
SQL et les bases de données relationnelles
SQL : au-delà du calcul relationnel

Guillaume Raschia — Nantes Université
originaux de Philippe Rigaux, CNAM et Jeff Ullman, Stanford

Dernière mise-à-jour : 26 novembre 2025

1

Plan de la session

À propos du bloc SFW (S5.1)

Agrégats (S5.3)

Création de schéma (S7.1)

Vues (S7.3)

Mises-à-jour (S5.4)

Expression de contraintes et déclencheurs (S7.1-7.2, S8.3)

Procédures stockées (S8.1)

2

À propos du bloc SFW (S5.1)

Récapitulatif SQL : le bloc select-from-where

Dans cette section : présentation de quelques extensions pratiques au SQL
fondamental.

• Les valeurs nulles
• La jointure externe
• L’anti-jointure
• Le tri

3

Valeurs nulles

Une valeur nulle, ou plus précisément valeur à null est une valeur manquante.
Ne pas confondre avec la valeur « null » ou « ».

Dans notre table des occupants, le prénom de Prof est à null.

id prénom nom profession idAppart

1 Prof Enseignant 202
2 Alice Grincheux Cadre 103
3 Léonie Atchoum Stagiaire 100
4 Barnabé Simplet Acteur 102
… … … … …

La présence de valeurs à null fausse le résultat attendu des requêtes.
4

Comparaisons avec valeurs nulles

On ne sait pas comparer une valeur manquante, ni lui appliquer une fonction.
select p.profession
from Personne as p
where not p.prénom = 'Alice';

Prof – sans prénom – n’est pas trouvé.
select * from Personne p where p.prénom like '%';

Prof n’est pas trouvé non plus !

Une comparaison avec null ne donne ni Vrai, ni Faux, mais une troisième valeur
de vérité, unknown.

5

Calculs avec valeurs à null

Tout calcul appliqué à une valeur à null renvoie null !
select p.prénom || ' ' || p.nom as 'nomComplet'
from Personne p

nomComplet

null
Alice Grincheux
Léonie Atchoum
Barnabé Simplet

…

6

Le test is null

Seule approche correcte :

• il faut tester explicitement l’absence de valeur avec is null.

En SQL :
select * from Personne
where prénom like '%'
or prénom is null

Attention le test prénom = null ne marche pas.

Conclusion
éviter autant que possible les valeurs à null en les interdisant (dans le schéma).

7

La jointure externe

On veut la liste des appartements avec leurs occupants.
select idImmeuble as IdI, no, niveau, surface, nom, prénom
from Appart as a, Personne as p where p.idAppart = a.id

idI no niveau surface nom prénom

2 2 2 250 Prof null
1 52 5 50 Grincheux Alice
1 1 14 150 Atchoum Léonie
1 51 2 200 Simplet Barnabé
2 1 1 250 Joyeux Alphonsine
1 43 3 75 Timide Brandon
2 10 0 150 Dormeur Don-Jean

Il manque l’appartement 34 qui n’a pas d’occupant.
8

L’opérateur outer join

L’opérateur algébrique left [outer] join

• Renvoie tous les nuplets de la table directrice (celle de gauche)
• Associe à chaque nuplet un nuplet de la table de droite si un tel nuplet existe
• Sinon, les attributs provenant de la table de droite sont affichés à null

select idImmeuble as IdI, no, niveau, surface, nom, prénom
from Appart as a
left outer join Personne as p
on (p.idAppart = a.id)

On obtient, en plus de la jointure standard :

1 34 3 50 null null

9

L’anti jointure

Un opérateur utile, combinant la jointure externe et la comparaison à null
Exemple
Donner la description des logements non occupés par des enseignants.
-- exemple d'anti-jointure
select a.idImmeuble, a.no, a.niveau, a.surface
from Appart as a
left outer join /* jointure avec les logements d'enseignants */

(select idAppart
from Personne
where profession = 'Enseignant'
) as e

on (e.idAppart = a.id)
/* sélection de ceux qui n'ont pas été appairés */
where e.idAppart is null

10

Le tri, order by

On peut demander explicitement le tri du résultat sur une ou plusieurs
expressions avec la clause order by

select *
from Appart
order by surface, niveau

En ajoutant des clauses sur l’ordre du tri (ascending ou descending)

select *
from Appart
order by surface desc, niveau desc

11

À retenir

Les fondements du langage SQL – logique ou algèbre – sont une base sur
laquelle beaucoup d’extensions pratiques sont possibles.

