Plan de la session

SQL et les bases de données relationnelles SQL conjonctif (532)

SQL déclaratif : le calcul relationnel

Quantification et négation (S3.3)

Guillaume Raschia — Nantes Université
originaux de Philippe Rigaux, CNAM Conception de requétes (S3.4)

Derniére mise-a-jour : 17 novembre 2025

SQL, premiére partie

Cette section présente les requétes SQL conjonctives qui sont celles qui
s'expriment sans négation (=) ni disjonction (v).

SQL conjonctif (S3.2)

- Forme d’'une requéte SQL : variables-nuplets, conditions, construction du
nuplet-résultat

- Requétes mono-variables

- Requétes multi-variables

Variable-nuplet Requéte mono-variable

SQL manipule des nuplets ouverts de la forme ¢ = (ay, ag, - - - , ay). A ‘ - _
Les requétes les plus simples utilisent une seule variable-nuplet. Leur forme

Nous les appellerons des variables-nuplets. logique du calcul relationnel est :

La gquantification porte sur la variable-nuplet ¢ : 3t et V¢. {t.ar, t.az, -+, t.an | T(£) A Feong(£)}

. . . ou de maniére équivalente, avec des variables-domaines :
On désigne les attributs en les rattachant a ¢ : t.aq, t.as, etc.

{wla L2, 5 Iy | 3!7’ T(i’ @) A FCOﬂd('/Z" E)} ou Q(Z) = 3?)’ T(i’ @) A FCOﬂd(:Z" 3)
On peut exprimer des comparaisons : t.a; = a ou t.a; = t.q;

Requéte mono-variable : traduction en SQL Parlons du distinct

Expression du calcul relationnel : Une relation n'a pas de doublon. Or certaines requétes peuvent en produire :
{t.a1, t.az, -+, t.an | T(£) A Feong (D)} select l.type from Logement as 1
La forme SQL type
select [distinct] t.al, t.a2, ..., t.an Auberge
from T as t ~
where <condition> Hotel
Gite
Hotel

C'est un « bloc » avec trois clauses :

- le from définit la variable libre et sa portée Le distinct garantit que les doublons sont éliminés.

P . . . select distinct 1.type from Logement as 1
- le where définit la condition sur la variable libre

- le select (avec distinct optionnel) construit le nuplet-résultat
6 Certaines requétes ne peuvent pas produire de doublon! A approfondir. 7

Premier exemple

Code, nom et type des logements en Corse.
select t.code, t.nom, t.type

from Logement as t
where t.lieu = 'Corse'

Correspond a la formule
{t.code, t.nom, t.type | Logement(t) A t.Lieu = 'Corse’}

Forme simplifiée :

select code, nom, type
from Logement
where lieu = 'Corse'

Interprétation

La variable est affectée a chaque nuplet de la table définie par la portée.
On garde toutes les affectations qui satisfont la condition Feopq.

La seule affectation correcte est surlignée ci-dessous.

code nom capacité type lieu
pi U Pinzutu 10 Gite Corse
ta Tabriz 34 Hotel Bretagne
ca Causses 45 Auberge Cévennes
ge Géneépi 134 Hotel Alpes

Trivial ? Oui,
et tant mieux, car cette interprétation fonctionne pour toutes les requétes.

Requéte multi-variables

Regardons pour deux variables : la généralisation est facile.

Forme de la requéte :

select [distinct] t1.a1, ..., tl.an, t2.al, ..., t2.am
from T1 as t1, T2 as t2
where <condition>

Interprétation

Parmi toutes les affectations possibles des variables, on ne conserve que celles
qui satisfont la condition exprimée par Fong.

Un exemple détaillé : logements ol on peut pratiquer la plongée

{t.code,.nom, a.codeActivité | Logement(f) A Activité(a)
A a.codeActivité = 'Plongée’ A f.code = a.codeLogement}
Nous avons besoin de deux variables a et ¢ :

- la premiére (a) parcourt les nuplets de Activité;

- la seconde (¢) parcourt les nuplets de Logement ;

- l'attribut codeActiviteé de a vaut « Plongée »;

- les deux variables partagent le méme code de logement.

select distinct 1l.code, 1.nom, a.codeActivite

from Logement as 1, Activite as a

where 1.code = a.codelLogement

and (a.codeActivité = 'Plongée' or a.codeActivité = 'Voile')

Deuxiéme exemple : les paires de logements qui sont du méme type

Interprétation : affectation des deux variables

Logement (variable ¢) Nous avons besoin de deux variables,

code nom capacité | type lieu h : +ée 3 table L "
S N it 10 Gite Corse chacune ayah pour portee la d)f/ ogemen
= BT 34 Hotel Bretagne - les deux variables partagent le méme attribut type
ca Causses 45 Auberge | Cévennes select distinct 11.nom as noml, 12.nom as nom2
AT ~ from Logement as 11, Logement as 12
ge Génépi 134 Hotel Alpes where 11.type - 12."cype
Activité (variable a)
codeLogement | codeActivité Soit la formule
ca Randonnée
ta Plongée {€1.nom,f,.nom | Logement(f;) A Logement(ls) A ¢1.type ={(r.type}
ge Ski
pi Plongée ou de maniére équivalente :
pi Voile {z,y |3z, Logement(_,z,_,2 _) A Logement(_,y,_,z)}

