ✓)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

Activité (variable a)
codeLogement codeActivité

ca Randonnée
ta Plongée
ge Ski
pi Plongée
pi Voile

12

Deuxième exemple : les paires de logements qui sont du même type

Nous avons besoin de deux variables,

• chacune ayant pour portée la table Logement
• les deux variables partagent le même attribut type

select distinct l1.nom as nom1, l2.nom as nom2
from Logement as l1, Logement as l2
where l1.type = l2.type

Soit la formule

{✓1.nom, ✓2.nom | Logement(✓1) ^ Logement(✓2) ^ ✓1.type = ✓2.type}

ou de manière équivalente :
{x, y | 9z,Logement(_, x, _, z, _) ^ Logement(_, y, _, z, _)}

13

Interprétation : affectation des deux variables

Logement (variable ✓1)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

Logement (variable ✓2)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

14

Autre affectation possible

Logement (variable ✓1)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

Logement (variable ✓2)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

15



Encore une autre (et trois autres encore possibles)

Logement (variable ✓1)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

Logement (variable ✓2)
code nom capacité type lieu
pi U Pinzutu 10 Gîte Corse
ta Tabriz 34 Hôtel Bretagne
ca Causses 45 Auberge Cévennes
ge Génépi 134 Hôtel Alpes

16

À retenir

Quelle que soit sa complexité, l’interprétation d’une requête SQL peut toujours se
faire de la manière suivante.

• Chaque variable du from peut être affectée à tous les nuplets de sa portée.
• Le where définit une condition sur ces variables : seules les affectations
satisfaisant cette condition sont conservées.

• Le nuplet résultat est construit à partir de ces affectations.

17

Quantification et négation (S3.3)

SQL, quantificateurs et négation

Cette section présente les quantifications existentielle et universelle.

Les quantificateurs permettent l’expression de la négation : « je veux tous ces
nuplets sauf ceux-là ».

Dans cette section :

• Le quantificateur exists et l’expression du « pour tout »
• La négation
• Equivalence des requêtes : plusieurs syntaxes, une seule interprétation.

18



Le quantificateur “exists“

Considérons la requête « les logements où l’on peut faire du ski ».

{✓.nom | Logement(✓) ^ 9a,Activité(a)
^ a.codeActivité = ’Ski’ ^ ✓.code = a.codeLogement}

En SQL :
select distinct l.nom
from Logement as l, Activité as a
where l.code = a.codeLogement
and a.codeActivité = 'Ski'

La variable a n’intervient pas dans le nuplet-résultat. Il s’agit d’une variable liée.

19

Suite de l’exemple

Légère reformulation : on cherche les logements où il existe une activité “Ski”.

requête SQL équivalente
select distinct l.nom
from Logement as l
where exists (select 42

from Activité as a
where l.code = a.codeLogement
and a.codeActivité = 'Ski')

Bien que littérale, l’imbrication n’est pas recommandée là où il existe une version
« à plat » de la requête.

20

Construction de formules complexes

On peut construire des formules imbriquées (sous-requêtes SQL) sans limitation
de profondeur.

Qui est allé dans les Alpes?
select distinct v.prénom, v.nom
from Voyageur as v, Séjour as s, Logement as l
where v.id = s.idVoyageur
and s.codeLogement = l.code
and l.lieu = 'Alpes'

Ni s ni ✓ ne sont utilisées dans la construction du nuplet-résultat.

21

Qui est allé dans les Alpes?

Avec un quantificateur existentiel : « Les voyageurs pour lesquels il existe un
séjour dans les Alpes ».

select distinct v.prénom, v.nom
from Voyageur as v
where exists (select 42

from Séjour as s, Logement as l
where v.id = s.idVoyageur
and s.codeLogement = l.code
and l.lieu = 'Alpes')

Plus clair ? Moins clair ?

22



Imbrication d’imbrication

Avec deux quantificateurs existentiels : « Les voyageurs pour lesquels il existe un
séjour dont le logement existe dans les Alpes ».
select distinct v.prénom, v.nom
from Voyageur as v
where exists (select 42

from Séjour as s
where v.id = s.idVoyageur
and exists (select 42

from Logement as l
where s.codeLogement = l.code
and l.lieu = 'Alpes')

)

Pas très naturel.

23

Négation

Les logements qui ne proposent pas de Ski.