• Valeurs à null, jointures externes, anti-jointures, tris
• Mais aussi des fonctions pour manipuler les valeurs typées, bien souvent
spécifiques à chaque système

• Ne change en rien l’interprétation du langage, que vous devez maintenant
maîtriser.

12

Agrégats (S5.3)

SQL, agrégation

Cette section présente les agrégats en SQL. Elle consiste à regrouper des lignes et
à appliquer à chaque groupe une fonction d’agrégation.

Contenu :

• La clause group by
• Fonctions d’agrégation
• La clause having

13

Principe général

On définit des groupes de lignes ayant en commun une ou plusieurs valeurs.

On ramène chaque groupe à une seule valeur en appliquant une fonction
d’agrégation, parmi MIN, MAX, SUM, AVG et même COUNT.
Cas le plus simple : un seul groupe, obtenu par un bloc select-from-where.
select count(*) as nbPersonnes,

count(prénom) as nbPrénoms,
count(nom) as nbNoms

from Personne

nbPersonnes nbPrénoms nbNoms

7 6 7

14

Le group by

La clause group by att1, ..., attn partitionne le résultat d’un bloc
select-from-where en fonction des att1, ..., attn

Chaque groupe contient les lignes qui partagent les mêmes valeurs pour att1,
..., attn.

select idAppart, sum(quotePart) as totalQP
from Propriétaire
group by idAppart

Procède en deux étapes : d’abord on groupe, puis on agrège.

15

Décomposons : l’étape de regroupement

On obtient une structure intermédiaire, avec autant de lignes que de valeurs
distinctes pour les attributs de regroupement (ici, idAppart).

idAppart Groupe (idPersonne, idAppart, quotePart)

100 {(1, 100, 33), (5, 100, 67)}
101 {(1, 101, 100)}
102 {(5, 102, 100)}
103 {(2, 103, 100)}
104 {(2, 104, 100)}
201 {(5, 201, 100)}
202 {1, 202, 100)}

Ce n’est pas une table en première forme normale. 16

L’étape d’agrégation

La fonction d’agrégation ramène un groupe à une valeur

idAppart SUM(quotePart)

100 SUM (33, 67) = 100
101 SUM (100) = 100
102 SUM (100) = 100
103 SUM (100) = 100
104 SUM (100) = 100
201 SUM (100) = 100
202 SUM (100) = 100

• Cette fois c’est une table en première forme normale.
• La clause select ne contient que des valeurs agrégées ou des attributs de
regroupement.

17

La clause having

Exprime un critère de sélection sur le résultats de la fonction d’agrégation.

Bien distinguer de la clause where qui s’applique aux nuplets

select idAppart, count(*) as nbProprios
from Propriétaire
group by idAppart
having count(*) >= 2

idAppart nbProprios

100 2

18

À retenir

Agrégats = extension de SQL.

• S’applique au résultat d’une requête standard
• Partitionne en groupes de nuplets partageant les mêmes valeurs de
regroupement

• Réduit chaque groupe à une valeur grâce à une fonction d’agrégation
• On peut filtrer les groupes obtenus avec having

Attention aux valeurs à null et aux doublons.

19

Création de schéma (S7.1)

Création d’un schéma relationnel

La partie Data Definition Language (DDL) définit les commandes de création d’un
schéma relationnel.

