
Design Theory for Relational Databases
Functional Dependencies

Guillaume Raschia — Polytech Nantes; Université de Nantes
Last update: November 11, 2021

1

Contents

Integrity Constraints

Reasoning with FD’s

Projecting FD’s

[Source : J. Ullman, Stanford]

2

Integrity Constraints

Functional Dependencies

X ! Y
An FD is an assertion about a relation R that whenever two tuples of R agree on
all the attributes of X , then they must also agree on all attributes in set Y

X ! Y := 8t, u 2 R, t[X] = u[X] =) t[Y] = u[Y]

• Say “X determines Y ” or “X gives Y ” and also “X ! Y holds in R”
• Convention: …, X , Y , Z represent set of attributes; A, B, C , …represent single
attributes

• Convention: no set formers in sets of attributes, just ABC rather than
{A,B,C}

3

Example FD’s

Drinkers(name, addr, beersLiked, brewery, favBeer)

Expected FD’s to assert:

1. name! addr favBeer
• Note: this FD is the same as name! addr and name! favBeer
• No splitting rule for the left-hand side (lhs)

2. beersLiked! brewery

4

Example Data

name addr beersLiked brewery favBeer
Alice Nantes Trompe Souris La Divatte Titan
Alice Nantes Titan Bouffay Titan
Bob Rennes Titan Bouffay Titan

FD’s

• name! addr implies (Alice, Nantes) twice
• name! favBeer implies (Alice, Titan) twice
• beersLiked! brewery implies (Titan, Bouffay) twice

5

Keys of Relations

• K is a superkey for relation R if K functionally determines all the attributes
of R
In other words, a set of attributes K is a superkey in R if for any two tuples t,
u in R, t[K] = u[K] implies t = u. That is, a superkey is a set of attributes
that uniquely identifies a tuple in a relation

• K is a key for R if K is a superkey, but no proper subset of K is a superkey:
K is minimal

Among the—candidate—keys, arbitrarily promote one into the primary key

6

Example: Superkey

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a superkey
because together these attributes determine all the other attributes

• name! addr favBeer
• beersLiked! brewery

7

Example: Key

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a key
because neither {name} nor {beersLiked} is a superkey

• name doesn’t! brewery
• beersLiked doesn’t! addr

There are no other keys, but lots of superkeys: any superset of {name, beersLiked}

8

Where Do Keys Come From?

1. Just assert a—surrogate—key K
• The only FD’s are K ! A for all attributes A

2. Assert FD’s and deduce the keys
• Like we did on the previous Drinkers example

9

More FD’s From “Physics”

FD’s are integrity contraints on the database, coming from the real-life problem

Example
“no two courses can meet in the same room at the same time”

• tells us: hour room! course

10

Short Digression on Inclusion Dependencies

Drinkers(name, addr, beersLiked, brewery, favBeer)
Bars(name, addr)
Frequents(drinker, bar)

Inclusion Dependencies (IND)

1. Every drinker from the Frequents table must be an existing name in the
Drinkers table

2. Every bar from the Frequents table must be an existing name in the Bars
table

11

Inclusion Dependencies

IND is a Referential integrity
Attributes of one relation refer to values in another one

Formally, we have an inclusion dependency S [Y] ✓ R[X] when every value of the
set of attributes Y in S also occurs as a value of the set of attributes X in R:

⇡Y (S) ✓ ⇡X(R)

12

Foreign Keys

• Most often IND’s occur as part of a foreign key
• Foreign key is a conjunction of a primary key and an IND:

S [X] ✓ R[K] and K is a key in R

13

Example: Foreign Key

Bars(name, addr)
Frequents(drinker, bar)

The Bars-Frequents link

• As an IND, we expect Frequents.bar from Frequents to be found in
Bars.name

• Since name is a primary key in Bars, then Frequents.bar is a foreign key
in Frequents

14

Inference System

Inferring FD’s

We are given a set of FD’s F = {fi}1in , and we want to know whether an FD
X ! A must hold in any relation that satisfies the given FD’s

Example
If A ! B and B ! C hold, surely A ! C holds, even if we don’t say so

The inference system is important for the design of good relation schemas

15

Inference Test

To test if X ! A, start by assuming two tuples t and u agree on all attributes of X

R X A the rest
t 00…0 0 00…0
u 00…0 ? ??…?

Use the given FD’s to infer that these tuples must also agree in certain other
attributes

• If A is one—subset—of these attributes, then X ! A is true
• Otherwise, the two tuples, with any forced equalities, form a two-tuple
relation that proves X ! A does not follow from the given FD’s

16

Example: Inference Test

Question
Does A ! C holds in R(A,B,C ,D) with F = {A ! B,B ! C}?

R A B C D
t 0 0 0 0
u 0 ? ? ?

=)
by A!B

R A B C D
t 0 0 0 0
u 0 0 ? ?

=)
by B!C

R A B C D
t 0 0 0 0
u 0 0 0 ?

