Design Theory for Relational Databases

Functional Dependencies

Guillaume Raschia — Polytech Nantes; Université de Nantes Last update: November 11, 2021

Integrity Constraints

Contents

Integrity Constraints Reasoning with FD's Projecting FD's [source :]. Ullman, Stanford]

Functional Dependencies

$X \to \, Y$

An FD is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y

 $X \to Y \quad := \quad \forall t, u \in R, \ t[X] = u[X] \implies t[Y] = u[Y]$

- Say "X determines Y" or "X gives Y" and also " $X \to Y$ holds in R"
- Convention: ..., X, Y, Z represent set of attributes; A, B, C, ...represent single attributes
- Convention: no set formers in sets of attributes, just ABC rather than $\{A, B, C\}$

Example FD's

Drinkers(name, addr, beersLiked, brewery, favBeer)

Expected FD's to assert:

- 1. name \rightarrow addr favBeer
 - + Note: this FD is the same as $name \rightarrow addr$ and $name \rightarrow favBeer$
 - No splitting rule for the left-hand side (lhs)
- 2. beersLiked \rightarrow brewery

Keys of Relations

• *K* is a **superkey** for relation *R* if *K* functionally determines all the attributes of *R*

In other words, a set of attributes K is a superkey in R if for any two tuples t, u in R, t[K] = u[K] implies t = u. That is, a superkey is a set of attributes that **uniquely identifies** a tuple in a relation

• *K* is a **key** for *R* if *K* is a superkey, but no proper subset of *K* is a superkey: *K* is minimal

Among the-candidate-keys, arbitrarily promote one into the primary key

Example Data

name	addr	beersLiked	brewery	favBeer		
Alice	Nantes	Trompe Souris	La Divatte	Titan		
Alice	Nantes	Titan	Bouffay	Titan		
Bob	Rennes	Titan	Bouffay	Titan		

FD's

- $\cdot \,\, name \rightarrow \text{addr} \,\, \text{implies}$ (Alice, Nantes) twice
- \cdot name \rightarrow favBeer implies (Alice, Titan) twice
- · beersLiked \rightarrow brewery implies (Titan, Bouffay) twice

Example: Superkey

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a superkey

because together these attributes determine all the other attributes

- $\cdot \ \text{name} \rightarrow \text{addr favBeer}$
- $\cdot \text{ beersLiked} \rightarrow \text{brewery}$

7

Example: Key

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a key

because neither {name} nor {beersLiked} is a superkey

- name doesn't \rightarrow brewery
- + beersLiked doesn't \rightarrow addr

There are no other keys, but lots of superkeys: any superset of {name, beersLiked}

Where Do Keys Come From?

- 1. Just assert a—surrogate—key K
 - + The only FD's are $K \to A$ for all attributes A
- 2. Assert FD's and deduce the keys
 - Like we did on the previous Drinkers example

More FD's From "Physics"

FD's are integrity contraints on the database, coming from the real-life problem

Example

"no two courses can meet in the same room at the same time"

 \cdot tells us: hour room \rightarrow course

Short Digression on Inclusion Dependencies

Drinkers(name, addr, beersLiked, brewery, favBeer)
Bars(name, addr)
Frequents(drinker, bar)

Inclusion Dependencies (IND)

- Every drinker from the Frequents table must be an existing name in the Drinkers table
- 2. Every bar from the Frequents table must be an existing name in the Bars table

10

8

a

Inclusion Dependencies Foreign Keys IND is a Referential integrity Attributes of one relation refer to values in another one • Most often IND's occur as part of a foreign key Formally, we have an inclusion dependency $S[Y] \subseteq R[X]$ when every value of the • Foreign key is a conjunction of a primary key and an IND: set of attributes *Y* in *S* also occurs as a value of the set of attributes *X* in *R*: $S[X] \subseteq R[K]$ and K is a key in R $\pi_Y(S) \subseteq \pi_X(R)$ 12 13 Example: Foreign Key Bars(name, addr) Frequents(drinker, bar) **Inference System** The Bars-Frequents link • As an IND, we expect Frequents.bar from Frequents to be found in Bars.name • Since name is a primary key in Bars, then Frequents.bar is a foreign key in Frequents 14

Inferring FD's

We are given a set of FD's $\mathcal{F} = \{f_i\}_{1 \le i \le n}$, and we want to know whether an FD $X \to A$ must hold in any relation that satisfies the given FD's

Example

If $A \to B$ and $B \to C$ hold, surely $A \to C$ holds, even if we don't say so

The inference system is important for the design of good relation schemas

Example: Inference Test

Question

Does $A \to C$ holds in R(A, B, C, D) with $\mathcal{F} = \{A \to B, B \to C\}$?