Dans cette section :

• La commande create table
• Les types de données
• La déclaration des clés

20

La commande create table

Un premier exemple : la table Internaute.

create table Internaute (email varchar (40),
nom varchar (30),
prénom varchar (30),
région varchar (30)
);

-- la contraposée, pour supprimer une table
drop table Internaute;

Quelques choix à effectuer : conventions de nommage, accents, etc.

21

Les types de données en SQL

Les types les plus usités :

• int or integer (synonymes)
• real ou float (synonymes)
• char(n) : chaîne de caractères de taille n fixe
• varchar(n) : chaîne de caractères de taille variable ( n).
• date et time

22

Les valeurs en SQL

• Les nombres entiers (5) et réels (3.0)
• Les chaînes de caractères entourées de guillemets simples
• Les dates sont par défaut ’yyyy-mm-dd’
• Les heures sont ’hh:mm:ss’
• Toute valeur peut être mise à null

De très nombreuses fonctions permettent de manipuler les valeurs en SQL
cf. les ressources du site web sql.sh.

23

La contrainte not null

Les valeurs à null sont source de problèmes : on peut les interdire avec not
null ou donner une valeur par défaut.

create table Cinéma (idCinéma integer not null,
nom varchar(30),
adresse varchar(255) default 'Inconnue'
);

Le SGBD rejettera alors toute tentative d’insérer un nuplet avec une valeur
idCinéma manquante.

24

La clé primaire

Elle est spécifiée avec la clause primary key.

create table Pays (code char(4) primary key,
nom varchar(30),
langue varchar(30),
);

Il devrait toujours y avoir une et une seule clé primaire dans une table et le
système garantit

• l’existence de ses valeurs (not null),
• l’unicité de ses valeurs.

25

Clé primaire composée

Une clé primaire peut comprendre plusieurs attributs.

create table Notation (idFilm integer,
email varchar (40),
note integer not null,
primary key (idFilm, email));

Tous les attributs qui composent une clé primaire sont not null.

26

Clé primaire, clés « secondaires »

On peut définir d’autres clés avec la clause unique.
create table Artiste (idArtiste integer,

nom varchar (30),
prénom varchar (30),
annéeNaiss integer,
primary key (idArtiste),
unique (nom, prénom))

• unique peut également figurer dans la déclaration de l’attribut.
• Une contrainte unique ne garantit pas l’absence de valeur à null.

Permet d’avoir un identifiant « abstrait », non modifiable, et d’ajouter des
contraintes flexibles sur les attributs descriptifs.

27

À retenir

Après la phase de conception, la création du schéma ne présente aucune
difficulté.

• Connaître les principaux types SQL
• Connaître la commande create table
• Ajouter les contraintes

• de clé (unique et primary key),
• et d’existence (not null).

La spécification des contraintes n’est pas une lourdeur. Elle garantit que la base
est saine, et évite beaucoup d’ennuis.

28

Vues (S7.3)

Les vues

Toute requête produit une relation. Nommer cette requête c’est nommer la
relation résultat et pouvoir l’interroger. Une vue est une requête nommée.

C’est aussi une table calculée au moment où on l’interroge.

Dans cette session :

• La commande create view
• Interrogation d’une vue
• Mise à jour d’une vue

29

La commande create view

create view Sillon as
select nom, adresse, count(*) as nb_logts
from Immeuble as i, Logement as l
where i.nom = 'Sillon'
and i.id = l.idImmeuble
group by i.id, nom, adresse

Le résultat de la requête est réévalué à chaque fois que l’on accède à la vue.

30

Interrogation d’une vue

On interroge une vue comme n’importe quelle table.

select * from Sillon

nom adresse nb_logts

Sillon 1 Av. de l’Angevinière 780

Une vue peut répondre à des objectifs de simplification et/ou de restriction
d’accès et de confidentialité.