12 13

Interprétation : affectation des deux variables Autre affectation possible

Logement (variable ¢;)

Logement (variable ¢;)

code nom capacité | type lieu code nom capacité | type lieu
pi U Pinzutu 10 Gite Corse pi U Pinzutu 10 Gite Corse
ta Tabriz 34 Hotel Bretagne ta Tabriz 34 Hotel Bretagne
ca Causses 45 Auberge | Cévennes ca Causses 45 Auberge | Cévennes
ge Génépi 134 Hotel Alpes ge Génépi 134 Hotel Alpes

Logement (variable ¢5) Logement (variable ¢5)

code nom capacité type lieu code nom capacité type lieu
pi | UPinzutu 10 Gite Corse pi | UPinzutu 10 Gite Corse
ta Tabriz 34 Hotel Bretagne ta Tabriz 34 Hotel Bretagne
ca Causses 45 Auberge | Cévennes ca Causses 45 Auberge | Cévennes
ge Génépi 134 Hotel Alpes ge Génépi 134 Hotel Alpes

Encore une autre (et trois autres encore possibles) A retenir

Logement (variable ¢;)

code nom capacité | type lieu] - o) _
oi U Pinzutu 10 Gite Coae Qgelle que smtea complexme, l'interprétation d'une requéte SQL peut toujours se
ta Tabriz 34 Hotel Bretagne faire de la maniere suivante.
ca Causses 45 Auberge | Cévennes
ge Génépi 134 Hotel Alpes

] - Chaque variable du from peut étre affectée a tous les nuplets de sa portée.
Logement (variable ¢;)

- Le where définit une condition sur ces variables : seules les affectations

code nom capacité type lieu S - B}
- - - satisfaisant cette condition sont conservées.
pi | UPinzutu 10 Gite Corse . o .]
- Tabriz 34 Hotel Bretagne - Le nuplet résultat est construit a partir de ces affectations.
ca Causses 45 Auberge | Cévennes
ge Génépi 134 Hotel Alpes

SQL, quantificateurs et négation

Cette section présente les quantifications existentielle et universelle.

Les quantificateurs permettent l'expression de la négation : « je veux tous ces
nuplets sauf ceux-la ».

Quantification et négation (S3.3)

Dans cette section :

- Le quantificateur exists et l'expression du « pour tout »
- La négation

- Equivalence des requétes : plusieurs syntaxes, une seule interprétation.

Le quantificateur “exists"”

Considérons la requéte « les logements ol l'on peut faire du ski ».

{¢.nom | Logement(f) A Ja,Activité(a)

A a.codeActivité ='Ski" A f.code = a.codelLogement}

En SQL:

select distinct 1.nom

from Logement as 1, Activité as a
where 1.code = a.codelLogement

and a.codeActivité = "Ski'

La variable a n'intervient pas dans le nuplet-résultat. Il s'agit d'une variable liee.

Suite de 'exemple

Légere reformulation : on cherche les logements ou il existe une activité “Ski".

requéte SQL équivalente

select distinct 1.nom

from Logement as 1

where exists (select 42
from Activité as a
where 1.code = a.codelLogement
and a.codeActivité = 'Ski')

Bien que littérale, l'imbrication n'est pas recommandee la ou il existe une version
«a plat » de la requéte.

20

Construction de formules complexes

On peut construire des formules imbriquées (sous-requétes SQL) sans limitation
de profondeur.

Qui est allé dans les Alpes?

select distinct v.prénom, v.nom

from Voyageur as v, Séjour as s, Logement as 1
where v.id = s.idVoyageur

and s.codelLogement = l.code

and 1.lieu = 'Alpes'

Ni s ni £ ne sont utilisées dans la construction du nuplet-résultat.

21

Qui est allé dans les Alpes?

Avec un quantificateur existentiel : « Les voyageurs pour lesquels il existe un
séjour dans les Alpes ».

select distinct v.prénom, v.nom

from Voyageur as v

where exists (select 42
from Séjour as s, Logement as 1
where v.id = s.idVoyageur
and s.codelLogement = l.code
and 1.lieu = 'Alpes')

Plus clair? Moins clair?

22

Imbrication d’imbrication

Avec deux quantificateurs existentiels : « Les voyageurs pour lesquels il existe un
séjour dont le logement existe dans les Alpes ».

select distinct v.prénom, v.nom
from Voyageur as v
where exists (select 42
from Séjour as s
where v.id = s.idVoyageur
and exists (select 42
from Logement as 1
where s.codelLogement = 1l.code
and 1.lieu = 'Alpes')

Pas trés naturel.