R	A	B	C	D		R	A	B	C	D		R	A	B	C	D
t	0	0	0	0	\implies	t	0	0	0	0	\Longrightarrow	t	0	0	0	0
u	0	?	?	?	Dy $A \rightarrow B$	u	0	0	?	?	by $B \rightarrow C$	u	0	0	0	?

• Then, if any t and u agree on A, they agree on C

 $\cdot A \rightarrow C$ follows from \mathcal{F} , also denoted $\mathcal{F} \models A \rightarrow C$

Inference Test

e want to know whether an FD the given FD's	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
, even if we don't say so gn of good relation schemas	 Use the given FD's to infer that these tuples must also agree in certain other attributes If A is one—subset—of these attributes, then X → A is true Otherwise, the two tuples, with any forced equalities, form a two-tuple relation that proves X → A does not follow from the given FD's
15	16
	Closure Test
$A \to B, B \to C\}?$	An easier way to test is to compute the closure of X, denoted X^+
D $R \mid A \mid B \mid C \mid D$	1. Basis: $X^+ = X$
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2. Induction: look for an FD's lhs Y that is a subset of the current X^+ . If the FD is $Y \to Z$, add Z to X^+
$\begin{array}{cccc} $	3. Stop when a fixpoint is reached

To test if $X \to A$, start by assuming two tuples t and u agree on all attributes of X

 $R \mid X \qquad A$ the rest

Example: Closure Test

 $\mathcal{F} = \{AB \to CD, C \to A, B \to DE, A \to E, DE \to F\}$

 $\begin{array}{ll} \mathsf{CD}^0 = \{\mathsf{CD}\} & \text{init. step} \\ \mathsf{CD}^1 = \mathsf{CD}^0 \cup \{\mathsf{A}\} = \{\mathsf{CDA}\} & \text{by firing } \mathsf{C} \to \mathsf{A}, \, \mathsf{C} \text{ in } \mathsf{CD}^0 \\ \mathsf{CD}^2 = \mathsf{CD}^1 \cup \{\mathsf{E}\} = \{\mathsf{CDAE}\} & \text{by firing } \mathsf{A} \to \mathsf{E}, \, \mathsf{A} \text{ in } \mathsf{CD}^1 \\ \mathsf{CD}^3 = \mathsf{CD}^2 \cup \{\mathsf{F}\} = \{\mathsf{CDAEF}\} & \text{by firing } \mathsf{DE} \to \mathsf{F}, \, \mathsf{DE} \text{ in } \mathsf{CD}^2 \\ \mathsf{CD}^4 = \mathsf{CD}^3 = \mathsf{CD}^+ \end{array}$

Side note: CDA, CDE, CDF, CDAE, CDAF, CDEF, CDAEF all have closure =CDAEF

19

Back to Key Finding

Remember: $K \rightarrow$ all attributes and K is minimal

- 1. For each subset of attributes X, compute X^+
- 2. Add X as a new key if $X^+ =$ all attributes
- 3. However, drop XY whenever we add X
 - Because XY is a non-minimal superkey

Closure Test and Inference

Definition (Attribute Closure)

$$X^+ = \{A \mid \mathcal{F} \models X \to A\}$$

Does $X \to A$ follows from \mathcal{F} ? \iff Membership test: Does $A \in X^+$?

20

A Few Tricks

- No need to compute the closure of the empty set or of the set of all the attributes
- If we find $X^+ =$ all attributes, so is the closure of any superset of X• Then, it's worth considering X by increasing cardinalities
- \cdot If an attribute is not in any rhs of FD, then it MUST be part of every key
 - Step 1 is then: Find non-rhs attributes Z then for each subset ZX...

Example: Key FindingABCD with $\mathcal{F} = \{A \rightarrow B, AC \rightarrow D, D \rightarrow C\}$ 1. Only A is non-rhs attribute2. $A^+ = AB$; A is not superkey3. $AB^+ = AB$ \cdot Since AB is already a-subset of a-closure (of A), then $AB^+ = A^+$ 4. $AC^+ = ACDB$; AC is a (super)key5. $AD^+ = ADCB$; AD is a (super)key6. ABC, ABD, ACD may be skipped as obvious superkeys7. Any other subset does not contain AKeys are AC, AD23

24

Finding All Implied FD's

Motivation

normalization: the process where we break a relation schema into two or more schemas

Example

ABCD with FD's $AB \rightarrow C$, $C \rightarrow D$, and $D \rightarrow A$

- Decompose into ABC, AD: What FD's hold in ABC?
- Not only $AB \to C$, but also $C \to A!$

All Implied FD's

Definition (Closure of \mathcal{F})

$$\mathcal{F}^+ = \{ X \to Y \mid \mathcal{F} \models X \to Y \}$$

Example: ABCD with $\mathcal{F} = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$

In \mathcal{F}^+ , one can find:

- \cdot all the FD's from ${\cal F}$
- trivial FD's: $A \rightarrow A$, $AB \rightarrow A$, ..., $B \rightarrow B$, ...
- + ABD \rightarrow CD, CA \rightarrow DA, CB \rightarrow DB, ...
- · $AB \rightarrow D, C \rightarrow A$

How to be sure not to forget any FD?