31

Vue dénormalisée

Une vue peut présenter une base dénormalisée.
create view LogtSillon as

select no, surface, niveau, i.nom as immeuble, adresse,
concat(p.prénom, ' ', p.nom) as occupant

from Immeuble as i, Logement as l, Personne as p
where i.id=l.idImmeuble
and l.id=p.idLogement
and i.nom='Sillon'

no surf. niv. immeuble adresse occupant

1 150 29 Sillon 1 Av. de l’Angevinière Léonie Atchoum
51 77 7 Sillon 1 Av. de l’Angevinière Barnabé Simplet
52 45 12 Sillon 1 Av. de l’Angevinière Alice Grincheux
43 58 3 Sillon 1 Av. de l’Angevinière Brandon Timide

32

Insertion dans une vue

Beaucoup de restrictions :

• la vue doit être basée sur une seule table ;
• toute colonne non référencée dans la vue doit pouvoir être mise à null ou
disposer d’une valeur par défaut ;

• on ne peut pas mettre à jour un attribut qui résulte d’un calcul ou d’une
opération.

create view PropriétaireAlice as
select * /* idProp, idLogt, quotePart */ from Propriétaire
where idPersonne=2

insert into PropriétaireAlice values (2, 100, 20)
insert into PropriétaireAlice values (3, 100, 20)

33

La clause check option

Sur la vue précédente, la requête :
select * from PropriétaireAlice

ne montre pas le propriétaire 3 que l’on vient d’insérer !

La clause check option permet de n’insérer que des nuplets que l’on peut
ensuite sélectionner.
create view PropriétaireAlice as

select * from Propriétaire
where idPersonne = 2

with check option

34

À retenir

Les vues sont des requêtes nommées que l’on peut traiter comme des tables.

Elles permettent de restructurer « virtuellement » une base.

• Pour simplifier l’accès (jointures pré-définies)
• Pour restreindre la visibilité des données (on ne donne accès qu’à la vue)
• Les modifications dans les vues sont limitées et offrent peu d’intérêt

35

Mises-à-jour (S5.4)

Mises-à-jour des données

Des commandes SQL sont dévolues aux mises-à-jour des données des relations :
l’insertion, la suppression et la modification.

Les commandes de mise-à-jour ne produisent aucune relation (à l’inverse des
requêtes), mais modifient l’état de la base de données.

Dans cette section :

• La commande insert
• La commande delete
• La commande update

36

L’insertion, insert

insert into <relation> values (<liste de nuplets>);

Exemple
Ajouter à la table Aime(buveur, bière) le fait que Alice aime la Titan.
insert into Aime values ('Alice', 'Titan');

37

insert, avec la liste des attributs

• Il est possible de spécifier une liste d’attributs
• Pour deux raisons :

1. On ne respecte pas l’odre des attributs
2. On ne fournit pas de valeur pour certains attributs dont on souhaite que le
système complète à null ou une valeur par défaut

Exemple

insert into Aime(bière, buveur) values ('Titan', 'Alice');

38

insert, avec valeurs par défaut

Lors de la création de table, si une valeur par défaut est déclarée pour un
attribut, celle-ce sera affectée à chaque insertion sans valeur.

Exemple

create table Buveur(
nom char(30) primary key,
adresse varchar(50) default '123 rue C. Pauc',
tel char(10));

insert into Buveur(nom) values ('Alice')

Le nuplet créé est Buveur(’Alice’, ’123 rue C. Pauc’, null).

39

insert, par lot

Insertion du résultat d’une sous-requête :
insert into <relation> values (<sous-requête>);

Exemple
À partir de la table Fréquente(buveur, bar), on insert dans la relation
Rencontre(nom) tous les buveurs qui fréquentent au moins un bar qu’Alice
fréquente.
insert into Rencontre values (

select f2.buveur
from Fréquente f1, Fréquente f2
where f1.buveur = 'Alice'
and not f2.buveur = 'Alice'
and f1.bar = f2.bar);

40

delete, pour la suppression

Supprimer des nuplets qui remplissent une condition :
delete from <relation> where <condition>;

Exemple

-- Alice n'aime plus la Titan
delete from Aime where buveur = 'Alice' and bière = 'Titan';

-- Plus aucun buveur n'aime de bière!
delete from Aime;