• Then, if any t and u agree on A, they agree on C
• A ! C follows from F , also denoted F |= A ! C

17

Closure Test

An easier way to test is to compute the closure of X , denoted X+

1. Basis: X+ = X
2. Induction: look for an FD’s lhs Y that is a subset of the current X+. If the FD
is Y ! Z , add Z to X+

3. Stop when a fixpoint is reached

18

Example: Closure Test

F = {AB ! CD,C ! A,B ! DE ,A ! E ,DE ! F}

CD0 = {CD} init. step
CD1 = CD0 [{A} = {CDA} by firing C! A, C in CD0

CD2 = CD1 [{E} = {CDAE} by firing A! E, A in CD1

CD3 = CD2 [{F} = {CDAEF} by firing DE! F, DE in CD2

CD4 = CD3 = CD+

Side note: CDA, CDE, CDF, CDAE, CDAF, CDEF, CDAEF all have closure =CDAEF

19

Closure Test and Inference

Definition (Attribute Closure)

X+ = {A | F |= X ! A}

Does X ! A follows from F ?
() Membership test: Does A 2 X+ ?

20

Back to Key Finding

Remember: K ! all attributes and K is minimal

1. For each subset of attributes X , compute X+

2. Add X as a new key if X+ = all attributes
3. However, drop XY whenever we add X

• Because XY is a non-minimal superkey

21

A Few Tricks

• No need to compute the closure of the empty set or of the set of all the
attributes

• If we find X+ = all attributes, so is the closure of any superset of X
• Then, it’s worth considering X by increasing cardinalities

• If an attribute is not in any rhs of FD, then it MUST be part of every key
• Step 1 is then: Find non-rhs attributes Z then for each subset ZX…

22

Example: Key Finding

ABCD with F = {A ! B,AC ! D,D ! C}

1. Only A is non-rhs attribute
2. A+ = AB; A is not superkey
3. AB+ = AB

• Since AB is already a—subset of a—closure (of A), then AB+ = A+

4. AC+ = ACDB; AC is a (super)key
5. AD+ = ADCB; AD is a (super)key
6. ABC, ABD, ACD may be skipped as obvious superkeys
7. Any other subset does not contain A

Keys are AC, AD

23

Projecting FD’s

Finding All Implied FD’s

Motivation
normalization: the process where we break a relation schema into two or more
schemas

Example
ABCD with FD’s AB ! C , C ! D, and D ! A

• Decompose into ABC, AD: What FD’s hold in ABC?
• Not only AB ! C , but also C ! A!

24

All Implied FD’s

Definition (Closure of F)

F+ = {X ! Y | F |= X ! Y }

Example: ABCD with F = {AB ! C ,C ! D,D ! A}

In F+, one can find:

• all the FD’s from F
• trivial FD’s: A ! A, AB ! A, …, B ! B, …
• ABD ! CD, CA ! DA, CB ! DB, …
• AB ! D, C ! A

How to be sure not to forget any FD? 25

Reasoning with FD’s

Armstrong’s axioms

1. Reflexivity (trivial FD): if X ◆ Y , then X ! Y
2. Augmentation: if X ! Y , then XZ ! YZ for any Z
3. Transitivity: if X ! Y and Y ! Z , then X ! Z

• These are sound and complete inference rules for FD’s!
• F+ is the result of applying these 3 rules
• syntactic ` and semantic |= are mainly the same

• Usually, we are only concerned with nontrivial FD’s: rhs not contained in lhs

26

Reasoning with FD’s (cont’d)

Commonly derived rules

4. Union: if X ! Y and X ! Z , then X ! YZ
5. Decomposition: if X ! YZ , then X ! Y and X ! Z
6. Pseudo-transitivity: if X ! Y and YZ ! T , then XZ ! T

27

Project FD’s onto Attributes

Given ABC with FD’s F = {A ! B,B ! C}

Problem: project onto AC

Basic Idea

1. Start with given FD’s in F and find all nontrivial FD’s that follow from F w.r.t.
the Armstrong’s axioms

2. Restrict to those FD’s that involve only attributes of the projected schema

28

Simple Yet Exponential Algorithm

1. For each subset of attributes X in the projected schema, compute X+

2. Add X ! A for all A in X+ � X only if A is a projected attribute
3. However, drop XY ! A whenever we discover X ! A

• Because XY ! A follows from X ! A in any projection

29

A Few Tricks

• No need to compute the closure of the empty set or of the set of all the
projected attributes

• If we find X+ = all attributes, so is the closure of any superset of X

30

Example: Projecting FD’s

Given ABC with FD’s F = {A ! B,B ! C}

Problem: project onto AC

• A+ = ABC yields A ! C
• We do not need to compute AC+

• C+ = C yields nothing

Projection of F onto AC is FAC = {A ! C}

31

Equivalence Test

Given F = {A ! B,B ! C} and G = {A ! B,B ! C ,A ! C}

How to check F and G are the same?

• F not equal to G but F+ equal to G+

• A dead end: compute F+ and G+?!
• Solution: check both F implies G and G implies F

32

Equivalence of FD’s

F ⌘ G () F+ = G+

() F |= G and G |= F

33

Is F the same than G?

F = {A ! B,B ! C} and G = {A ! B,B ! C ,A ! C}

Show F |= G and G |= F

1. G |= F :
• Each FD in F follows from G: trivial

2. F |= G:
• A ! B and B ! C in G both follows from F : trivial
• Does A ! C follows from F? Answer yes, by closure test

34

Conclusion

Minutes

• Functional Dependencies are integrity constraints in Databases
• Keys and Foreign Keys are specific forms of FD’s
• One can reason with FD’s thx to Armstrong’s axioms
• The closure test is a simple yet powerful tool for inference
• FD’s projection requires closure computation

35