Reasoning with FD's

Armstrong's axioms

- 1. **Reflexivity** (trivial FD): if $X \supseteq Y$, then $X \to Y$
- 2. Augmentation: if $X \to Y$, then $XZ \to YZ$ for any Z
- 3. Transitivity: if $X \to Y$ and $Y \to Z$, then $X \to Z$
- These are sound and complete inference rules for FD's!
 - \mathcal{F}^+ is the result of applying these 3 rules
 - · syntactic \vdash and semantic \models are mainly the same
- \cdot Usually, we are only concerned with **nontrivial** FD's: rhs not contained in lhs

Reasoning with FD's (cont'd)

Commonly derived rules

- 4. Union: if $X \to Y$ and $X \to Z$, then $X \to YZ$
- 5. **Decomposition**: if $X \to YZ$, then $X \to Y$ and $X \to Z$
- 6. **Pseudo-transitivity**: if $X \to Y$ and $YZ \to T$, then $XZ \to T$

27

Project FD's onto Attributes

Given ABC with FD's $\mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$

Problem: project onto AC

Basic Idea

- Start with given FD's in F and find all nontrivial FD's that follow from F w.r.t. the Armstrong's axioms
- 2. Restrict to those FD's that involve only attributes of the projected schema

Simple Yet Exponential Algorithm

For each subset of attributes X in the projected schema, compute X⁺
 Add X → A for all A in X⁺ - X only if A is a projected attribute
 However, drop XY → A whenever we discover X → A

 Because XY → A follows from X → A in any projection

28

A Few Tricks

• No need to compute the closure of the empty set or of the set of all the projected attributes

• If we find X^+ = all attributes, so is the closure of any superset of X

30

Equivalence Test

Given $\mathcal{F} = \{A \to B, B \to C\}$ and $\mathcal{G} = \{A \to B, B \to C, A \to C\}$

How to check \mathcal{F} and \mathcal{G} are the same?

- $\cdot \,\, {\mathcal F}$ not equal to ${\mathcal G}$ but ${\mathcal F}^+$ equal to ${\mathcal G}^+$
- A dead end: compute \mathcal{F}^+ and \mathcal{G}^+ ?!
- \cdot Solution: check both ${\mathcal F}$ implies ${\mathcal G}$ and ${\mathcal G}$ implies ${\mathcal F}$

Example: Projecting FD's

Given ABC with FD's $\mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$ Problem: project onto AC

- $A^+ = ABC$ yields $A \rightarrow C$ • We do not need to compute AC^+
- $C^+ = C$ yields nothing

Projection of \mathcal{F} onto AC is $\mathcal{F}_{AC} = \{A \to C\}$

31

Equivalence of FD's

 $\begin{array}{ccc} \mathcal{F} \equiv \mathcal{G} & \Longleftrightarrow & \mathcal{F}^+ = \mathcal{G}^+ \\ & \Leftrightarrow & \mathcal{F} \models \mathcal{G} \text{ and } \mathcal{G} \models \mathcal{F} \end{array}$

32

Is \mathcal{F} the same than \mathcal{G} ?

$$\mathcal{F} = \{A \to B, B \to C\} \text{ and } \mathcal{G} = \{A \to B, B \to C, A \to C\}$$

Show $\mathcal{F} \models \mathcal{G}$ and $\mathcal{G} \models \mathcal{F}$

1. $\mathcal{G} \models \mathcal{F}$:

• Each FD in \mathcal{F} follows from \mathcal{G} : trivial

2. $\mathcal{F} \models \mathcal{G}$:

- $A \to B$ and $B \to C$ in \mathcal{G} both follows from \mathcal{F} : trivial
- Does $A \to C$ follows from \mathcal{F} ? Answer yes, by closure test

Conclusion

Minutes

- Functional Dependencies are integrity constraints in Databases
- Keys and Foreign Keys are specific forms of FD's
- One can reason with FD's thx to Armstrong's axioms
- \cdot The closure test is a simple yet powerful tool for inference
- FD's projection requires closure computation

35