41

delete, pour plusieurs nuplets

Supprimer de la table Bière(nom, brasserie), toutes les bières pour
lesquelles il en existe déjà une de la même brasserie.
delete from Bière b where exists (

select name from Bière bb
where bb.brasserie = b.brasserie
and not bb.nom = b.nom);

42

delete, sémantique

delete from Bière b where exists (
select name from Bière bb
where bb.brasserie = b.brasserie and not bb.nom = b.nom);

• Supposons que :
• la Brasserie du Bouffay ne brasse que la Titan et la Moustache ;
• la Titan soit la première bière affectée à la variable b ;

• La sous-requête n’est pas vide, puisqu’il existe la Moustache, donc la Titan
est supprimée.

• Ensuite, vient l’examen de la Moustache. Doit-on supprimer cette dernière ?

43

delete, sémantique (suite)

Il faut supprimer la Moustache également.

La suppression opère en effet comme suit :

1. marquage de tous les nuplets qui remplissent la condition
2. suppression des nuplets marqués.

44

Modifications

L’instruction update change les valeurs d’attributs pour certains nuplets de la
relation.
update <relation>

set <liste d'affectations par attribut>
where <condition sur les nuplets>

Exemple
Modifie le numéro de téléphone de Bob en 06.01.02.03.04
update Buveur set tel = '06.01.02.03.04' where nom = 'Bob';

Permet de modifier plusieurs nuplets : fixe un prix maximum pour les bières.
update Carte set prix = 4.00 where prix > 4.00;

45

À retenir

Les mises-à-jour de données en SQL sont circonscrites aux trois commandes

• insert : insertion individuelle ou par lot à l’aide d’une sous-requête
• delete : sur condition via la clause where
• update : idem.

46

Expression de contraintes et
déclencheurs (S7.1-7.2, S8.3)

Les contraintes

Cette section détaille les formes d’expression de contraintes et les déclencheurs
disponibles en SQL.

Les points abordés sont les suivants :

• clé étrangère
• contrainte locale et contrainte globale
• déclencheur

47

Contraintes et déclencheurs

Une contrainte est une propriété sur les données que le SGBD doit garantir.

Exemple
unique, not null, primary key

Un déclencheur (ou trigger en anglais) est un traitement réalisé à chaque fois
qu’un événement survient, tel que l’insertion d’un nuplet.

• C’est une forme d’exigence parfois plus facile à exprimer qu’une contrainte
complexe.

48

Les types de contraintes

• clé, existence, unicité
• clé étrangère, ou contrainte d’intégrité référentielle
• contrainte de domaine

• locale
• propre à un seul attribut

• contrainte de nuplet
• globale
• spécifie des relations entre plusieurs attributs

• assertion : toute expression booléenne formulée en SQL

49

Révision : clé simple et clé composite

Placer le mot-clé (sic !) primary key ou unique en fin de déclaration d’un
attribut

Exemple

create table Bière(
nom varchar(20) unique,
brasserie varchar(20));

-- La clé de la table Carte est composée du bar et de la bière
create table Carte(

bar varchar(20),
bière varchar(20),
prix real,
primary key (bar, bière));

50

Clé étrangère

Les valeurs d’un attribut doivent être piochées dans l’ensemble des valeurs d’un
attribut de référence, clé primaire dans une autre relation.

Exemple
Dans la relation Carte(bar, bière, prix) on suppose que les bières
figurent parmi les valeurs de le clé Bière.nom.

51

Expression d’une clé étrangère

À l’aide du mot-clé references :

• soit immédiatement après la déclaration d’attribut,
• soit comme un nouvel élément du schéma.

create table Bière (
nom varchar(20) primary key,
brasserie varchar(20));

create table Carte (
bar varchar(20),
bière varchar(20) references Bière(nom),
prix real
/* alt.
foreign key (bière) references Bière(nom) */
);

52

Les garanties d’une clé étrangère

Supposons une clé étrangère dans S qui se rapporte à des valeurs dans R ;
Violation de contrainte

• l’insertion ou la modification d’une valeur dans S , absente de R
• la suppression ou la modification d’une valeur de référence dans R, qui
produit des nuplets « orphelins » dans S

Exemple
Avec S = Carte et R = Bière, l’ajout d’un triplet à la Carte composé d’une
bière inconnue (dans la table Bière) constitue une violation de contrainte.
De même, la suppression d’une bière (de la table Bière) qui est encore
disponible à la Carte pose problème.