23

Les logements qui ne proposent pas de Ski.

{¢.nom | Logement({) A —Fa,Activité(a)

A a.codeActivité ='Ski’ A f.code = a.codeLogement}

Correspond a la formulation : Les logements ou il n'existe pas d'activité Ski.

select distinct 1.nom

from Logement as 1

where not exists (select 42
from Activité as a
where 1.code = a.codelLogement
and a.codeActivité = 'Ski')

24

Quantificateur universel

Les voyageurs qui ont séjournés dans tous les logements.

{v.prénom, v.nom | Voyageur(v) A
V¢, Logement(f) —
(3s, Séjour(s) A s.codeLogement =¢.code A s.idVoyageur = v.id)}

La formule implicative est « intuitive ».
Ni limplication, ni le quantificateur universel ne sont traduisibles en SQL.

- Limplication:p— ¢ & -pVyq
- Le quantificateur universel : Y, P(z) < =3z,-P(x)

25

Quantificateur universel par la double négation

Reformulation avec double négation : on cherche les voyageurs pour lesquels il
n'existe pas de logement dans lequel ils n'ont pas séjourné.

select distinct v.prénom, v.nom
from Voyageur as v

where not exists (select
from
where

42

Logement as 1

not exists (select 42
from Séjour as s
where 1.code = s.codelLogement
and v.id = s.idVoyageur)

26

SQL = un langage normalisé a la définition trés precise.

A propos de la construction SELECT-FROM-WHERE

- Tout ce qui peut s'exprimer par une formule logique est exprimable en SQL. . R
Ni plus, ni moins. Conception de requétes (S3.4)

- Inversement, tout ce qui ne s'exprime pas par une formule (boucles,
incrémentations, etc.) ne s'exprime pas en SQL.

Maitriser SQL = savoir formuler sa requéte de maniére rigoureuse.

27

Construction d'une requéte SQL Etape préalable : comprendre le schéma

- Le résultat d’une requéte est une relation constituée de nuplets. Il faut savoir visualiser les tables, et les liens entre ces tables.

- Chaque nuplet du résultat est construit a partir d'un ensemble de n nuplets

Film Artiste
t, 82, -+, t, provenant de la base de donneées. /_réa"mm\
- Ces n nuplets doivent satisfaire un ensemble de conditions (exprimé par une Iz S TiZi=
formule).
) [T~ réalisateur ;e ----- -
La clause from sert a définir les ¢, to, - - - , t,, la clause where a définir les @g_'_'_
conditions, la clause select a construire un nuplet-résultat a partir des /
ty, ta, -, tn. Role artiste
artiste
Dans cette section nous étudions le processus (mental) de conception d’une ‘ \éi_ii

requéte. \ —————
-@. -

28 29

Imaginer une requéte = visualiser les nuplets Souvent il faut plusieurs nuplets

Exemple : les films avec Gérard Depar-

ivial : & iDti i- g select f.titre
ExempAle tr|V|a,l. A) La requeéte e§tun§ trgnscr|pt|on di dieu? from Artiste as a,
Quel age a Gérard Depardieu? recte de la visualisation. Role as r,
select annéeNaissance Fim Ariste Film as f)
Artiste from Artisteasa | | ____ __._._ where a.nom = 'Depardieu’
where a.nom='Depardieu’ T —imi=iE and a.idArtiste = r.idActeur
i . PN _| /@,“ja{“i_—_' * and r.idFilm = f.idFilm
- - - Pour l'instant tout est simple. A
————————————————————— La requéte est encore une trans-

— Depardieu — - | a cription directe de la visualisation.

On identifie un nuplet, a, qui suffit.

30 31

La démarche mentale pour construire une requéte SQL est (toujours) la suivante.

select =
. po from Artiste as al, . . , , .
Artiste as a2, - On détermine les nuplets (et surtout leurs tables) nécessaires pour
=iEi== Eg{g g: 5;’ construire un nuplet du résultat.
”3 - e Filras = ¢a définit le from
----- - —— = where al.nom = 'Depardieu’ X . : o - .
- a2.nom = 'Deneuve’ On détermine les conditions que doivent satisfaire ces nuplets.
\ - and al.idArtiste = ri.idActeur = ¢a définit le where
and a2.idArtiste = r2.idActeur o . R . ~ |
"‘m\égé/n and rl.idfFilm = f.idFilm Important : une condition peut étre définie par une sous-requéte (résultat
o OO |2 and r2.idFilm = f.idFilm vide ou non)

- Il ne reste plus qu'a « piocher » dans les nuplets pour constituer le résultat
= ca définit le select et compléte la requéte.

32 33