{✓.nom | Logement(✓) ^ ¬9a,Activité(a)
^ a.codeActivité = ’Ski’ ^ ✓.code = a.codeLogement}

Correspond à la formulation : Les logements où il n’existe pas d’activité Ski.

select distinct l.nom
from Logement as l
where not exists (select 42

from Activité as a
where l.code = a.codeLogement
and a.codeActivité = 'Ski')

24

Quantificateur universel

Les voyageurs qui ont séjournés dans tous les logements.

{v.prénom, v.nom | Voyageur(v) ^
8✓, Logement(✓) !

(9s, Séjour(s) ^ s.codeLogement = ✓.code ^ s.idVoyageur = v.id)}

La formule implicative est « intuitive ».

Ni l’implication, ni le quantificateur universel ne sont traduisibles en SQL.

• L’implication : p ! q , ¬p _ q
• Le quantificateur universel : 8x,P (x) , ¬9x,¬P (x)

25

Quantificateur universel par la double négation

Reformulation avec double négation : on cherche les voyageurs pour lesquels il
n’existe pas de logement dans lequel ils n’ont pas séjourné.

select distinct v.prénom, v.nom
from Voyageur as v
where not exists (select 42

from Logement as l
where not exists (select 42

from Séjour as s
where l.code = s.codeLogement
and v.id = s.idVoyageur)

26



À retenir

SQL = un langage normalisé à la définition très précise.

À propos de la construction SELECT-FROM-WHERE
• Tout ce qui peut s’exprimer par une formule logique est exprimable en SQL.
Ni plus, ni moins.

• Inversement, tout ce qui ne s’exprime pas par une formule (boucles,
incrémentations, etc.) ne s’exprime pas en SQL.

Maîtriser SQL = savoir formuler sa requête de manière rigoureuse.

27

Conception de requêtes (S3.4)

Construction d’une requête SQL

• Le résultat d’une requête est une relation constituée de nuplets.
• Chaque nuplet du résultat est construit à partir d’un ensemble de n nuplets

t1, t2, · · · , tn provenant de la base de données.
• Ces n nuplets doivent satisfaire un ensemble de conditions (exprimé par une
formule).

La clause from sert à définir les t1, t2, · · · , tn , la clause where à définir les
conditions, la clause select à construire un nuplet-résultat à partir des
t1, t2, · · · , tn .

Dans cette section nous étudions le processus (mental) de conception d’une
requête.

28

Étape préalable : comprendre le schéma

Il faut savoir visualiser les tables, et les liens entre ces tables.

Film Artiste

réalisateur

Rôle

réalisateur

film

film

artiste
artiste

29



Imaginer une requête = visualiser les nuplets

Exemple trivial :
“Quel âge a Gérard Depardieu?”

Artiste

Depardieu a

On identifie un nuplet, a, qui suffit.

La requête est une transcription di-
recte de la visualisation.
select annéeNaissance
from Artiste as a
where a.nom='Depardieu'
Pour l’instant tout est simple.

30

Souvent il faut plusieurs nuplets

Exemple : les films avec Gérard Depar-
dieu?

Film Artiste

Rôle

Depardieu a

film

acteur

r

f

select f.titre
from Artiste as a,

Rôle as r,
Film as f

where a.nom = 'Depardieu'
and a.idArtiste = r.idActeur
and r.idFilm = f.idFilm
La requête est encore une trans-
cription directe de la visualisation.

31

Les films avec C. Deneuve et G. Depardieu

Film Artiste

Rôle

Depardieu a1

film

acteur

r1

f
Deneuve a2

acteur

film
r2

select *
from Artiste as a1,

Artiste as a2,
Rôle as r1,
Rôle as r2,
Film as f

where a1.nom = 'Depardieu'
and a2.nom = 'Deneuve'
and a1.idArtiste = r1.idActeur
and a2.idArtiste = r2.idActeur
and r1.idFilm = f.idFilm
and r2.idFilm = f.idFilm

32

À retenir

La démarche mentale pour construire une requête SQL est (toujours) la suivante.

• On détermine les nuplets (et surtout leurs tables) nécessaires pour
construire un nuplet du résultat.
) ça définit le from

• On détermine les conditions que doivent satisfaire ces nuplets.
) ça définit le where
Important : une condition peut être définie par une sous-requête (résultat
vide ou non)

• Il ne reste plus qu’à « piocher » dans les nuplets pour constituer le résultat
) ça définit le select et complète la requête.

33