53

Traitement des violations de contrainte

Il existe 3 façons de traiter ces problèmes.

Les 3 options

1. default : rejeter la mise-à-jour
2. cascade : propager la mise-à-jour

• suppression d’une bière : supprimer les nuplets correspondant à la carte
• modification d’une bière : modifier la valeur sur la carte.

3. set null : fixer la valeur à null

54

Choix d’une option

À la déclaration d’une clé étrangère, on choisit parmi les 3 options,
indépendamment pour la suppression et la modification.

Exemple

create table Carte (
bar varchar(20),
bière varchar(20),
prix real,
foreign key (bière)

references Bière(nom)
on delete set null
on update cascade

);

En l’absence de spécification, le comportement par défaut (default) prévaut.

55

Contrainte de domaine

Elle s’applique sur les valeurs d’un attribut

• Ajouter check (<condition>) à la déclaration de l’attribut
• La condition peut utiliser le nom de l’attribut
• Tout·e autre attribut ou relation doit figurer dans une sous-requête

Exemple

create table Carte (
bar varchar(20),
bière varchar(20)

check (bière in (select nom from Bière)),
prix real

check (prix <= 5.00)
);

56

Temps du check

La vérification a lieu seulement à l’insertion ou la modification d’un nuplet.

Exemple

• check (prix <= 5.00) teste chaque nouvelle valeur de prix et rejette la
mise-à-jour (pour le nuplet incriminé seulement) si le prix est supérieur à 5

• check (bière in (select nom from Bière)) n’est pas vérifiée si
une bière est supprimée de la table Bière !

57

Contrainte de nuplet

La contrainte check (<condition>) peut être définie comme un élément du
schéma.

• qui est exprimée à l’aide d’un ou plusieurs attribut(s) de la relation
• mais qui requiert une sous-requête pour toute référence à d’autres relations
• et qui est vérifiée à l’insertion et à la modification seulement.

Exemple
Seul le LAB 1 peut vendre de la bière à plus de 5€.
create table Carte (

bar varchar(20),
bière varchar(20),
prix real,
check (bar = 'LAB' OR prix <= 5.00)

);
1. Little Atlantique Brewery 58

Assertion

Une assertion est un élément du schéma de la base de données, comme une
relation ou une vue.
create assertion <nom> check (<condition>);

La condition peut porter sur un élément quelconque du schéma de toute la base
de données.

Exemple
Chaque bar doit proposer une carte dont la moyenne des prix ne dépasse pas 5€.
create assertion bonMarché check (

not exists (select bar from Carte
group by bar having 5.00 < AVG(prix))

);

59

Temps du assertion

En principe, la vérification a lieu à chaque mise-à-jour (insert, update,
delete) d’une relation quelconque de la base de données.
Une analyse plus fine permettrait de s’apercevoir que nombre d’actions n’ont
aucun impact sur l’assertion…

Exemple
Une mise-à-jour de Bar ou de Bière est sans conséquence sur l’assertion
bonMarché.
En définitive, seule une mise-à-jour de Carte qui induit un nouveau prix
supérieur à 5€ doit faire l’objet d’une vérification !

60

Les déclencheurs

Motivation

• Les assertions sont puissantes, néanmoins le SGBD ne comprend pas
toujours très bien quand il est utile de les vérifier

• les check (contraintes de domaine et de nuplet), sont mieux réglés mais
moins puissants

• les déclencheurs (trigger en anglais) offrent la possibilité de paramétrer
l’événement déclencheur ainsi que de définir une condition complexe.

61

Règle Événement-Condition-Action

ECA : un autre nom pour les déclencheurs :

• Événement : le plus souvent un type de mise-à-jour, tel que « insérer dans
Carte »

• Condition : toute expression booléenne en SQL
• Action : toute instruction SQL

62

Exemple liminaire

À la place de la clé étrangère sur Carte.bière qui rejette l’insertion d’un nuplet
(bar, bière, prix) avec une bière inconnue, un déclencheur peut
automatiquement ajouter la bière dans la table Bière, avec une valeur à null
pour la brasserie.

create trigger BièreDec
after insert on Carte /* l'événement */
referencing new row as nuplet for each row
when (nuplet.bière not in /* la condition */

(select nom from Bière))
insert into Bière(nom) /* l'action */

values (nuplet.bière);

63

Les options d’un déclencheur

La création
create trigger <nom> ou create or replace trigger <nom>

• utile pour modifier la définition d’un déclencheur existant

L’événement

• after, peut aussi être before
• ou encore instead of pour les vues seulement

L’action

• insert, peut être delete ou update
• et update ou update...on un attribut spécifique

64

Les options (suite)

La portée

• for each row : exécuté à chaque mise-à-jour de nuplet
• par défaut : exécuté à chaque ordre SQL, quel que soit le nombre de nuplets
mis-à-jour

Les variables referencing

• insert produit un nouveau nuplet (for each row) ou une nouvelle table
(ensemble des nuplets-résultats de l’ordre SQL)

• delete suggère l’existence d’un·e (futur·e-ancien·ne) nuplet ou table
• update couvre les deux situations précédentes

[new | old] [tuple | table] as <nom>
65

Les options (fin)

La condition

• L’expression booléenne est évaluée sur l’image de la base de données telle
qu’elle est avant (before) ou après (after) l’événement

• Mais toujours avant que la mise-à-jour prenne effet
• L’accès aux nouvelles et anciennes valeurs se fait via les variables de la
clause referencing

Le bloc d’actions

• Il est possible de définir une suite d’ordres SQL, séparés par ;
• Dans ce cas, le bloc débute par begin et termine par end
• Néanmoins, les requêtes select-from-where ne sont pas éligibles dans le
bloc d’actions 66

Autre exemple de déclencheur

Maintenir à jour une liste de bars ÀÉviter(bar) qui ont augmentés leur prix de
plus de 1€.
create trigger PrixDec

/* l'événement: seulement une MàJ du prix */
after update of prix on Carte
referencing old row as ooo new row as nnn
for each row
when (nnn.prix > ooo.prix + 1.00)
insert into ÀÉviter values (nnn.bar)

67

À retenir

check, assertion et trigger sont les mots-clés SQL pour déclarer des
contraintes et des déclencheurs.

Les contraintes et déclencheurs en SQL permettent de formuler un grand nombre
de propriétés à vérifier sur les données.

Une fois déclarés, ils sont automatiquement pris en charge par le SGBD.

C’est une économie pour le programmeur et une assurance que les données
restent saines.

68

Procédures stockées (S8.1)

Pourquoi un langage de programmation?

SQL n’est pas un langage de programmation (quoi que…)

• SQL est un langage pensé pour permettre l’interrogation d’une base de
manière déclarative, et non procédurale

• Pas de variable, pas de boucle, pas de condition, pas de fonction

Pour écrire des applications, SQL est associé à un langage de programmation

L’association :

• SQL pour les accès à la base
• Python, TypeScript, Go, Rust, Java, PHP, C++, Haskell, etc. pour tout le reste

69

Deux architectures possibles

Premier cas (majoritaire, à gauche) :
Les requêtes SQL sont intégrées à un programme client et transmises au serveur
de données.

Second cas (à droite) :
Les requêtes SQL sont intégrées au serveur – via des procédures stockées – et
induisent moins d’échanges réseaux, une meilleure performance et sécurité.

70

Le standard SQL…

SQL/PSM
Le langage standardisé, avec SQL, pour écrire des procédures stockées

• PSM = Persistent Stored Modules
• Utilisable aussi dans les déclencheurs (Trigger) et dans les fonctions
personnalisées (User Defined Function)

• Implémenté dans IBM DB2, MySQL, MariaDB

Mais peu populaire, et historiquement devancé par de nombreux langages
« propriétaires »

71

…Et tout le reste !

Principales alternatives

• PL/pgSQL (SQL Procedural Language) dans PostgreSQL, proche du standard
• T-SQL (Transact-SQL) dans MS SQL Server, significativement différent du
standard SQL/PSM

• PL/SQL (Procedural Language for SQL) dans Oracle, très largement déployé,
et montré en exemple dans cette section

Les systèmes de bases de données en mémoire (SQLite, DuckDB) n’implémentent
pas les procédures stockées.

Qu’en est-il des systèmes de bases de données dans le nuage?

72

Premier exemple, mode interactif (PL/SQL)

DECLARE -- Quelques variables
v_nbFilms INTEGER;
v_nbArtistes INTEGER;

BEGIN
SELECT COUNT(*) INTO v_nbFilms FROM Film; -- nb films
SELECT COUNT(*) INTO v_nbArtistes FROM Artiste; -- nb artistes

-- Affichage des résultats
DBMS_OUTPUT.PUT_LINE ('Nombre de films: ' || v_nbFilms);
DBMS_OUTPUT.PUT_LINE ('Nombre d''artistes: ' || v_nbArtistes);

END;

Notez : les variables, la clause into.

73

Procédure stockée

CREATE OR REPLACE PROCEDURE InsereGenre (p_genre VARCHAR) AS
v_genre_majuscules VARCHAR(20);
v_count INTEGER;

BEGIN
v_genre_majuscules := UPPER(p_genre); -- en majuscule

SELECT COUNT(*) INTO v_count
FROM Genre WHERE code = v_genre_majuscules; -- existe ?

IF (v_count = 0) THEN -- insertion cond.
INSERT INTO Genre (code) VALUES (v_genre_majuscules);

END IF;
END;

Notez : la condition.
74

Second exemple, fonction et itérateur

CREATE OR REPLACE FUNCTION MesActeurs(v_idFilm INTEGER) RETURN VARCHAR IS
resultat VARCHAR(255);

BEGIN
FOR art IN (SELECT Artiste.* FROM Role, Artiste

WHERE idFilm = v_idFilm AND idActeur=idArtiste)
LOOP -- boucle sur les acteurs du film

IF (resultat IS NOT NULL) THEN
resultat := resultat || ', ' || art.prenom || ' ' || art.nom;

ELSE
resultat := art.prenom || ' ' || art.nom;

END IF;
END LOOP;
return resultat;

END;

Notez : le type automatique de art, la boucle
75

Utilisation

• En ligne de commande interactive
SQL> start StatsFilms.sql

• Avec l’ordre execute, placé dans un autre langage (C, Java, PHP, etc.)
execute insereGenre('Policier')

• Dans une requête SQL
SELECT titre, MesActeurs(idFilm)
FROM Film WHERE idFilm=5;

TITRE MESACTEURS(IDFILM)
------------ -----------------------------
Volte/Face John Travolta, Nicolas Cage

76

Dérivation de types depuis le schéma

Deux exemples pour illustrer.

• Film.titre%TYPE est le type de l’attribut titre de la table Film ;
• Artiste%ROWTYPE est un type RECORD correspondant aux attributs de la
table Artiste.

Beaucoup plus difficile avec un langage de programmation externe.

77

À retenir

Principales difficultés SQL/programmation : typage et conversion

Typage et conversion des nuplets

• Définir des variables du langage (Python, Java) correspondant aux types SQL
• Convertir le résultat d’une requête en variables du langage

Typage et conversion des tables

• Ce sont des ensembles – ou séquences si order by –, on doit les parcourir
avec des boucles.

78

